Texas Instruments CY74FCT163H501CPVC, CY74FCT163H501CPAC, CY74FCT163501CPVCT, CY74FCT163501CPVC, CY74FCT163501CPACT Datasheet

...
0 (0)
Texas Instruments CY74FCT163H501CPVC, CY74FCT163H501CPAC, CY74FCT163501CPVCT, CY74FCT163501CPVC, CY74FCT163501CPACT Datasheet

Data sheet acquired from Cypress Semiconductor Corporation.

Data sheet modified to remove devices not offered.

CY74FCT163501

CY74FCT163H501

SCCS047 - January 1998 - Revised March 2000

Features

• Low power, pin-compatible replacement for LCX and LPT families

• 5V tolerant inputs and outputs

• 24 mA balanced drive outputs

• Power-off disable outputs permits live insertion

• Edge-rate control circuitry for reduced noise

• FCT-C speed at 4.6 ns

• Latch-up performance exceeds JEDEC standard no. 17

• ESD > 2000V per MIL-STD-883D, Method 3015

• Typical output skew < 250ps

• Industrial temperature range of –40˚C to +85˚C

• TSSOP (19.6-mil pitch) or SSOP (25-mil pitch)

• Typical V (ground bounce) performance exceeds Mil olp

Std 883D

• VCC = 2.7V to 3.6V

CY74FCT163501 Features:

Balanced output drivers: 24 mA

Reduced system switching noise

• Typical V

(ground bounce) <0.6V at V

CC

= 3.3V,

OLP

 

 

TA= 25˚C

CY74FCT163H501 Features:

Bus hold retains the last active state

Devices with bus hold are not recommended for translating rail-to-rail CMOS signals to 3.3V logic levels

18-Bit Registered Transceivers

• Eliminates the need for external pull-up or pull-down resistors

Functional Description

These 18-bit universal bus transceivers can be operated in transparent, latched or clock modes by combining D-type latches and D-type flip-flops. Data flow in each direction is controlled by output enable (OEAB and OEBA), latch enable (LEAB and LEBA), and clock inputs (CLKAB and CLKBA). For A-to-B data flow, the device operates in transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CLKAB. OEAB performs the output enable function on the B port. Data flow from B-to-A is similar to that of A-to-B and is controlled by OEBA, LEBA, and CLKBA. The output buffers are designed with a power-off disable feature to allow live insertion of boards.

THE CY74FCT163501 has 24-mA balanced output drivers with current limiting resistors in the outputs. This reduces the need for external terminating resistors, as well as provides for minimal undershoot and reduced ground bounce. The CY74FCT163501 is ideal for driving transmission lines.

The CY74FCT163H501 is a 24-mA balanced output part, that has “bus hold” on the data inputs. The device retains the input’s last state whenever the input goes to high impedance. This eliminates the need for pull-up/down resistors and prevents floating inputs.

Functional Block Diagram; CY74FCT163501, CY74FCT163H501

Pin Configuration

 

SSOP/TSSOP

 

 

 

 

 

Top View

 

 

 

 

 

OEAB

1

56

GND

 

 

 

 

LEAB

2

55

CLKAB

 

 

 

 

A1

3

54

B1

 

 

 

 

GND

4

53

GND

OEAB

 

 

 

A2

5

52

B2

 

 

 

 

A3

6

51

B3

CLKBA

 

 

 

VCC

7

50

VCC

LEBA

 

 

 

A4

8

49

B4

 

 

 

A5

9

48

B5

 

 

 

 

OEBA

 

 

 

A6

10

47

B6

 

 

 

GND

11

46

GND

 

 

 

 

CLKAB

 

 

 

A7

12

45

B7

LEAB

 

 

 

A8

13

44

B8

 

 

 

A9

14

43

B9

 

 

 

 

 

C

C

 

A10

15

42

B10

 

B1

A11

16

41

B11

A 1

D

D

 

A12

17

40

B12

 

 

 

 

 

 

 

 

GND

18

39

GND

 

C

C

 

A13

19

38

B13

 

 

A14

20

37

B14

 

D

D

 

 

 

A15

21

36

B15

 

 

 

 

 

 

 

 

VCC

22

35

VCC

 

 

 

 

A 16

23

34

B16

 

 

 

 

A 17

24

33

B17

 

TO 17 OTHER CHANNELS

FCT163501-1

GND

25

32

GND

 

A 18

26

31

B18

 

 

 

 

 

 

OEBA

27

30

CLKBA

 

 

 

 

LEBA

28

29

GND

 

 

 

 

 

 

 

FCT163501-2

Copyright © 2000, Texas Instruments Incorporated

CY74FCT163501

CY74FCT163H501

Pin Description

 

Name

Description

 

 

 

 

OEAB

A-to-B Output Enable Input

 

 

 

 

 

 

 

B-to-A Output Enable Input (Active LOW)

 

OEBA

 

 

 

 

LEAB

A-to-B Latch Enable Input

 

 

 

 

LEBA

B-to-A Latch Enable Input

 

 

 

 

CLKAB

A-to-B Clock Input

 

 

 

 

CLKBA

B-to-A Clock Input

 

 

 

 

A

A-to-B Data Inputs or B-to-A Three-State

 

 

 

Outputs[1]

 

B

B-to-A Data Inputs or A-to-B Three-State

 

 

 

Outputs[1]

Maximum Ratings[6, 7]

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature .....................................

−55°C to +125°C

Ambient Temperature with

−55°C to +125°C

Power Applied ..................................................

DC Input Voltage .................................................

−0.5V to +7.0V

DC Output Voltage ..............................................

−0.5V to +7.0V

DC Output Current

−60 to +120 mA

(Maximum Sink Current/Pin) ...........................

Power Dissipation ..........................................................

1.0W

Static Discharge Voltage............................................

>2001V

(per MIL-STD-883, Method 3015)

 

Function Table[2, 3]

 

Inputs

 

Outputs

 

 

 

 

 

 

OEAB

LEAB

CLKAB

A

B

 

 

 

 

 

 

L

X

X

X

Z

 

 

 

 

 

 

H

H

X

L

L

 

 

 

 

 

 

H

H

X

H

H

 

 

 

 

 

 

H

L

 

 

L

L

 

 

 

 

 

 

 

 

H

L

 

 

H

H

 

 

 

 

 

 

 

 

H

L

L

X

B[4]

H

L

H

X

B[5]

Operating Range

 

Ambient

 

Range

Temperature

VCC

Industrial

−40°C to +85°C

2.7V to 3.6V

 

 

 

1.On the 74FCT163H501 these pins have bus hold.

2.A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, and CLKBA.

3.H = HIGH Voltage Level L = LOW Voltage Level X = Don’t Care

Z = High-impedance

= LOW-to-HIGH Transition

4.Output level before the indicated steady-state input conditions were established.

5.Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

6.Operation beyond the limits set forth may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

7.Unused inputs must always be connected to an appropriate logic voltage level, preferably either VCC or ground.

2

CY74FCT163501

CY74FCT163H501

Electrical Characteristics for Non Bus Hold Devices Over the Operating Range VCC = 2.7V to 3.6V

 

Parameter

Description

 

 

Test Conditions

Min.

Typ.[8]

Max.

Unit

VIH

Input HIGH Voltage

All Inputs

 

2.0

 

5.5

V

VIL

Input LOW Voltage

 

 

 

 

 

 

0.8

V

VH

Input Hysteresis[9]

 

 

 

 

 

100

 

mV

VIK

Input Clamp Diode Voltage

VCC=Min., IIN=–18 mA

 

–0.7

–1.2

V

IIH

Input HIGH Current

VCC=Max., VI=5.5

 

 

 

±1

µA

IIL

Input LOW Current

VCC=Max., VI=GND

 

 

±1

µA

IOZH

High Impedance Output Current

VCC=Max., VOUT=5.5V

 

 

±1

µA

 

 

(Three-State Output pins)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOZL

High Impedance Output Current

VCC=Max., VOUT=GND

 

 

±1

µA

 

 

(Three-State Output pins)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

OS

Short Circuit Current[10]

V

CC

=Max., V =GND

–60

–135

–240

mA

 

 

 

OUT

 

 

 

 

 

IOFF

Power-Off Disable

VCC=0V, VOUT≤4.5V

 

 

±100

µA

ICC

Quiescent Power Supply Current

VIN≤0.2V,

VCC=Max.

 

0.1

10

µA

 

 

 

VIN>VCC–0.2V

 

 

 

 

 

 

ICC

Quiescent Power Supply Current

VIN=VCC–0.6V[11]

VCC=Max.

 

2.0

30

µA

 

 

(TTL inputs HIGH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

 

 

 

 

 

 

 

 

 

8.Typical values are at VCC=3.3V, TA = +25˚C ambient.

9.This parameter is specified but not tested.

10.Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

11.Per TTL driven input (VIN=3.4V); all other inputs at VCC or GND.

3

Loading...
+ 6 hidden pages