Texas Instruments CY74FCT652TQCT, CY74FCT652TQC, CY74FCT652CTSOCT, CY74FCT652CTSOC, CY74FCT652CTQCT Datasheet

...
0 (0)
Texas Instruments CY74FCT652TQCT, CY74FCT652TQC, CY74FCT652CTSOCT, CY74FCT652CTSOC, CY74FCT652CTQCT Datasheet

Data sheet acquired from Cypress Semiconductor Corporation.

Data sheet modified to remove devices not offered.

CY74FCT652T

SCCS032 - September 1994 - Revised March 2000

8-Bit Registered Transceiver

Features

Function, pinout, and drive compatible with FCT and F logic

FCT-C speed at 5.4 ns max. (Com’l)

FCT-A speed at 6.3 ns max. (Com’l)

• Reduced V (typically = 3.3V) versions of equivalent

OH

FCT functions

Edge-rate control circuitry for significantly improved noise characteristics

Power-off disable feature

Matched rise and fall times

Fully compatible with TTL input and output logic levels

• Sink Current

64 mA

Source Current

32 mA

Independent register for A and B buses

Multiplexed real-time and stored data transfer

Extended commercial range of40˚C to +85˚C

Functional Description

The FCT652T consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. GAB and GBA control pins are provided to control the transceiver functions. SAB and SBA control pins are provided to select either real-time or stored data transfer. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A LOW input level selects real-time data and a HIGH selects stored data.

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by LOW-to-HIGH transitions at the appropriate clock pins (CPAB or CPBA), regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and GBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.

The outputs are designed with a power-off disable feature to allow for live insertion of boards.

Logic Block Diagram

 

Pin Configurations

 

CPBA

 

 

 

 

LCC

 

 

 

 

 

 

 

 

 

 

 

GAB

 

 

 

Top View

 

SBA

 

 

6

5

4

NC

3 2 1

 

 

 

A

A

A

A A A

 

SAB

 

 

11 10 9

8

7

6

5

 

 

 

A7

12

 

 

 

 

 

4

GAB

GBA

 

A8

13

 

 

 

 

 

3

SAB

CPAB

 

GND

14

 

 

 

 

 

2

CPAB

 

NC

15

 

 

 

 

 

1

NC

 

B REG

B8

16

 

 

 

 

 

28

VCC

 

B7

17

 

 

 

 

 

27

CPBA

 

 

 

 

 

 

 

 

 

B6

18

 

 

 

 

 

26

SBA

1 OF 8 CHANNELS

 

 

 

 

 

 

 

D

 

19 20 21 22 2324 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

4 3

NC

2 1

GBA

 

 

C

 

B

B

B

B B

 

A1

 

 

 

SOIC/QSOP

 

 

 

 

 

 

Top View

 

A REG

 

B1

 

 

 

 

 

 

 

 

 

 

CPAB

1

 

 

 

24

VCC

 

 

 

 

 

 

D

 

 

SAB

2

 

 

 

23

CPBA

C

 

 

GAB

3

 

 

 

22

SBA

 

 

A1

4

 

 

 

21

GBA

 

 

 

 

 

 

 

 

 

A2

5

 

 

 

20

B1

 

 

 

A3

6

 

 

 

19

B2

 

 

 

A4

7

 

 

 

18

B3

 

 

 

A5

8

 

 

 

17

B4

 

 

 

A6

9

 

 

 

16

B5

 

 

 

A7

10

 

 

 

15

B6

 

 

 

A8

11

 

 

 

14

B7

 

TO 7 OTHER CHANNELS

 

GND

12

 

 

 

13

B8

 

 

 

 

 

 

Copyright © 2000, Texas Instruments Incorporated

CY74FCT652T

BUS A

BUS B

BUS A

BUS B

GAB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GBA

 

 

 

CPAB

 

 

 

CPBA

SAB

SBA

GBA

 

 

 

CPAB

 

 

CPBA

SAB

SBA

L

L

 

 

 

X

 

 

 

X

X

L

H

H

 

 

 

X

 

 

 

X

L

X

 

 

Real-Time Transfer

 

 

 

 

 

Real-Time Transfer

 

 

 

 

 

 

 

Bus B to Bus A

 

 

 

 

 

 

 

 

Bus A to Bus B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS A

BUS B

BUS A

BUS B

GAB

 

 

 

 

 

 

 

 

GAB

 

 

 

 

 

 

 

GBA

CPAB

CPBA

SAB

SBA

GBA

CPAB

CPBA

SAB

SBA

X

 

H

 

 

X

X

X

H

L

H or L

H or L

H

H

 

 

 

L

 

X

X

 

 

X

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

H

 

 

 

 

X

X

 

Transferred Stored Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Store Data from A and/or B

 

 

 

 

to A and/or B

 

 

Function Table[1]

 

 

 

 

 

 

 

Inputs

 

 

Data I/O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAB

 

 

 

CPAB

CPBA

SAB

SBA

A1 thru A8

B1 thru B8

Operation or Function

GBA

L

 

H

 

H or L

H or L

X

X

Input

Input

Isolation

L

 

H

 

 

 

 

 

 

 

 

 

X

X

 

 

Store A and B Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

H

 

 

 

 

 

H or L

X

X

Input

Unspecified[2]

Store A, Hold B

 

 

 

 

 

 

H

 

H

 

 

 

 

 

 

 

 

 

X[1]

X

Input

Output

Store A in both registers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

X

 

H or L

 

 

 

 

X

X

Unspecified[2]

Input

Hold A, Store B

 

 

 

 

 

 

L

 

L

 

 

 

 

 

 

 

 

 

X

X[1]

Output

Input

Store B in both registers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

L

 

 

X

 

X

X

L

Output

Input

Real-Time B Data to A Bus

L

 

L

 

 

X

H or L

X

H

 

 

Stored B Data to A Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

 

X

 

X

L

X

Input

Output

Real-Time A Data to B Bus

H

 

H

 

H or L

 

X

H

X

 

 

Stored A Data to B Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

L

 

H or L

H or L

H

H

Output

Output

Stored A Data to B Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Stored B Data to A Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

1.Select control=L: clocks can occur simultaneously. Select control=H: clocks must be staggered in order to load both registers. H = HIGH Voltage Level. L = LOW Voltage Level. X = Don’t Care. = LOW-to-HIGH Transition.

2.The data output functions may be enabled or disabled by various signals at the GAB or GBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

2

CY74FCT652T

Maximum Ratings[3, 4]

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature .................................

–65°C to +150°C

Ambient Temperature with

–65°C to +135°C

Power Applied .............................................

Supply Voltage to Ground Potential ...............

–0.5V to +7.0V

DC Input Voltage............................................

–0.5V to +7.0V

DC Output Voltage .........................................

–0.5V to +7.0V

DC Output Current (Maximum Sink Current/Pin) ......

120 mA

Power Dissipation ..........................................................

0.5W

Static Discharge Voltage............................................

>2001V

(per MIL-STD-883, Method 3015)

Operating Range

 

 

Ambient

 

Range

Range

Temperature

VCC

Commercial

T, AT, CT

–40°C to +85°C

5V ± 5%

 

 

 

 

Electrical Characteristics Over the Operating Range

 

Parameter

Description

 

Test Conditions

Min.

Typ.[5]

Max.

Unit

VOH

Output HIGH Voltage

VCC=Min., IOH=–32 mA

2.0

 

 

V

 

 

 

VCC=Min., IOH=–15 mA

2.4

3.3

 

V

VOL

Output LOW Voltage

VCC=Min., IOL=64 mA

 

0.3

0.55

V

VIH

Input HIGH Voltage

 

 

 

 

2.0

 

 

V

VIL

Input LOW Voltage

 

 

 

 

 

 

0.8

V

VH

Hysteresis[6]

All inputs

 

 

 

0.2

 

V

VIK

Input Clamp Diode Voltage

VCC=Min., IIN=–18 mA

 

–0.7

–1.2

V

II

Input HIGH Current

VCC=Max., VIN=VCC

 

 

5

A

I

IH

Input HIGH Current[6]

V

=Max., V

IN

=2.7V

 

 

±1

A

 

 

CC

 

 

 

 

 

 

I

IL

Input LOW Current[6]

V

=Max., V

IN

=0.5V

 

 

±1

A

 

 

CC

 

 

 

 

 

 

IOZH

Off State HIGH-Level

VCC=Max., VOUT=2.7V

 

 

10

A

 

 

Output Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOZL

Off State LOW-Level

VCC=Max., VOUT=0.5V

 

 

–10

A

 

 

Output Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

OS

Output Short Circuit Current[7]

V

=Max., V

 

=0.0V

–60

–120

–225

mA

 

 

CC

OUT

 

 

 

 

IOFF

Power-Off Disable

VCC=0V, VOUT=4.5V

 

 

±1

A

Capacitance[6]

Parameter

Description

Typ.[5]

Max.

Unit

CIN

Input Capacitance

5

10

pF

COUT

Output Capacitance

9

12

pF

Notes:

 

 

 

 

3.Unless otherwise noted, these limits are over the operating free-air temperature range.

4.Unused inputs must always be connected to an appropriate logic voltage level, preferably either VCC or ground.

5.Typical values are at VCC=5.0V, TA=+25˚C ambient.

6.This parameter is specified but not tested.

7.Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

3

Loading...
+ 4 hidden pages