TEXAS INSTRUMENTS TPS23754, TPS23754-1, TPS23756 Technical data

0 (0)

TPS23754

TPS23754-1

TPS23756

www.ti.com

SLVS885B–OCTOBER 2008–REVISED MAY 2009

High Power/High Efficiency PoE Interface and DC/DC Controller

FEATURES

Powers up to 30 W (input) PDs

DC/DC Control Optimized for Isolated Converters

Supports High-efficiency Topologies

Complete PoE Interface

Enhanced Classification per IEEE 802.3at (Draft) with Status Flag

Adapter ORing Support

Programmable Frequency with Synchronization

Robust 100 V, 0.5 Ω Hotswap MOSFET

–40°C to 125°C Junction Temperature Range

Industry Standard PowerPAD™ TSSOP-20

APPLICATIONS

IEEE 802.3at (Draft) Compliant Devices

Video and VoIP Telephones

RFID Readers

Multiband Access Points

Security Cameras

DESCRIPTION

The TPS23754/6 is a combined Power over Ethernet (PoE) powered device (PD) interface and current-mode dc/dc controller optimized specifically for isolated converters. The PoE interface supports the IEEE 802.3at (draft) standard.

The TPS23754/6 supports a number of input voltage ORing options including highest voltage, external adapter preference, and PoE preference. These features allow the designer to determine which power source will carry the load under all conditions.

The PoE interface features the new extended hardware classification necessary for compatibility with high-power midspan power sourcing equipment (PSE) per IEEE 802.3at (draft). The detection signature pin can also be used to force power from the PoE source off. Classification can be programmed to any of the defined types with a single resistor.

The dc/dc controller features two complementary gate drivers with programmable dead time. This simplifies design of active-clamp forward converters or optimized gate drive for highly-efficient flyback topologies. The second gate driver may be disabled if desired for single MOSFET topologies. The controller also features internal softstart, bootstrap startup source, current-mode compensation, 78% maximum duty cycle. A programmable and synchronizable oscillator allows design optimization for efficiency and eases use of the controller to upgrade existing power supply designs. Accurate programmable blanking, with a default period, simplifies the usual current-sense filter design trade-offs.

The TPS23754 has a 15 V converter startup while the TPS23756 has a 9 V converter startup. The TPS23754-1 replaces the PPD pin with a no-connect for increased pin spacing.

Pairs 1,2

Pairs 3,4 From Ethernet

From Ethernet

Adapter

 

 

 

 

 

 

 

 

 

 

 

 

 

CIO

 

 

 

 

 

 

DEN

 

 

 

 

 

 

 

 

 

 

T1

 

 

 

VOUT

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

R

 

 

DD1

DD

 

 

T2P

 

 

 

IN

M4

LOUT

RT2P-OUT

 

 

 

 

 

 

 

 

 

 

 

 

D

DEN

V

V

 

 

 

RT2P

 

 

DVC1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLS

 

 

 

 

 

VC

 

 

 

 

 

 

COUT

VT2P-OUT

 

 

CLS

N/C OR PPD

 

 

 

 

LVC

 

DVC2

M3

 

 

C

 

 

 

 

 

 

 

 

 

PAD

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

M1

 

 

 

 

 

 

Type 2 PSE

 

 

 

 

 

 

 

 

VB

 

 

 

 

 

 

Indicator

 

 

 

V

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

SS

 

 

 

 

 

 

 

 

C

VB

 

 

 

 

 

 

 

APD

 

 

 

 

GATE

 

M2

ROB

FBU

 

 

 

 

CTL

COM ARTN RTN

 

BLNK

 

CS

 

CCTL

 

DA

 

 

FRS

DT

GAT2

 

 

 

RCTL

C

IZ

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APD2

 

FRS

 

 

 

 

BLNK

VB

CCL

DCL

 

 

 

 

FBL

 

RAPD1

 

 

 

 

 

VC CS

 

 

 

 

 

 

 

R

 

 

 

 

 

C

C R

 

 

 

 

 

 

 

 

R

 

 

 

 

 

R

 

 

 

TLV431

R

 

Optional

 

 

 

 

RDT

 

 

 

 

 

 

 

 

 

 

 

Interface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. High Efficiency Converter Using TPS23754

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date.

Copyright © 2008–2009, Texas Instruments Incorporated

Products conform to specifications per the terms of the Texas

 

Instruments standard warranty. Production processing does not

 

necessarily include testing of all parameters.

 

TPS23754

TPS23754-1

TPS23756

SLVS885B–OCTOBER 2008–REVISED MAY 2009

www.ti.com

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate voltage level, preferably either the proper supply or ground. Specific guidelines for handling devices of this type are contained in the publication Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies available from Texas Instruments.

PRODUCT INFORMATION(1)

 

STATUS

DUTY

POE UVLO

CONVERTER UVLO

FEATURE

PACKAGE

MARKING

 

 

CYCLE

ON / HYST.

ON / HYST.

 

 

 

TPS23754PWP

Active

0–78%

35/4.5

15 / 6.5

PPD

TSSOP-20

TPS23754

 

 

 

 

 

 

PowerPAD™

 

TPS23754PWP-1

Active

0–78%

35/4.5

15 / 6.5

TSSOP-20

23754-1

 

 

 

 

 

 

PowerPAD™

 

TPS23756PWP

Active

0–78%

35/4.5

9 / 3.5

PPD

TSSOP-20

TPS23756

 

 

 

 

 

 

PowerPAD™

 

(1)For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1) (2)

Voltage with respect to VSS unless otherwise noted.

 

VALUE

UNIT

Input voltage range, ARTN(2), COM(2), DEN, PPD, RTN(3), VDD, VDD1

–0.3 to 100

V

Input voltage range CLS(4)

-0.3 to 6.5

V

Input voltage range [APD, BLNK(4), CTL, DT(4), FRS(4), VB(4)] to [ARTN, COM]

–0.3 to 6.5

V

Input voltage range CS to [ARTN,COM]

–0.3 to VB

V

Input voltage range [ARTN, COM] to RTN

–2 to 2

V

Voltage range VC, T2P, to [ARTN, COM]

–0.3 to 19

V

Voltage range GATE(4), GAT2(4) to [ARTN, COM]

–0.3 to VC+0.3

V

Sinking current RTN

Internally limited

mA

Sourcing current VB

Internally limited

mA

Average Sourcing or sinking current, GATE, GAT2

25

mArms

ESD rating, HBM

2

kV

ESD rating, CDM

500

V

ESD – system level (contact/air) at RJ-45(5)

8 / 15

kV

Operating junction temperature range, TJ

–40 to Internally limited

°C

(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)ARTN and COM must be tied to RTN.

(3)IRTN = 0 for VRTN > 80V.

(4)Do not apply voltage to these pins

(5)ESD per EN61000-4-2. A power supply containing the TPS23754 was subjected to the highest test levels in the standard. See the ESD section.

2

Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

www.ti.com

SLVS885B–OCTOBER 2008–REVISED MAY 2009

RECOMMENDED OPERATING CONDITIONS(1)

Voltage with respect to VSS (unless otherwise noted)

 

MIN

NOM

MAX

UNIT

Input voltage range ARTN, COM, PPD, RTN, VDD, VDD1

0

 

57

V

Input voltage range T2P, VC to [ARTN, COM]

0

 

18

V

Input voltage range APD, CTL, DT to [ARTN, COM]

0

 

VB

V

Input voltage range CS to [ARTN, COM]

0

 

2

V

Continuous RTN current (T ≤ 125°C)(2)

 

 

825

mA

J

 

 

 

 

Sourcing current, VB

0

2.5

5

mA

VB capacitance

0.08

 

 

μF

RBLNK

0

 

350

kΩ

Synchronization pulse width input (when used)

25

 

 

ns

Operating junction temperature range, TJ

–40

 

125

°C

(1)ARTN and COM tied to RTN.

(2)This is the minimum current-limit value. Viable systems will be designed for maximum currents below this value with reasonable margin. IEEE 802.3at (draft) permits 600mA continuous loading

DISSIPATION RATINGS

PACKAGE

ΨJT

θJP

θJA

θJA

MAXIMUM POWER RATING

°C/W(1)

°C/W

°C/W(2)

°C/W(3)

(W)(4)

 

PWP (TSSOP-20)

0.607

1.4

32.6

73.8

1.2

(1)Thermal resistance junction to case top.

(2)See TI document SLMA002C (or latest version) for recommended layout. This is a best case, natural convection number.

(3)JEDEC method with high-k board (2 signal – 2 plane layers) and power pad not soldered (worst case).

(4)Based on TI recommended layout and 85°C.

ELECTRICAL CHARACTERISTICS

Unless otherwise noted: CS=COM=APD=CTL=RTN=ARTN, GATE & GAT2 float, RFRS=68.1 kΩ, RBLNK=249 kΩ, DT=VB,

PPD=VSS, T2P open, CVB=CVC=0.1 μF, RDEN=24.9 kΩ, RCLS open, 0 V ≤ (VDD, VDD1) ≤ 57 V, 0 V ≤ VC ≤ 18 V, –40°C ≤ TJ ≤ 125°C. Typical specifications are at 25°C.

CONTROLLER SECTION ONLY

[VSS = RTN and VDD=VDD1] or [VSS=RTN=VDD], all voltages referred to [ARTN, COM].

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VC

 

 

 

 

 

 

VCUV

 

VC rising ‘754

14.3

15

15.7

 

 

VC rising ‘756

8.7

9

9.3

 

 

UVLO

V

 

Hysteresis ‘754 (1)

6.2

6.5

6.8

VCUVH

 

 

 

Hysteresis ‘756 (1)

3.3

3.5

3.7

 

 

 

 

 

Operating current

VC = 12 V, CTL = VB, RDT = 68.1 kΩ

0.7

0.92

1.2

mA

 

 

‘756, VDD1 = 10.2 V, VC(0) = 0 V

50

85

175

 

tST

Bootstrap startup time,

‘756, VDD1 = 35 V, VC(0) = 0 V

27

45

92

ms

CVC = 22 μF

‘754, VDD1 = 19.2 V, VC(0) = 0 V

49

81

166

 

 

 

 

‘754, VDD1 = 35 V, VC(0) = 0 V

44

75

158

 

 

 

‘754, VDD1 = 19.2 V, VC = 13.9 V

1.7

3.4

5.5

 

 

Startup current source - IVC

‘756, VDD1 = 10.2 V, VC = 8.6 V

0.44

1.06

1.80

mA

 

 

‘754, ‘756, VDD1 = 48 V, VC = 0 V

2.7

4.8

6.8

 

VB

 

 

 

 

 

 

 

Voltage

6.5 V ≤ VC ≤ 18 V, 0 ≤ IVB ≤ 5 mA

4.8

5.10

5.25

V

(1)The hysteresis tolerance tracks the rising threshold for a given device.

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback

3

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

 

TPS23754

TPS23754-1

TPS23756

SLVS885B–OCTOBER 2008–REVISED MAY 2009

 

 

 

www.ti.com

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

FRS

 

 

 

 

 

 

 

Switching frequency

CTL = VB, measure GATE

 

 

 

kHz

 

RFRS = 68.1 kΩ

227

253

278

 

 

 

DMAX

Duty cycle

CTL= VB, measure GATE

76

78

80

%

VSYNC

Synchronization

Input threshold

2

2.2

2.4

V

CTL

 

 

 

 

 

 

VZDC

0% duty cycle threshold

VCTL ↓ until GATE stops

1.3

1.5

1.7

V

 

Softstart period

Interval from switching start to VCSMAX

1.9

3.9

6.2

ms

 

Input resistance

 

70

100

145

kΩ

BLNK

 

Blanking delay

 

(In addition to t1)

DT

 

tDT1

Dead time

tDT2

See Figure 2 for tDTx definition

tDT1

 

tDT2

 

CS

 

VCSMAX

Maximum threshold voltage

t1

Turnoff delay

VSLOPE

Internal slope compensation

voltage

 

ISL_EX

Peak slope compensation

current

 

 

Bias current (sourcing)

GATE

 

 

Source current

 

Sink current

GAT2

 

 

Source current

Sink current

APD / PPD

VAPDEN

APD threshold voltage

VAPDH

 

VPPDEN

 

VPPDH

PPD threshold voltage

VPPD2

 

VPPD2H

 

 

APD leakage current

 

(source or sink)

IPPD

PPD sink current

THERMAL SHUTDOWN

Turnoff temperature

Hysteresis(3)

BLNK = RTN

35

55

78

ns

RBLNK = 49.9 kΩ

38

55

70

 

CTL = VB, CGATE = 1 nF,

 

 

 

 

CGAT2 = 1 nF, measure GATE, GAT2

 

 

 

 

RDT = 24.9 kΩ, GAT2 ↑ to GATE ↑

40

50

62.5

ns

RDT = 24.9 kΩ, GATE ↓ to GAT2 ↓

40

50

62.5

 

RDT = 75 kΩ, GAT2 ↑ to GATE ↑

120

150

188

 

RDT = 75 kΩ, GATE ↓ to GAT2 ↓

120

150

188

 

VCTL = VB, VCS rising until GATE duty cycle drops

0.5

0.55

0.6

V

VCS = 0.65 V

24

40

70

ns

Peak voltage at maximum duty cycle, referenced to CS

120

155

185

mV

VCTL = VB, ICS at maximum duty cycle

30

42

54

μA

DC component of ICS

1

2.5

4.3

μA

VCTL = VB, VC = 12 V, GATE high, pulsed measurement

0.37

0.6

0.95

A

VCTL = VB, VC = 12 V, GATE low, pulsed measurement

0.7

1.0

1.4

A

VCTL = VB, VC = 12 V, GAT2 high, RDT = 24.9 kΩ, pulsed

0.37

0.6

0.95

A

measurement

 

 

 

 

VCTL = VB, VC = 12 V, GAT2 low, RDT = 24.9 kΩ, pulsed

0.7

1.0

1.4

A

measurement

 

 

 

 

VAPD rising

1.43

1.5

1.57

V

Hysteresis (2)

0.29

0.31

0.33

 

VPPD- VVSS rising, UVLO disable

1.45

1.55

1.65

V

Hysteresis (2)

0.29

0.31

0.33

 

VPPD- VVSS rising, Class enable

7.4

8.3

9.2

V

Hysteresis (2)

0.5

0.6

0.7

 

VC = 12 V, VAPD = VB

 

 

1

μA

VPPD-VSS = 1.5 V

2.5

5

7.5

μA

TJ rising

135

145

155

°C

 

 

20

 

°C

(2)The hysteresis tolerance tracks the rising threshold for a given device.

(3)These parameters are provided for reference only, and do not constitute part of TI's published specifications for purposes of TI's product warranty.

4

Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

www.ti.com

SLVS885B–OCTOBER 2008–REVISED MAY 2009

ELECTRICAL CHARACTERISTICS – PoE AND CONTROL

[VDD=VDD1] or [VDD1=RTN], VC = RTN, COM=RTN=ARTN, all voltages referred to VSS unless otherwise noted

PARAMETER

DETECTION (DEN)

Detection current

 

Detection bias current

VPD_DIS

Hotswap disable threshold

 

DEN leakage current

CLASSIFICATION (CLS)

ICLS

Classification current,

applies to both cycles

 

Classification mark resistance

VCL_ON

Classification regulator lower

VCL_H

threshold

VCU_OFF

Classification regulator upper

VCU_H

threshold

VMSR

Mark state reset

 

Leakage current

PASS DEVICE (RTN)

 

On resistance

 

Current limit

 

Inrush limit

 

Foldback voltage threshold

UVLO

 

VUVLO_R

UVLO threshold

VUVLO_H

 

T2P

 

 

ON characteristic

 

Leakage current

tT2P

Delay

THERMAL SHUTDOWN

Turnoff temperature Hysteresis(2)

TEST CONDITIONS

MIN

TYP

MAX

UNIT

(VDD = VDD1 = RTN = VSUPPLY positive)

 

 

 

 

Measure ISUPPLY

 

 

 

 

VDD = 1.6 V

62

64.3

66.5

μA

VDD = 10 V

399

406

414

 

VDD = 10 V, float DEN, measure ISUPPLY,

 

5.6

10

μA

Note: Not during Mark state

 

 

 

 

 

3

4

5

V

VDEN = VDD = 57 V, float VDD1 and RTN, measure IDEN

 

0.1

5

μA

(VDD = VDD1 = RTN = VSUPPLY positive)

 

 

 

 

13 V ≤ VDD ≤ 21 V, Measure ISUPPLY

 

 

 

 

RCLS = 1270 Ω

1.8

2.1

2.4

 

RCLS = 243 Ω

9.9

10.4

10.9

mA

RCLS = 137 Ω

17.6

18.5

19.4

 

RCLS = 90.9 Ω

26.5

27.7

29.3

 

RCLS = 63.4 Ω

38.0

39.7

42

 

5.6 V ≤ VDD ≤ 9.4 V

7.5

9.7

12

kΩ

Regulator turns on, VDD rising

11.2

11.9

12.6

V

Hysteresis(1)

1.55

1.65

1.75

 

Regulator turns off, VDD rising

21

22

23

V

Hysteresis(1)

0.5

0.75

1.0

 

VDD falling

3

4

5

V

VDD = 57 V, VCLS = 0 V, DEN = VSS, measure ICLS

 

 

1

μA

(VDD1 = RTN)

 

 

 

 

 

0.25

0.43

0.75

VRTN = 1.5 V, VDD = 48 V, pulsed measurement

850

970

1100

mA

VRTN = 2 V, VDD: 0 V → 48 V, pulsed measurement

100

140

180

mA

VDD rising

11

12.3

13.6

V

VDD rising

33.9

35

36.1

V

Hysteresis(1)

4.4

4.55

4.76

 

Perform classification algorithm, VT2P-RTN = 1 V,

2

 

 

mA

CTL = ARTN

 

 

 

 

 

 

VT2P = 18 V, CTL = VB

 

 

10

μA

From start of switching to T2P active

5

9

15

ms

TJ rising

135

145

155

°C

 

 

20

 

°C

(1)The hysteresis tolerance tracks the rising threshold for a given device.

(2)These parameters are provided for reference only, and do not constitute part of TI's published specifications for purposes of TI's product warranty.

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback

5

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

SLVS885B–OCTOBER 2008–REVISED MAY 2009

www.ti.com

GATE

hi

 

 

50%

 

 

 

lo

 

GAT2

hi

 

 

50%

lo

time

 

 

tDT1

tDT2

Figure 2. GATE and GAT2 Timing and Phasing

 

 

DEVICE INFORMATION

 

 

 

 

FUNCTIONAL BLOCK DIAGRAM

 

VDD1

 

 

 

 

φ

 

 

 

φ

VC

 

 

 

 

 

 

 

 

VB

FRS

Oscillator

 

 

CONV.

 

 

 

Reg

CTL

 

 

 

OFF

Control

 

Ref

 

 

 

 

 

 

 

 

 

 

 

50kΩ

4ms

 

enb

Global Cvtr.

enb

 

 

 

 

 

Softstart

 

-

Enable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

GATE

 

 

 

+

1

D

Q

 

 

Deadtime

 

 

 

 

 

 

50kΩ

+

 

 

 

CK

 

 

 

 

DT

 

0.75V

 

 

 

 

 

 

 

 

 

 

CLRB

 

 

 

COM

 

 

 

 

 

 

 

 

ARTN

40µA

 

 

 

 

 

 

 

 

GAT2

(pk)

 

 

 

 

 

 

 

 

 

 

 

 

 

φ

 

 

 

 

3.75kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

Switch

 

 

 

 

 

 

t2

T2P

 

 

 

 

 

Converter

 

 

 

Matrix

 

+

 

 

ss

 

 

 

 

 

Thermal

 

Logic

 

 

 

 

 

 

Monitor

CTL

 

 

 

 

 

 

 

 

 

 

ARTN

0.55V

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLNK

 

 

 

 

 

 

ARTN

 

T2P

 

 

 

 

 

 

 

 

 

 

ARTN

 

 

uvlo, φpd

 

 

2.5V

 

 

 

 

 

 

 

 

 

 

 

 

CLS

 

 

 

 

Class

 

 

 

 

VDD

 

 

 

 

 

 

 

 

11V &

pa, sa, den

Logic &

 

 

 

 

 

 

 

 

 

T2

 

 

9V

Regulator

 

 

 

 

 

 

 

 

uvlo

 

 

 

 

 

State

t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eng.

 

 

22V &

 

 

 

 

 

 

 

 

 

 

21.25V

 

 

 

 

 

 

 

 

 

 

5V

 

 

 

 

12.5V

 

VSS

DEN

 

 

 

 

 

& 1V

 

 

 

 

& 4V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

400µs

CONV.

 

35V &

 

 

 

 

 

 

 

OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30.5V

 

R

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uvlo

 

 

1

 

 

 

 

 

 

7.8V

 

S

H

 

ILIM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPD

 

 

 

L

 

+

 

 

 

 

 

 

 

0

 

 

 

 

 

 

1.55V

 

 

 

-

 

 

 

 

 

 

 

 

 

EN

 

 

 

 

&1.25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pa

 

 

 

 

 

 

 

 

Common

 

 

 

 

 

 

 

 

 

Circuits and φpd

 

 

 

 

 

 

 

 

PoE Thermal

 

 

 

 

 

Hotswap

 

 

Monitor

 

 

 

 

 

MOSFET

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

50mΩ

 

 

 

 

RTN

 

 

 

 

 

sa

1.5V

 

 

APD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&1.2V

 

 

 

 

 

 

 

 

den

ARTN

 

4V

 

 

 

 

 

 

 

 

 

 

6

Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

 

 

 

 

 

 

 

TPS23754

 

 

 

 

 

 

 

TPS23754-1

 

 

 

 

 

 

 

TPS23756

www.ti.com

 

 

 

 

 

SLVS885B–OCTOBER 2008–REVISED MAY 2009

 

 

 

(TOP VIEW)

 

 

 

 

TPS23754/6

 

 

TPS23754-1

 

CTL

1

20

T2P

CTL

1

20

T2P

VB

2

19

FRS

VB

2

19

FRS

 

CS

3

18

BLNK

CS

3

18

BLNK

COM

4

17

APD

COM

4

17

APD

GATE

5

16

DT

GATE

5

16

DT

VC

6

15

CLS

VC

6

15

CLS

GAT2

7

14

PPD

GAT2

7

14

N/C

ARTN

8

13

DEN

ARTN

8

13

DEN

RTN

9

12

VDD

RTN

9

12

VDD

VSS

10

11

VDD1

VSS

10

11

VDD1

PAD = V SS

PAD = V SS

 

N/C = Leave Pin Unused

 

 

 

 

PIN FUNCTIONS

 

 

NAME

NO.

TYPE

DESCRIPTION

 

 

'754/6

‘754-1

 

 

 

 

 

 

 

CTL

1

1

I

The control loop input to the PWM (pulse width modulator), typically driven by output regulation

 

 

 

 

 

feedback (e.g. optocoupler). Use VB as a pullup for CTL.

 

 

VB

2

2

O

5.1 V bias rail for dc/dc control circuits and the feedback optocoupler. Typically bypass with a 0.1 μF

 

 

 

 

 

to ARTN.

 

 

CS

3

3

I/O

DC/DC converter switching MOSFET current sense input. See RCS in Figure 1.

 

COM

4

4

 

Gate driver return, connect to ARTN and RTN.

 

 

GATE

5

5

O

Gate drive output for the main dc/dc converter switching MOSFET.

 

VC

6

6

I/O

DC/DC converter bias voltage. Connect a 0.47 μF (minimum) ceramic capacitor to ARTN at the pin,

 

 

 

 

 

and a larger capacitor to power startup.

 

 

GAT2

7

7

O

Gate drive output for a second dc/dc converter switching MOSFET (see Figure 1).

 

ARTN

8

8

 

ARTN is the dc/dc converter analog return. Tie to RTN and COM on the circuit board.

 

RTN

9

9

 

RTN is the output of the PoE hotswap MOSFET.

 

 

VSS

10

10

 

Connect to the negative power rail derived from the PoE source.

 

VDD1

11

11

I

Source of dc/dc converter startup current. Connect to VDD for many applications.

 

VDD

12

12

I

Connect to the positive PoE input power rail. VDD powers the PoE interface circuits. Bypass with a

 

 

 

 

 

0.1 μF capacitor and protect with a TVS.

 

 

DEN

13

13

I/O

Connect a 24.9 kΩ resistor from DEN to VDD to provide the PoE detection signature. Pulling this pin

 

 

 

 

 

to VSS during powered operation causes the internal hotswap MOSFET to turn off.

 

NC

14

 

Float this no-connect pin.

 

 

PPD

14

I

Raising VPPD-VSS above 1.55 V enables the hotswap MOSFET and activates T2P. Connecting PPD

 

 

 

 

 

to VDD enables classification when APD is active. Tie PPD to VSS or float when not used.

 

CLS

15

15

I

Connect a resistor from CLS to VSS to program classification current. 2.5 V is applied to the program

 

 

 

 

 

resistor during classification to set class current.

 

 

DT

16

16

I

Connect a resistor from DT to ARTN to set the GATE to GAT2 dead time. Tie DT to VB to disable

 

 

 

 

 

GAT2 operation.

 

 

APD

17

17

I

Raising VAPD-VARTN above 1.5 V disables the internal hotswap switch, turns class off, and forces T2P

 

 

 

 

active. This forces power to come from a external VDD1-RTN adapter. Tie APD to ARTN when not

 

 

 

 

 

used.

 

 

BLNK

18

18

I

Connect to ARTN to utilize the internally set current-sense blanking period, or connect a resistor from

 

 

 

 

 

BLNK to ARTN to program a more accurate period.

 

 

FRS

19

19

I

Connect a resistor from FRS to ARTN to program the converter switching frequency. FRS may be

 

 

 

 

 

used to synchronize the converter to an external timing source.

 

T2P

20

20

O

Active low output that indicates a PSE has performed the IEEE 802.3at type 2 hardware

 

 

 

 

 

classification, PPD is active, or APD is active.

 

 

Pad

 

Connect to VSS.

 

 

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback

7

 

 

 

 

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

 

TPS23754

TPS23754-1

TPS23756

SLVS885B–OCTOBER 2008–REVISED MAY 2009

www.ti.com

PIN DESCRIPTION

Refer to Figure 1 for component reference designators (RCS for example), and the Electrical Characteristics table for values denoted by reference (VCSMAX for example). Electrical Characteristic values take precedence over any numerical values used in the following sections.

APD

APD forces power to come from an external adapter connected from VDD1 to RTN by opening the hotswap switch, disabling the CLS output (see PPD pin description), and enabling the T2P output. A resistor divider is recommended on APD when it is connected to an external adapter. The divider provides ESD protection, leakage discharge for the adapter ORing diode, and input voltage qualification. Voltage qualification assures the adapter output voltage is high enough that it can support the PD before the PoE current is cut off.

Select the APD divider resistors per Equation 1 where VADPTR-ON is the desired adapter voltage that enables the APD function as adapter voltage rises.

RAPD1 = RAPD2 × (VADPTR_ON

− VAPDEN ) VAPDEN

R APD1 + R APD2

× (VAPDEN − VAPDH )

VADPTR_OFF =

 

 

R APD2

 

(1)

Place the APD pull-down resistor adjacent to the APD pin.

APD should be tied to ARTN when not used.

BLNK

Blanking provides an interval between GATE going high and the current-control comparators on CS actively monitoring the input. This delay allows the normal turn-on current transient (spike) to subside before the comparators are active, preventing undesired short duty cycles and premature current limiting.

Connect BLNK to ARTN to obtain the internally set blanking period. Connect a resistor from BLNK to ARTN for a more accurate, programmable blanking period. The relationship between the desired blanking period and the programming resistor is defined by Equation 2.

RBLNK () = tBLNK (ns) (2)

Place the resistor adjacent to the BLNK pin when it is used.

CLS

A resistor from CLS to VSS programs the classification current per the IEEE standard. The PD power ranges and corresponding resistor values are listed in Table 1. The power assigned should correspond to the maximum average power drawn by the PD during operation.

High-power PSEs may perform two classification cycles if Class 4 is presented on the first cycle. The TPS23754 presents the same (resistor programmed) class each cycle per the standard.

Table 1. Class Resistor Selection

POWER AT PD

RESISTOR

 

CLASS MINIMUM

MAXIMUM

NOTES

(Ω)

(W)(W)

0

0.44

12.95

1270

Minimum may be reduced by pulsed loading. Serves as a catch-all default class.

1

0.44

3.84

243

 

2

3.84

6.49

137

 

3

6.49

12.95

90.9

 

4

12.95

25.5

63.4

Not allowed for IEEE 802.3-2005. Use to indicate a Type 2 PD (high power) per

 

 

IEEE 802.3at.

8

Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

 

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

www.ti.com

SLVS885B–OCTOBER 2008–REVISED MAY 2009

CS

The CS (current sense) input for the dc/dc converter should be connected to the high side of the switching

MOSFET’s current sense resistor (RCS). The current-limit threshold, VCSMAX, defines the voltage on CS above which the GATE ON time will be terminated regardless of the voltage on CTL.

The TPS23754 provides internal slope compensation (150 mV, VSLOPE), an output current for additional slope compensation, a peak current limiter, and an off-time pull-down to this pin.

Routing between the current-sense resistor and the CS pin should be short to minimize cross-talk from noisy traces such as the gate drive signal.

CTL

CTL (control) is the voltage-control loop input to the PWM (pulse width modulator). Pulling VCTL below VZDC causes GATE to stop switching. Increasing VCTL above VZDC (zero duty cycle voltage) raises the switching MOSFET programmed peak current. The maximum (peak) current is requested at approximately VZDC + (2 ×

VCSMAX). The ac gain from CTL to the PWM comparator is 0.5. The internal divider from CTL to ARTN is approximately 100 kΩ.

Use VB as a pull up source for CTL.

DEN

DEN (detection and enable) is a multifunction pin for PoE detection and inhibiting operation from PoE power. Connect a 24.9 kΩ resistor from DEN to VDD to provide the PoE detection signature. DEN goes to a high-impedance state when VVDD-VSS is outside of the detection range. Pulling DEN to VSS during powered operation causes the internal hotswap MOSFET and class regulator to turn off, while the reduced detection resistance prevents the PD from properly re-detecting.

DT

Dead-time programming sets the delay between GATE and GAT2 to prevent overlap of MOSFET ON times as shown in Figure 2. GAT2 turns the second MOSFET off when it transitions high. Both MOSFETs should be off between GAT2 going high to GATE going high, and GATE going low to GAT2 going low. The maximum GATE ON time is reduced by the programmed dead-time period. The dead time period is specified with 1 nF of capacitance on GATE and GAT2. Different loading on these pins will change the effective dead time.

A resistor connected from DT to ARTN sets the delay between GATE and GAT2 per Equation 3.

tDT (ns )

 

RDT () =

(3)

2

 

Connect DT to VB to set the dead time to 0 and turn GAT2 off.

FRS

Connect a resistor from FRS (frequency and synchronization) to ARTN to program the converter switching frequency. Select the resistor per the following relationship.

RFRS (kΩ) =

17250

 

 

 

fSW (kHz)

 

 

(4)

The converter may be synchronized to a frequency above its maximum free-running frequency by applying short ac-coupled pulses into the FRS pin per Figure 30.

The FRS pin is high impedance. Keep the connections short and apart from potential noise sources. Special care should be taken to avoid crosstalk when synchronizing circuits are used.

GATE

Gate drive output for the dc/dc converter’s main switching MOSFET. GATE’s phase turns the main switch on when it transitions high, and off when it transitions low. GATE is held low when the converter is disabled.

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback

9

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

SLVS885B–OCTOBER 2008–REVISED MAY 2009

www.ti.com

GAT2

GAT2 is the second gate drive output for the dc/dc converter. GAT2’s phase turns the second switch off when it transitions high, and on when it transitions low. This drives active-clamp PMOS devices per Figure 1, and driven flyback synchronous rectifiers per Figure 28. See the DT Pin Description for GATE to GAT2 timing. Connecting DT to VB disables GAT2 in a high-impedance condition. GAT2 is low when the converter is disabled.

PPD

PPD is a multifunction pin that has two voltage thresholds, PPD1 and PPD2.

PPD1 permits power to come from an external low voltage adapter, e.g., 24 V, connected from VDD to VSS by

over-riding the normal hotswap UVLO. Voltage on PPD above 1.55 V (VPPDEN) enables the hotswap MOSFET, inhibits class current, and enables T2P. A resistor divider per Figure 35 provides ESD protection, leakage

discharge for the adapter ORing diode, reverse adapter protection, and input voltage qualification. Voltage qualification assures the adapter output voltage is high enough that it can support the PD before it begins to draw current.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RPPD 1 =

 

AD PTR _ON

 

PPDEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VPPD EN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPPD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RPPD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(V

 

V

)

 

 

 

 

V

 

 

= (V

 

V

)+ R

 

 

PP DEN

 

PPDH

 

 

I

 

 

 

 

 

P PD1

 

 

 

 

 

 

 

ADP TR _OFF

 

PPD EN

PPD H

 

 

 

R

 

 

 

 

 

PP D

 

 

 

 

 

 

 

 

 

 

 

 

 

PPD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPD2 enables normal class regulator operation when VPPD is above 8.3 V to permit type 2 classification when APD is used in conjunction with diode DVDD (see Figure 34). Tie PPD to VDD when PPD2 operation is desired.

The PPD pin has a 5 μA internal pull-down current.

Locate the PPD pull-down resistor adjacent to the pin when used.

PPD may be tied to VSS or left open when not used.

RTN, ARTN, COM

RTN is internally connected to the drain of the PoE hotswap MOSFET, while ARTN is the quiet analog reference for the dc/dc controller return. COM serves as the return path for the gate drivers and should be tied to ARTN on the circuit board. The ARTN / COM / RTN net should be treated as a local reference plane (ground plane) for the dc/dc control and converter primary. RTN and (ARTN/COM) may be separated by several volts for special applications.

T2P

T2P is an active low output that indicates [ (VAPD > 1.5 V) OR (1.55 V ≤ VPPD ≤ 8.3 V) OR (type 2 hardware classification observed) ]. T2P is valid after both a delay of tT2P from the start of converter switching, and [VCTL

(VB – 1 V)]. Once T2P is valid, VCTL will not effect it. T2P will become invalid if the converter goes back into softstart, over-temperature, or is held off by the PD during CIN recharge (inrush). T2P is referenced to ARTN and is intended to drive the diode side of an optocoupler. T2P should be left open or tied to ARTN if not used.

VB

VB is an internal 5.1V regulated dc/dc controller supply rail that is typically bypassed by a 0.1 μF capacitor to ARTN. VB should be used to bias the feedback optocoupler.

VC

VC is the bias supply for the dc/dc controller. The MOSFET gate drivers run directly from VC. VB is regulated down from VC, and is the bias voltage for the rest of the converter control. A startup current source from VDD1 to VC is controlled by a comparator with hysteresis to implement the converter bootstrap startup. VC must be connected to a bias source, such as a converter auxiliary output, during normal operation.

10

Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

www.ti.com

SLVS885B–OCTOBER 2008–REVISED MAY 2009

A minimum 0.47 μF capacitor, located adjacent to the VC pin, should be connected from VC to COM to bypass the gate driver. A larger total capacitance is required for startup to provide control power between the time the converter starts switching and the availability of the converter auxiliary output voltage.

VDD

VDD is the positive input power rail that is derived from the PoE source (PSE). VDD should be bypassed to VSS with a 0.1 μF capacitor as required by the IEEE standard. A transient suppressor diode (TVS), a special type of Zener diode, such as SMAJ58A should be connected from VDD to VSS to protect against over-voltage transients.

VDD1

VDD1 is the dc/dc converter startup supply. Connect to VDD for many applications. VDD1 may be isolated by a diode from VDD to support PoE priority operation.

VSS

VSS is the PoE input-power return side. It is the reference for the PoE interface circuits, and has a current-limited hotswap switch that connects it to RTN. VSS is clamped to a diode drop above RTN by the hotswap switch.

A local VSS reference plane should be used to connect the input bypass capacitor, TVS, RCLS, and the PowerPad. This plane becomes the main heatsink for the TPS23754.

VSS is internally connected to the PowerPAD.

PowerPAD

The Powerpad is internally connected to VSS. It should be tied to a large VSS copper area on the PCB to provide a low resistance thermal path to the circuit board. It is recommended that a clearance of 0.025” be maintained between VSS, RTN, and various control signals to high-voltage signals such as VDD and VDD1.

TYPICAL CHARACTERISTICS

 

 

DETECTION BIAS CURRENT

 

 

 

 

 

PoE CURRENT LIMIT

 

 

 

 

 

 

vs

 

 

 

 

 

 

 

vs

 

 

 

 

 

8

 

VOLTAGE

 

 

 

970

 

 

TEMPERATURE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

Pulsed Current Measurement

 

 

 

 

 

 

 

 

 

 

960

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

6

 

 

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mA

950

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− Bias Current

 

 

 

 

 

Current Limit

 

 

 

 

 

 

 

 

 

4

 

125°C

 

 

 

940

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

930

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

2

 

 

 

 

 

PoE

 

 

 

 

 

 

 

 

 

 

 

 

 

−40 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

920

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

910

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

 

−40

−20

0

20

40

60

80

100

120

 

 

(VVDD − V VSS) − PoE V oltage − V

G001

 

 

 

TJ − Junction Temperature − °C

 

G002

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.

 

 

 

 

 

 

 

Figure 4.

 

 

 

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback

11

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TPS23754

TPS23754-1

TPS23756

SLVS885B–OCTOBER 2008–REVISED MAY 2009

www.ti.com

TYPICAL CHARACTERISTICS (continued)

'754 CONVERTER START TIME vs

TEMPERATURE

 

160

 

 

 

 

 

 

 

 

 

 

CVC = 22 F

 

 

 

 

 

 

 

140

 

 

 

 

 

 

 

 

 

 

 

 

 

VVDD1 = 19.2 V

 

 

 

Time − ms

120

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

Start

80

 

 

 

 

 

 

 

 

Converter

 

 

 

 

 

 

 

 

 

 

 

 

 

VVDD1 = 35 V

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

−40

−20

0

20

40

60

80

100

120

 

 

 

TJ − Junction Temperature − °C

 

 

G003

Figure 5.

'754 CONVERTER STARTUP CURRENT vs

 

6

 

 

 

 

VVDD1

 

 

 

 

 

 

 

VVC = 13.9V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = -40oC

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

mA

 

 

 

 

 

 

 

TJ = 25oC

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

SourceCurrent

3

 

 

 

 

 

T = 125oC

 

 

 

 

 

 

 

 

 

 

J

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

VC

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

5

10

15

20

25

30

35

40

45

50

55

60

 

 

 

 

 

VVDD1-RTN − V

 

 

 

 

Figure 7.

'756 CONVERTER START TIME vs

TEMPERATURE

 

160

 

VVDD1 = 10.2 V

 

140

 

CVC = 22 F

 

120

ms

100

Time−

80

Start

 

 

60

 

40

 

VVDD1 = 35 V

20

 

 

 

 

 

 

 

 

−40

−20

0

20

40

60

80

100

120

TJ - Junction Temperature - oC

Figure 6.

'756 CONVERTER STARTUP CURRENT vs

 

 

 

 

 

 

VVDD1

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

VVC = 8.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ = -40oC

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

mA

 

 

 

 

 

 

 

TJ = 25oC

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

SourceCurrent

3

 

 

 

 

 

TJ = 125oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

VC

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

5

10

15

20

25

30

35

40

45

50

55

60

 

 

 

 

 

VVDD1-RTN − V

 

 

 

 

Figure 8.

12

Submit Documentation Feedback

Copyright © 2008–2009, Texas Instruments Incorporated

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

TEXAS INSTRUMENTS TPS23754, TPS23754-1, TPS23756 Technical data

TPS23754

TPS23754-1

TPS23756

www.ti.com

SLVS885B–OCTOBER 2008–REVISED MAY 2009

TYPICAL CHARACTERISTICS (continued)

 

 

 

CONTROLLER BIAS CURRENT

 

 

 

 

 

 

 

vs

 

 

 

 

 

 

 

 

TEMPERATURE

 

 

 

3000

 

 

 

 

 

 

 

 

 

 

GATE and GAT2 Open

 

 

 

 

 

 

VVC = 12 V

 

 

 

 

 

 

 

2500

 

 

 

 

 

 

 

 

− A

2000

 

 

 

 

 

 

 

 

 

 

484 kHz

 

 

937 kHz

 

 

 

 

 

 

 

 

 

− Sinking

1500

 

 

 

 

 

 

 

 

 

 

 

100 kHz

 

245 kHz

 

 

VC

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

50 kHz

 

VCTL = 0 V

 

 

0

 

 

 

 

 

 

 

 

 

−40

−20

0

20

40

60

80

100

120

 

 

 

TJ - Junction Temperature - °C

 

 

'754 CONTROLLER BIAS CURRENT vs

VOLTAGE

 

3500

 

 

 

 

 

 

 

 

 

 

 

GATE and GAT2 Open

 

 

 

 

 

 

3000

TJ = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

937 kHz

 

 

 

 

 

 

 

2500

 

 

 

 

 

 

 

 

 

Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

484 kHz

 

 

2000

 

 

 

 

 

 

 

 

 

ControllerBias

 

 

 

 

245 kHz

 

 

 

 

1500

 

100 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

50 kHz

 

 

VCTL = 0 V

 

 

0

 

 

 

 

 

 

 

 

 

 

9

10

11

12

13

14

15

16

17

18

G005

 

 

VC − Controller Bias Voltage − V

 

G006

 

 

 

 

 

 

 

 

 

Figure 9.

Figure 10.

'756 CONTROLLER BIAS CURRENT vs

VOLTAGE

 

4000

GATE, GAT2 open

 

 

 

 

 

 

 

 

 

 

 

3500

TJ = 25oC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

960 kHz

 

 

− A

3000

 

 

 

 

 

 

2500

 

 

 

 

 

 

− BiasCurrent

 

 

 

 

 

 

 

 

 

 

480 kHz

 

2000

 

 

 

 

 

 

1500

 

100 kHz

 

 

 

 

 

 

 

 

 

 

C

 

50 kHz

 

 

250 kHz

 

 

V

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

0

 

 

 

VCTL = 0 V

 

 

 

 

 

 

 

 

 

 

6

8

10

12

14

16

18

 

 

VC − Controller Bias Voltage − V

 

 

 

 

 

 

SWITCHING FREQUENCY

 

 

 

 

 

 

 

 

 

vs

 

 

 

 

 

 

 

 

 

 

TEMPERATURE

 

 

 

 

 

600

 

 

 

 

 

 

 

 

1200

 

 

 

RFRS = 34.6 kΩ (484 kHz)

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

1100

 

−kHz

400

RFRS = 17.35 kΩ (937 kHz)

 

 

 

 

1000

−kHz

SwitchingFrequency

300

RFRS = 69.8 kΩ (245 kHz)

 

 

 

 

900

SwitchingFrequency

200

 

 

 

RFRS = 347 kΩ (50 kHz)

800

 

RFRS = 173 kΩ (100 kHz)

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

700

 

 

0

 

 

 

 

 

 

 

 

600

 

 

−40

−20

0

20

40

60

80

100

120

 

 

 

 

 

TJ - Junction Temperature - °C

 

 

 

G007

 

 

 

 

 

 

 

 

 

 

 

Figure 11.

Figure 12.

Copyright © 2008–2009, Texas Instruments Incorporated

Submit Documentation Feedback

13

Product Folder Link(s): TPS23754 TPS23754-1 TPS23756

Loading...
+ 28 hidden pages