Texas Instruments TPS5210PWPR, TPS5210PWP, TPS5210EVM-126, TPS5210EVM-119, TPS5210EVM-116 Datasheet

...
0 (0)

TPS5210 PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

D ±1% Reference Over Full Operating

 

 

DW OR PWP PACKAGE

 

 

Temperature Range

 

 

 

 

(TOP VIEW)

 

D Synchronous Rectifier Driver for Greater

 

 

 

 

 

 

 

 

IOUT

 

 

1

28

 

 

PWRGD

 

 

 

 

 

Than 90% Efficiency

DROOP

 

 

2

27

 

 

VID0

 

 

 

 

 

D Programmable Reference Voltage Range of

OCP

 

 

3

26

 

 

VID1

 

 

 

 

 

1.3 V to 3.5 V

VHYST

 

 

4

25

 

 

VID2

 

 

 

 

 

 

 

 

 

 

D User±Selectable Hysteretic Type Control

VREFB

 

 

5

24

 

 

VID3

VSENSE

 

 

6

23

 

 

VID4

D Droop Compensation for Improved Load

 

 

 

 

ANAGND

 

 

7

22

 

 

INHIBIT

 

 

 

 

 

Transient Regulation

SLOWST

 

 

8

21

 

 

IOUTLO

 

 

 

 

 

D

Adjustable Overcurrent Protection

BIAS

 

 

9

20

 

 

LOSENSE

 

 

 

 

D

Programmable Softstart

LODRV

 

 

10

19

 

 

HISENSE

 

 

 

 

 

 

 

 

D

Overvoltage Protection

LOHIB

 

 

11

18

 

 

BOOTLO

DRVGND

 

 

12

17

 

 

HIGHDR

 

 

 

 

 

Active Deadtime Control

 

 

 

 

D

LOWDR

 

 

13

16

 

 

BOOT

 

 

 

 

D

Power Good Output

DRV

 

 

14

15

 

 

VCC

 

 

 

 

 

 

 

 

DInternal Bootstrap Schottky Diode

DLow Supply Current . . . 3-mA Typ

description

The TPS5210 is a synchronous-buck regulator controller which provides an accurate, programmable supply voltage to microprocessors. An internal 5-bit DAC is used to program the reference voltage to within a range of 1.3 V to 3.5 V. The output voltage can be set to be equal to the reference voltage or to some multiple of the reference voltage. A hysteretic controller with user-selectable hysteresis and programmable droop compensation is used to dramatically reduce overshoot and undershoot caused by load transients. Propagation delay from the comparator inputs to the output drivers is less than 250 ns. Overcurrent shutdown and crossover protection for the output drivers combine to eliminate destructive faults in the output FETs. The softstart current source is proportional to the reference voltage, thereby eliminating variation of the softstart timing when changes are made to the output voltage. PWRGD monitors the output voltage and pulls the open-collector output low when the output drops 7% below the nominal output voltage. An overvoltage circuit disables the output drivers if the output voltage rises 15% above the nominal value. The inhibit pin can be used to control power sequencing. Inhibit and undervoltage lockout assures the 12-V supply voltage and system supply voltage (5 V or 3.3 V) are within proper operating limits before the controller starts. Single-supply (12 V) operation is easily accomplished using a low-current divider for the required 5-V signals. The output driver circuits include 2-A drivers with internal 8-V gate-voltage regulators. The high-side driver can be configured either as a ground-referenced driver or as a floating bootstrap driver. The TPS5210 is available in a 28-pin SOIC package and a 28-pin TSSOP PowerPAD package. It operates over a junction temperature range of 0°C to 125°C.

AVAILABLE OPTIONS

 

 

PACKAGES

TJ

 

 

 

SOIC

 

TSSOP

 

(DW)

 

(PWP)

 

 

 

 

0°C to 125°C

TPS5210DW

 

TPS5210PWPR

The DW package is available taped and reeled. Add R suffix to device type (e.g., TPS5210DWR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright 1999, Texas Instruments Incorporated

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

1

Texas Instruments TPS5210PWPR, TPS5210PWP, TPS5210EVM-126, TPS5210EVM-119, TPS5210EVM-116 Datasheet

2

75265 TEXAS DALLAS, 655303 BOX OFFICE POST

INHIBIT

 

 

 

 

 

VCC

ANAGND

 

PWRGD

LOSENSE

IOUTLO

HISENSE

IOUT

diagramblockfunctional

REVISED±1998SEPTEMBER± SLVS171A

 

 

 

 

 

 

 

 

 

 

VID0

 

 

 

 

 

 

15

7

 

28

20

21

19

 

 

 

 

VID1

 

 

11111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID4

 

 

 

NOCPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

 

2 V

 

 

 

 

 

 

 

 

 

 

+

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UVLO

 

 

 

 

 

 

 

±

2x

 

 

MAY

 

 

 

 

 

 

 

 

Shutdown

 

 

 

 

 

 

 

10 V

 

 

S

Q

 

 

 

 

 

 

 

 

VCC

 

 

 

Fault

 

 

 

 

 

 

 

 

1999

3

 

 

 

R

 

 

 

 

 

 

 

 

 

OCP

 

 

Deglitch

 

 

 

 

 

 

Rising

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Edge

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delay

 

 

 

 

 

100 mV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deglitch

 

 

 

 

VPGD

 

 

 

 

HIGHDR

 

 

 

 

 

 

 

 

 

 

HIGHIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOVP

 

 

 

 

 

0.93 Vref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

1.15 Vref

 

VSENSE

 

 

 

 

 

Analog

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PREREG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bias

 

 

 

 

 

8

 

 

 

 

 

Analog Bias

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SLOWST

 

 

 

 

 

 

 

 

 

 

 

 

 

BIAS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IVREFB

 

 

 

Slowstart

DRV REG

 

 

14

DRV

 

 

±

 

 

 

 

5

 

 

 

 

Comp

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bandgap

 

 

Shutdown

 

 

 

CM Filters

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOOT

 

 

 

 

VID

 

 

 

 

 

 

 

 

 

 

17

HIGHDR

 

 

 

 

VREF

+

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

Σ

 

 

+

 

 

 

 

200 kΩ

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±

 

 

±

 

 

 

 

 

 

 

 

Decoder

 

 

 

 

Hysteresis

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

BOOTLO

 

 

 

 

 

+

±

 

 

 

 

Comp

 

 

 

200 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shutdown

 

 

 

 

 

 

 

 

 

 

 

VREFB

 

Hysteresis

 

 

 

 

 

13

LOWDR

 

 

 

 

 

 

 

Setting

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

DRVGND

 

27

26

25

24

23

5

2

4

6

 

 

11

 

10

 

 

 

 

VID0 VID1 VID2

VID3 VID4 VREFB DROOP VHYST

VSENSE

 

 

LOHIB

LODRV

 

 

 

 

 

 

 

TPS5210

 

 

 

PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

 

 

 

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

 

 

 

 

 

 

 

 

Terminal Functions

 

 

 

 

TERMINAL

I/O

DESCRIPTION

 

 

 

 

NAME

NO.

 

 

 

 

 

 

 

 

 

ANAGND

7

 

Analog ground

 

 

 

 

 

 

BIAS

9

O

Analog BIAS pin. A 1-mF ceramic capacitor should be connected from BIAS to ANAGND.

 

BOOT

16

I

Bootstrap. Connect a 1-mF low-ESR capacitor from BOOT to BOOTLO.

 

 

 

 

 

 

BOOTLO

18

O

Bootstrap low. Connect BOOTLO to the junction of the high-side and low-side FETs for floating drive

 

 

 

 

configuration. Connect BOOTLO to PGND for ground reference drive configuration.

 

 

 

 

 

 

DROOP

2

I

Droop voltage. Voltage input used to set the amount of output-voltage set-point droop as a function of load

 

 

 

 

current. The amount of droop compensation is set with a resistor divider between IOUT and ANAGND.

 

 

 

 

 

 

DRV

14

O

Drive regulator for the FET drivers. A 1-mF ceramic capacitor should be connected from DRV to DRVGND.

 

DRVGND

12

 

Drive ground. Ground for FET drivers. Connect to FET PWRGND.

 

 

 

 

 

 

HIGHDR

17

O

High drive. Output drive to high-side power switching FETs

 

 

 

 

 

 

HISENSE

19

I

High current sense. For current sensing across high-side FETs, connect to the drain of the high-side FETs; for

 

 

 

 

optional resistor sensing scheme, connect to power supply side of current-sense resistor placed in series with

 

 

 

 

high-side FET drain.

 

 

 

 

 

 

INHIBIT

22

I

Disables the drive signals to the MOSFET drivers. Can also serve as UVLO for system logic supply (either 3.3 V

 

 

 

 

or 5 V).

 

 

 

 

 

 

IOUT

1

O

Current out. Output voltage on this pin is proportional to the load current as measured across the Rds(on) of the

 

 

 

 

high-side FETs. The voltage on this pin equals 2×Rds(on)×IOUT. In applications where very accurate current

 

 

 

 

sensing is required, a sense resistor should be connected between the input supply and the drain of the high-side

 

 

 

 

FETs.

 

 

 

 

 

 

IOUTLO

21

O

Current sense low output. This is the voltage on the LOSENSE pin when the high-side FETs are on. A ceramic

 

 

 

 

capacitor should be connected from IOUTLO to HISENSE to hold the sensed voltage while the high-side FETs

 

 

 

 

are off. Capacitance range should be between 0.033 mF and 0.1 mF.

 

 

 

 

 

 

LODRV

10

I

Low drive enable. Normally tied to 5 V. To activate the low-side FETs as a crowbar, pull LODRV low.

 

 

 

 

 

 

LOHIB

11

I

Low side inhibit. Connect to the junction of the high and low side FETs to control the anti-cross-conduction and

 

 

 

 

eliminate shoot-through current. Disabled when configured in crowbar mode.

 

 

 

 

 

 

LOSENSE

20

I

Low current sense. For current sensing across high-side FETs, connect to the source of the high-side FETs; for

 

 

 

 

optional resistor sensing scheme, connect to high-side FET drain side of current-sense resistor placed in series

 

 

 

 

with high-side FET drain.

 

 

 

 

 

 

LOWDR

13

O

Low drive. Output drive to synchronous rectifier FETs

 

 

 

 

 

 

OCP

3

I

Over current protection. Current limit trip point is set with a resistor divider between IOUT and ANAGND.

 

 

 

 

 

 

PWRGD

28

O

Power good. Power Good signal goes high when output voltage is within 7% of voltage set by VID pins.

 

 

 

 

Open-drain output.

 

 

 

 

 

 

SLOWST

8

O

Slow Start (soft start). A capacitor from SLOWST to ANAGND sets the slowstart time.

 

 

 

 

Slowstart current = IVREFB/5

 

VCC

15

 

12-V supply. A 1-mF ceramic capacitor should be connected from VCC to DRVGND.

 

VHYST

4

I

HYSTERESIS set pin. The hysteresis is set with a resistor divider from VREFB to ANAGND.

 

 

 

 

The hysteresis window = 2 ×(VREFB ± VHYST)

 

VID0

27

I

Voltage Identification input 0

 

 

 

 

 

 

VID1

26

I

Voltage Identification input 1

 

 

 

 

 

 

VID2

25

I

Voltage Identification input 2

 

 

 

 

 

 

VID3

24

I

Voltage Identification input 3

 

 

 

 

 

 

VID4

23

I

Voltage Identification input 4. Digital inputs that set the output voltage of the converter. The code pattern for

 

 

 

 

setting the output voltage is located in Table 1. Internally pulled up to 5 V with a resistor divider biased from VCC.

 

VREFB

5

O

Buffered reference voltage from VID network

 

 

 

 

 

 

VSENSE

6

I

Voltage sense Input. To be connected to converter output voltage bus to sense and control output voltage. It is

 

 

 

 

recommended an RC low pass filter be connected at this pin to filter noise.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

3

TPS5210

PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

detailed description

VREF

The reference/voltage identification (VID) section consists of a temperature-compensated bandgap reference and a 5-bit voltage selection network. The 5 VID terminals are inputs to the VID selection network and are TTL-compatible inputs internally pulled up to 5 V by a resistor divider connected to VCC. The VID codes conform to the Intel VRM 8.3 DC-DC Converter Specification for voltage settings between 1.8 V and 3.5 V, and they are decremented by 50 mV, down to 1.3 V, for the lower VID settings. Voltages higher than VREF can be implemented using an external divider. Refer to Table 1 for the VID code settings. The output voltage of the VID network, VREF, is within ±1% of the nominal setting over the VID range of 1.3 V to 2.5 V, including a junction temperature range of 5°C to +125°C, and a VCC supply voltage range of 11.4 V to 12.6 V. The output of the reference/VID network

is indirectly brought out through a buffer to the VREFB pin. The voltage on this pin will be within 2% of VREF. It is not recommended to drive loads with VREFB, other than setting the hysteresis of the hysteretic comparator,

because the current drawn from VREFB sets the charging current for the slowstart capacitor. Refer to the slowstart section for additional information.

hysteretic comparator

The hysteretic comparator regulates the output voltage of the synchronous-buck converter. The hysteresis is

set by 2 external resistors and is centered on VREF. The 2 external resistors form a resistor divider from VREFB to ANAGND, with the output voltage connecting to the VHYST pin. The hysteresis of the comparator will be equal to twice the voltage difference between the VREFB and VHYST pins. The propagation delay from the comparator

inputs to the driver outputs is 250 ns (maximum). The maximum hysteresis setting is 60 mV.

low-side driver

The low-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is 2 A, source and sink. The bias to the low-side driver is internally connected to the DRV regulator.

high-side driver

The high-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is 2 A, source and sink. The high-side driver can be configured either as a ground-referenced driver or as a floating bootstrap driver. When configured as a floating driver, the bias voltage to the driver is developed from the DRV regulator. The internal bootstrap diode, connected between the DRV and BOOT pins, is a Schottky for improved drive efficiency. The maximum voltage that can be applied between BOOT and DRVGND is 30 V. The driver can be referenced to ground by connecting BOOTLO to DRVGND, and connecting BOOT to either DRV or VCC.

deadtime control

Deadtime control prevents shoot-through current from flowing through the main power FETs during switching transitions by actively controlling the turn-on times of the MOSFET drivers. The high-side driver is not allowed to turn on until the gate-drive voltage to the low-side FETs is below 2 V; the low-side driver is not allowed to turn on until the voltage at the junction of the high-side and low-side FETs (Vphase) is below 2 V.

current sensing

Current sensing is achieved by sampling and holding the voltage across the high-side power FETs while the high-side FETs are on. The sampling network consists of an internal 60-Ω switch and an external ceramic hold capacitor. Recommended value of the hold capacitor is between 0.033 μF and 0.1 μF. Internal logic controls the turn-on and turn-off of the sample/hold switch such that the switch does not turn on until the Vphase voltage transitions high, and the switch turns off when the input to the high-side driver goes low. The sampling will occur only when the high-side FETs are conducting current. The voltage on the IOUT pin equals 2 times the sensed high-side voltage. In applications where a higher accuracy in current sensing is required, a sense resistor can be placed in series with the high-side FETs, and the voltage across the sense resistor can be sampled by the current sensing circuit.

4

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TPS5210 PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

detailed description (continued)

droop compensation

The droop compensation network reduces the load transient overshoot/undershoot on VO, relative to VREF . VO is programmed to a voltage greater than VREF by an external resistor divider from VO to VSENSE to reduce the undershoot on VO during a low-to-high load transient. The overshoot during a high-to-low load transient is reduced by subtracting the voltage on DROOP from VREF. The voltage on IOUT is divided with an external resistor divider, and connected to DROOP.

inhibit

INHIBIT is a TTL-compatible digital input used to enable the controller. When INHIBIT is low, the output drivers are low and the slowstart capacitor is discharged. When INHIBIT goes high, the short across the slowstart capacitor is released and normal converter operation begins. When the system-logic supply is connected to INHIBIT, it also controls power sequencing by locking out controller operation until the system-logic supply exceeds the input threshold voltage of the inhibit circuit. The 12-V supply and the system logic supply (either 5 V or 3.3 V) must be above UVLO thresholds before the controller is allowed to start up. The start threshold is 2.1 V and the hysteresis is 100 mV for the INHIBIT comparator.

VCC undervoltage lockout (UVLO)

The undervoltage lockout circuit disables the controller while the VCC supply is below the 10-V start threshold during power up. When the controller is disabled, the output drivers will be low and the slowstart capacitor is discharged. When VCC exceeds the start threshold, the short across the slowstart capacitor is released and normal converter operation begins. There is a 2-V hysteresis in the undervoltage lockout circuit for noise immunity.

slowstart

The slowstart circuit controls the rate at which VO powers up. A capacitor is connected between SLOWST and ANAGND and is charged by an internal current source. The current source is proportional to the reference

voltage, so that the charging rate of Cslowst is proportional to the reference voltage. By making the charging current proportional to VREF, the power-up time for VO will be independent of VREF. Thus, CSLOWST can remain the same value for all VID settings. The slowstart charging current is determined by the following equation:

Islowstart = I(VREFB) / 5 (amps)

Where I(VREFB) is the current flowing out of VREFB.

It is recommended that no additional loads be connected to VREFB, other than the resistor divider for setting the

hysteresis voltage. The maximum current that can be sourced by the VREFB circuit is 500 mA. The equation for setting the slowstart time is:

tSLOWST = 5 ×CSLOWST × RVREFB (seconds)

Where RVREFB is the total external resistance from VREFB to ANAGND.

power good

The power-good circuit monitors for an undervoltage condition on VO. If VO is 7% below VREF, then the PWRGD pin is pulled low. PWRGD is an open-drain output.

overvoltage protection

The overvoltage protection (OVP) circuit monitors VO for an overvoltage condition. If VO is 15% above VREF, then a fault latch is set and both output drivers are turned off. The latch will remain set until VCC goes below the undervoltage lockout value. A 3-ms deglitch timer is included for noise immunity. Refer to the LODRV section for information on how to protect the microprocessor against overvoltages due to a shorted fault across the high-side power FET.

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

5

TPS5210

PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

detailed description (continued)

overcurrent protection

The overcurrent protection (OCP) circuit monitors the current through the high-side FET. The overcurrent threshold is adjustable with an external resistor divider between IOUT and ANAGND, with the divider voltage connected to the OCP pin. If the voltage on OCP exceeds 100 mV, then a fault latch is set and the output drivers are turned off. The latch will remain set until VCC goes below the undervoltage lockout value. A 3-μs deglitch timer is included for noise immunity. The OCP circuit is also designed to protect the high-side power FET against a short-to-ground fault on the terminal common to both power FETs.

drive regulator

The drive regulator provides drive voltage to the output drivers. The minimum drive voltage is 7 V. The minimum short circuit current is 100 mA. Connect a 1-μF ceramic capacitor from DRV to DRVGND.

LODRV

The LODRV circuit is designed to protect the microprocessor against overvoltages that can occur if the high-side power FETs become shorted. External components to sense an overvoltage condition are required to use this feature. When an overvoltage fault occurs, the low-side FETs are used as a crowbar. LODRV is pulled low and the low-side FET will be turned on, overriding all control signals inside the TPS5210 controller. The crowbar action will short the input supply to ground through the faulted high-side FETs and the low-side FETs. A fuse in series with Vin should be added to disconnect the short-circuit.

Table 1. Voltage Identification Codes

 

 

 

VID TERMINALS

 

 

VREF

 

 

 

(0 = GND, 1 = floating or pull-up to 5 V)

 

 

 

VID4

VID3

 

VID2

 

VID1

VID0

(Vdc)

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

1

 

1

1

1.30

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

1

 

1

0

1.35

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

1

 

0

1

1.40

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

1

 

0

0

1.45

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

0

 

1

1

1.50

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

0

 

1

0

1.55

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

0

 

0

1

1.60

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

0

 

0

0

1.65

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

1

 

1

1

1.70

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

1

 

1

0

1.75

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

1

 

0

1

1.80

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

1

 

0

0

1.85

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

 

1

1

1.90

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

 

1

0

1.95

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

 

0

1

2.00

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

 

0

0

2.05

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

1

 

1

1

No CPU

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

1

 

1

0

2.10

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

1

 

0

1

2.20

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

1

 

0

0

2.30

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

0

 

1

1

2.40

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

0

 

1

0

2.50

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

0

 

0

1

2.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TPS5210 PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

Table 1. Voltage Identification Codes (Continued)

 

 

VID TERMINALS

 

 

VREF

 

(0 = GND, 1 = floating or pull-up to 5 V)

 

VID4

VID3

 

VID2

 

VID1

VID0

(Vdc)

 

 

 

 

 

 

 

 

1

1

 

0

 

0

0

2.70

 

 

 

 

 

 

 

 

1

0

 

1

 

1

1

2.80

 

 

 

 

 

 

 

 

1

0

 

1

 

1

0

2.90

 

 

 

 

 

 

 

 

1

0

 

1

 

0

1

3.00

 

 

 

 

 

 

 

 

1

0

 

1

 

0

0

3.10

 

 

 

 

 

 

 

 

1

0

 

0

 

1

1

3.20

 

 

 

 

 

 

 

 

1

0

 

0

 

1

0

3.30

 

 

 

 

 

 

 

 

1

0

 

0

 

0

1

3.40

 

 

 

 

 

 

 

 

1

0

 

0

 

0

0

3.50

absolute maximum ratings over operating virtual junction temperature (unless otherwise noted)²

Supply voltage range, VCC (see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . ±0.3 V to 14 V

Input voltage range: BOOT to DRVGND (High-side Driver ON) . . . . . . . . . . . . .

. . . . . . . . . . . . ±0.3 V to 30 V

BOOT to HIGHDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . ±0.3 V to 15 V

BOOT to BOOTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . ±0.3 V to 15 V

INHIBIT, VIDx, LODRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . ±0.3 V to 7.3 V

PWRGD, OCP, DROOP . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . ±0.3 V to 7 V

LOHIB, LOSENSE, IOUTLO, HISENSE . . . . . . . . . . . . . .

. . . . . . . . . . . . ±0.3 V to 14 V

VSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . ±0.3 V to 5 V

Voltage difference between ANAGND and DRVGND . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . ±0.5 V

Output current, VREFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . 0.5 mA

Short circuit duration, DRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . Continuous

Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

See Dissipation Rating Table

Operating virtual junction temperature range, TJ . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . 0°C to 125°C

Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . ±65°C to 150°C

Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . .

. . . . . . . . . . . . . . . . . . . 260°C

²Stresses beyond those listed under ªabsolute maximum ratingsº may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under ªrecommended operating conditionsº is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise specified, all voltages are with respect to ANAGND.

DISSIPATION RATING TABLE

PACKAGE

TA 25°C

DERATING FACTOR

TA = 70°C

TA = 85°C

POWER RATING

ABOVE TA = 25°C

POWER RATING

POWER RATING

 

DW

1200 mW

12 mW/°C

660 mW

480 mW

PWP

1150 mW

11.5 mW/°C

630 mW

460 mW

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

7

TPS5210

PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

recommended operating conditions

 

MIN

MAX

UNIT

 

 

 

 

Supply voltage, VCC

11.4

13

V

Input voltage, BOOT to DRVGND

0

28

V

 

 

 

 

Input voltage, BOOT to BOOTLO

0

13

V

 

 

 

 

Input voltage, INHIBIT, VIDx, LODRV, PWRGD, OCP, DROOP

0

6

V

 

 

 

 

Input voltage, LOHIB, LOSENSE, IOUTLO, HISENSE

0

13

V

 

 

 

 

Input voltage, VSENSE

0

4.5

V

 

 

 

 

Voltage difference between ANAGND and DRVGND

0

±0.2

V

 

 

 

 

Output current, VREFB²

0

0.4

mA

² Not recommended to load VREFB other than to set hystersis since IVREFB sets slowstart time.

 

 

 

electrical characteristics over recommended operating virtual junction temperature range, VCC = 12 V, IDRV = 0 A (unless otherwise noted)

reference/voltage identification

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

 

 

VCC = 11.4 to 12.6 V, 1.3 V VREF 2.5 V

±0.01

 

0.01

V/V

 

 

VCC = 11.4 to 12.6 V, VREF = 2.6 V

±0.0104

 

0.0104

V/V

 

 

VCC = 11.4 to 12.6 V, VREF = 2.7 V

±0.0108

 

0.0108

V/V

 

 

VCC = 11.4 to 12.6 V, VREF = 2.8 V

±0.0112

 

0.0112

V/V

 

Reference voltage accuracy, (Includes

VCC = 11.4 to 12.6 V, VREF = 2.9 V

±0.0116

 

0.0116

V/V

 

offset of droop compensation net-

VCC = 11.4 to 12.6 V, VREF = 3 V

±0.0120

 

0.0120

V/V

 

work)

VCC = 11.4 to 12.6 V, VREF = 3.1 V

±0.0124

 

0.0124

V/V

 

 

 

 

 

VCC = 11.4 to 12.6 V, VREF = 3.2 V

±0.0128

 

0.0128

V/V

V

 

VCC = 11.4 to 12.6 V, VREF = 3.3 V

±0.0132

 

0.0132

V/V

REF

 

 

 

 

 

 

 

 

VCC = 11.4 to 12.6 V, VREF = 3.4 V

±0.0136

 

0.0136

V/V

 

 

VCC = 11.4 to 12.6 V, VREF = 3.5 V

±0.0140

 

0.0140

V/V

 

 

VREF = 1.3 V, Hysteresis window = 30 mV

±0.011

 

0.011

 

 

 

VREF =1.3 V, Hysteresis,

±0.008

 

0.008

 

 

 

TJ = 60°C window = 30 mV (see Note 3)

 

 

 

Cumulative reference accuracy

 

 

 

 

 

VREF = 1.9 Vv, Hysteresis,

 

 

 

V/V

 

(see Note 2)

±0.0090

 

0.0090

 

 

TJ = 60°C window = 30 mV (see Note 3)

 

 

 

 

 

 

VREF = 3.5 V, Hysteresis,

±0.0115

 

0.0115

 

 

 

TJ = 60°C window = 30 mV (see Note 3)

 

 

 

 

 

 

 

 

VIDx

High-level input voltage

 

2.25

 

 

V

 

 

 

 

 

 

 

VIDx

Low-level input voltage

 

 

 

1

V

 

 

 

 

 

 

 

VREFB

Output voltage

IVREFB = 50 μA

VREF±2%

VREF

VREF+2%

V

Output regulation

10 μA IO 500 μA

 

2

 

mV

 

 

 

VIDx

Input resistance

VIDx = 0 V

36

73

95

kΩ

 

 

 

 

 

 

Input pull-up voltage divider

 

4.8

4.9

5

V

 

 

 

 

 

 

 

 

 

NOTES: 2. Cumulative reference accuracy is the combined accuracy of the reference voltage and the input offset voltage of the hysteretic comparator. Cumulative accuracy equals the average of the high-level and low-level thresholds of the hysteretic comparator.

3. This parameter is ensured by design and is not production tested.

8

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TPS5210 PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER

SLVS171A ± SEPTEMBER 1998 ± REVISED MAY 1999

electrical characteristics over recommended operating virtual junction temperature range, VCC = 12 V, IDRV = 0 A (unless otherwise noted) (continued)

power good

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

 

Undervoltage trip threshold

 

90

93

95

%VREF

VOL

Low-level output voltage

IO = 5 mA

 

0.5

0.75

V

IOH

High-level input current

VPWRGD = 6 V

 

1

 

μA

Vhys

Hysteresis voltage

 

1.3

2.9

4.5

%VREF

slowstart

PARAMETER

TEST CONDITIONS

 

MIN

TYP

MAX

UNIT

 

 

 

 

 

 

 

Charge current

VSLOWST = 0.5 V, VVREFB

= 1.3 V,

10.4

13

15.6

μA

IVREFB = 65 μA

 

 

 

 

 

 

 

Discharge current

VSLOWST = 1 V

 

 

3

 

mA

Comparator input offset voltage

 

 

 

 

10

mV

 

 

 

 

 

 

 

Comparator input bias current

See Note 3

 

 

10

100

nA

 

 

 

 

 

 

 

Comparator hysteresis

 

 

±7.5

 

7.5

mV

 

 

 

 

 

 

 

NOTE 3: This parameter is ensured by design and is not production tested.

 

 

 

 

 

hysteretic comparator

PARAMETER

TEST CONDITIONS

MIN

TYP MAX

UNIT

 

 

 

 

 

Input offset voltage

VDROOP = 0 V (see Note 3)

±2.5

2.5

mV

Input bias current

See Note 3

 

500

nA

 

 

 

 

 

Hysteresis accuracy

VREFB ± VHYST = 15 mV

±3.5

3.5

mV

 

(Hysteresis window = 30 mV)

 

 

 

 

 

 

 

 

Maximum hysteresis setting

VREFB ± VHYST = 30 mV

 

60

mV

NOTE 3: This parameter is ensured by design and is not production tested.

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

9

Loading...
+ 20 hidden pages