Rockwell Automation 1769-HSC User Manual

0 (0)

User Manual

Compact High-speed Counter Module

Catalog Number 1769-HSC

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation,

Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which can lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence

SHOCK HAZARD: Labels can be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage can be present.

BURN HAZARD: Labels can be on or inside the equipment, for example, a drive or motor, to alert people that surfaces can reach dangerous temperatures.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Allen-Bradley, Rockwell Software, Rockwell Automation, RS Logix, RSLogix 5000, RSLogix 500, CompactLogix, Compact I/O, ControlLogix, MicroLogix, and TechConnect are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.

Summary of Changes

New and Updated

Information

This manual contains new and updated information. Changes throughout this revision are marked by change bars, as shown to the right of this paragraph.

This table contains the changes made to this revision.

Topic

Pages

 

 

Changes were made to differentiate between the available high speed

31, 32, 37, 40, 66, 70, 72,

counters modules.

73, 74, 76, 80, 81, 84, 85,

 

86, 88, 89, 95, 96, 97, 98,

 

100, 101, 105, 107, 121

 

 

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

3

Summary of Changes

Notes:

4

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

 

Table of Contents

Preface

Packaged Controller Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

Chapter 1

 

Module Overview

Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

Hardware Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

Chapter 2

 

Module Operation

Counter Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

Module Operation Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

Number of Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

Summary of Available Counter Configurations . . . . . . . . . . . . . . . . . . . . .

18

 

Input Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

Operational Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

Direction Inhibit and Direction Invert Output Control Bits . . . . .

21

 

Pulse/External Direction Mode Selection. . . . . . . . . . . . . . . . . . . . . . .

22

 

Pulse/Internal Direction Mode Selection . . . . . . . . . . . . . . . . . . . . . . .

23

 

Up and Down Pulses Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

X1 Quadrature Encoder Mode Selection . . . . . . . . . . . . . . . . . . . . . . .

25

 

X2 Quadrature Encoder Mode Selection . . . . . . . . . . . . . . . . . . . . . . .

26

 

X4 Quadrature Encoder Mode Selection . . . . . . . . . . . . . . . . . . . . . . .

26

 

Input Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

Counter Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

Linear Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

Ring Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

Modifying Count Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

Counter Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

Z Input Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

Inhibit and Invert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

Direct Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

Preset/Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

Rate/Timer Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

 

Pulse Interval Rate Calculation Method . . . . . . . . . . . . . . . . . . . . . . . .

32

 

Cyclic Rate Calculation Method (current rate). . . . . . . . . . . . . . . . . .

32

 

Hysteresis Detection and Configuration. . . . . . . . . . . . . . . . . . . . . . . .

33

 

Scalar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

Rate Valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

Rate Method Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

5

Table of Contents

 

 

 

Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

 

Masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

 

Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

 

Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

 

Safe State Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

 

Output Control Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

 

Readback/Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

 

Chapter 3

 

Installation and Wiring

Power Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

 

General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

 

Selecting a Location to Reduce Noise . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

 

Protect the Circuit Board from Contamination . . . . . . . . . . . . . . . . .

48

 

Power Supply Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

 

System Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

 

Mount the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

Minimum Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

Panel Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

DIN Rail Mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

Replace the Module within a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

 

Field Wiring Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

 

Considerations for Reducing Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

 

Remove and Replace the Terminal Block . . . . . . . . . . . . . . . . . . . . . . .

55

 

Wire the Finger-safe Terminal Block . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

 

Wire the Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

 

Terminal Door Label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

 

Terminal Block Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

 

Wire Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

 

Output Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

Module Configuration, Output,

and Input Data

Chapter 4

Configure the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Configuration Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

General Configuration Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Filter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Program Mode and Program State Run . . . . . . . . . . . . . . . . . . . . . . . . . 76

Output Program Value (Out0ProgramValue through Out3ProgramValue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Output Fault Mode and Output Fault State Run . . . . . . . . . . . . . . . . 77 Output Fault Value (Out0FaultValue through Out3FaultValue) . 78

Counter Maximum Count (CtrnMaxCount) . . . . . . . . . . . . . . . . . . . 78

Counter Minimum Count (CtrnMinCount) . . . . . . . . . . . . . . . . . . . 79

Counter Preset (CtrnPreset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Counter Hysteresis (CtrnHysteresis) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Counter Scalar (CtrnScalar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Table of Contents

Diagnostics and

Troubleshooting

Cyclic Rate Update Time (CtrnCyclicRateUpdateTime) . . . . . . . . 81 Configuration Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Range High Limit (Range0To11[n].HighLimit) and Range Low

Limit (Range0To11[n].LowLimit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Range Output Control (Range0To11[n].OutputControl). . . . . . . 85

Range Configuration Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Output Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Output on Mask (OutputOnMask.0 through OutputOnMask.15) . .

91

Output Off Mask (OutputOffMask.0 through OutputOffMask.15).

91

Range Enable (RangeEn.0 through RangeEn.15) . . . . . . . . . . . . . . . 91

RBF - Reset Blown Fuse (ResetBlownFuse) . . . . . . . . . . . . . . . . . . . . . 92 Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Range High Limit or Direct Write Value (Range12To15[n].HiLimOrDirWr). . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Range Low Limit (Range12To15[n].LowLimit) . . . . . . . . . . . . . . . . 95 Range Output Control (Range12To15[n].OutputControl). . . . . . 96 Range Configuration Flags (12To15) . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Input Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Input State (InputStateA0 through InputStateZ1) . . . . . . . . . . . . . 101 Readback (Readback.0 through Readback.15). . . . . . . . . . . . . . . . . . 101 Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Range Active (RangeActive.0 through RangeActive.15). . . . . . . . . 103 Current Count (Ctr[n].CurrentCount). . . . . . . . . . . . . . . . . . . . . . . 104 Stored Count (Ctr[n].StoredCount). . . . . . . . . . . . . . . . . . . . . . . . . . 104 Current Rate (Ctr[0].CurrentRate to Ctr[3].CurrentRate) . . . . . 105 Pulse Interval (Ctr[0].PulseInterval and Ctr[1].PulseInterval). . . 105 Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 5

Safety Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Stand Clear of the Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Program Alteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Safety Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Module Operation versus Counter Operation . . . . . . . . . . . . . . . . . . . . . 111 Counter Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Module Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Power-up Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Configuration Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Post Configuration Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Non-critical versus Critical Module Errors . . . . . . . . . . . . . . . . . . . . . . . . 113 Non-critical Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Critical Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

7

Table of Contents

 

 

 

Module Error Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

 

Module Error Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

 

Extended Error Information Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

 

Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

116

 

Appendix A

 

Specifications

Throughput and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126

 

Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

127

 

Temperature Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

128

 

Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

130

Program a 1769-HSC Module, CompactLogix Controller, and 845F Incremental Encoder with RSLogix 5000 Software

Program a 1769-HSC Module, MicroLogix 1500 Controller, and 845F Incremental Encoder with RSLogix 500 Software

Programming Quick Reference

History of Changes

Glossary

Index

Appendix B

System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

845F Encoder Wiring to the 1769-HSC Module . . . . . . . . . . . . . . . . . . . 132 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Add a 1769-HSC Module to a CompactLogix System . . . . . . . . . . . . . . 133 Configure the 1769-HSC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Monitor the Current Count and Verify Output Operation . . . . . . . . . 140

Appendix C

System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 845F Encoder Wiring to the 1769-HSC Module . . . . . . . . . . . . . . . . . . . 142 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Add a 1769-HSC Module to a MicroLogix 1500 System . . . . . . . . . . . . 143 Configure Your 1769-HSC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Monitor the Current Count and Verify Output Operation . . . . . . . . . 148

Appendix D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendix E

1769-UM006C-EN-P, November 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Preface

Packaged Controller

Functionality

Additional Resources

Use this manual if you are responsible for designing, installing, programming, or troubleshooting control systems that use Compact I/O and/or MicroLogix 1500 or CompactLogix controllers.

Both the 1769-L24ER-QBFC1B and 1769-L27ERM-QBFC1B packaged controllers provide the same high-speed counter (HSC) functionality as the

1769-HSC except for the input frequency.

While many features of the 1769-HSC module are available with the embedded high-speed counters, some of the features of the 1769-HSC module are not available with the embedded high-speed counters of the CompactLogix packaged controllers. Features not available on the embedded high-speed counters include rate/timer functions and limited output range control (4 ranges instead of the 16 available with the 1769-HSC module). Specific differences between the

1769-HSC module and the packaged controller functionality are noted throughout this manual.

The CompactLogix Packaged Controllers Quick Start and User Manual, publication IASIMP-QS010, provides wiring diagrams, configuration procedures, and tag descriptions for the embedded high-speed counters.

These documents contain additional information concerning related products from Rockwell Automation.

Resource

Description

 

 

CompactLogix System User Manual,

Describes how to install, use, and program

publication 1769-UM007

your CompactLogix controller.

 

 

Compact I/O 1769-ADN DeviceNet Adapter User

Describes how to install, and use the

Manual, publication 1769-UM001

1769-ADN DeviceNet adapter.

 

 

Compact I/O Selection Guide, publication 1769-SG002

Describes the 1769 Compact I/O modules.

 

 

CompactLogix Packaged Controllers Quick Start and

Provides a quick start and information on

User Manual, publication IASIMP-QS010

how to install, use, and program your

 

CompactLogix packaged controller.

 

 

MicroLogix 1500 Programmable Controllers User

Describes how to install, use, and program

Manual, publication 1764-UM001

your MicroLogix 1500 controller.

 

 

MicroLogix Programmable Controllers Family Selection

Provides an overview of the MicroLogix

Guide, publication 1761-SG001

1500 system.

 

 

Industrial Automation Wiring and Grounding

Provides general guidelines for installing a

Guidelines, publication 1770-4.1

Rockwell Automation industrial system.

 

 

Product Certifications website, http://www.ab.com

Provides declarations of conformity,

 

certificates, and other certification details.

 

 

You can view or download publications at http://www.rockwellautomation.com/ literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

9

Preface

Notes:

10

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Chapter 1

Module Overview

The 1769-HSC module is an intelligent counter module with its own microprocessor and I/O that is capable of reacting to high-speed input signals.

The module can interface with up to two channels of quadrature or four channels of pulse/count inputs. The signals received at the inputs are filtered, decoded, and counted. They are also processed to generate rate and time-between-pulses (pulse interval) data. Count and rate values can then be used to activate outputs based on user-defined ranges.

IMPORTANT For the 1769-L23E-QBFC1B and 1769-L23-QBFC1B packaged controllers HSC functionality, there is no processing to generate rate or time- between-pulses data. Only count data is used to activate outputs based on ranges.

The module counts pulses at up to 1 MHz (250 kHz for the packaged controllers) from devices such as proximity switches, pulse generators, turbine flowmeters, and quadrature encoders. The module has four on-board, high-speed switching outputs. These outputs can be under user program or direct module control, based on the count value or frequency.

The 1769-HSC module is compatible with MicroLogix 1500 packaged controllers (1764-LSP/C and 1764-LRP/C modules, firmware revision 6.0 and later), CompactLogix controllers (generic profiles required for firmware revisions prior to 11.0), and the 1769-ADN/B DeviceNet adapter.

Topic

Page

 

 

Counters

12

 

 

Inputs

12

 

 

Outputs

12

 

 

Hardware Features

13

 

 

Status Indicators

14

 

 

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

11

Chapter 1 Module Overview

Counters

Inputs

Outputs

The module is capable of counting pulses in either direction (forward, reverse, up, down). A maximum of four pulse counters (or two quadrature counters) are available. Each 32-bit counter can count to ±2 billion as a ring or linear counter.

In addition to providing a count value, the module provides a rate value up to ±1 MHz, dependent upon the type of input (the L23 packaged controller’s HSC module functionality does not provide rate values). The rate value (as modified by scalar) is the input frequency to the counter. When the count value is increasing, the rate value is positive. When the count value is decreasing, the rate value is negative.

Counters can also be reset or preset to any value between user-defined minimum and maximum values. Preset can be accomplished from the user program or at a Z-input event. The Z-input can also generate a capture value and/or freeze (gate) the counters.

The module features six, high-speed differential inputs labeled ±A0, ±B0, ±Z0,

±A1, ±B1, and ±Z1. These inputs support two quadrature encoders with ABZ inputs and/or up to four discrete count inputs. In addition, x1, x2, and x4 encoder configurations are provided to fully use the capabilities of high resolution quadrature encoders. The inputs can be wired for standard differential line driver output devices, as well as single-ended devices such as limit switches, photo eyes, and proximity sensors. Inputs are optically isolated from the bus and from one another, and have an operational range of 2.6…30V DC.

Sixteen outputs are available: four on-board (real) and twelve virtual bits. All

16 outputs can be individually controlled by the module or by the user control program.

The four on-board (real) outputs are DC sourcing, powered by a user-supplied

(5…30V DC) power source. These outputs are electronically protected from current overloads and short-circuit conditions. Overcurrent status is monitored and fed back to the user program. Output states are determined by a combination of output data, configuration data, ranges, and overcurrent status.

See Output Control Example on page 44 for a description of how the module determines output status.

12

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Overview

Chapter 1

 

 

Hardware Features

The module’s hardware features are illustrated in Figure 1. Refer to Chapter 3 on page 45 for detailed information on installation and wiring.

For information about the packaged controllers’ hardware features, see the

CompactLogix Packaged Controllers Quick Start and User Manual, publication IASIMP-QS010.

Figure 1 - Hardware Features

 

 

 

 

 

9a

1

 

 

 

2a

8a

 

 

 

 

 

OUT

0

2

 

3

OUT

1

3

 

IN

A0

B0

Z0

 

IN

A1

B1

Z1

 

 

 

 

 

High Speed Counter

 

 

 

 

 

DANGER

6a

 

 

 

 

5a

 

 

Do Not Remove RTB Under Power

 

 

 

Unless Area is Non-Hazardous

 

 

 

 

OUT DC

 

 

 

 

OUT 0

+5V/24V

 

 

 

 

 

 

 

 

 

OUT 2

OUT 1

10

 

 

 

 

 

 

 

OUT DC

OUT 3

 

 

 

COM

A0+

 

5

 

 

A0-

 

 

 

 

 

 

 

B0-

B0+

 

 

 

 

 

 

 

 

 

Z0-

Z0+

 

 

 

 

 

 

 

 

 

A1-

A1+

 

 

 

 

 

 

5b

 

 

B1-

B1+

 

 

 

Z1+

 

 

 

 

Z1-

 

4

 

 

 

 

Ensure Adjacent

 

 

 

Bus Lever is Unlatched/Latched

 

 

 

Before/After

 

 

 

 

Removing/Inserting Module

 

 

 

 

 

1769-HSC

 

 

 

 

 

2b

8b

8a

0 2

1 3

A0 B0 Z0

A1 B1 Z1

High Speed Counter

6b

7

8b

9b

45271

 

Item

Description

 

 

1

Bus lever

 

 

2a

Upper panel mounting tab

 

 

2b

Lower panel mounting tab

 

 

3

Module status indicators (6 Input, 4 Output, 1 Fuse, 1 OK)

 

 

4

Module door with terminal identification label

 

 

5

Removable terminal block (RTB) with finger-safe cover

 

 

5a

RTB upper-retaining screw

 

 

5b

RTB lower-retaining screw

 

 

6a

Movable bus connector (bus interface) with female pins

 

 

6b

Stationary bus connector (bus interface) with male pins

 

 

7

Nameplate label

 

 

8a

Upper tongue-and-groove slots

 

 

8b

Lower tongue-and-groove slots

 

 

9a

Upper DIN-rail latch

 

 

9b

Lower DIN-rail latch

 

 

10

Write-on label for user identification tags

 

 

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

13

Chapter 1 Module Overview

Status Indicators

OUT

0

2

FUSE

1

3

OK

IN

AO

BO

ZO

A1

B1

Z1

 

High Speed Counter

The front panel of the 1769-HSC module has a total of 12 status indicators.

For information about the packaged controllers’ status indicators, see the

CompactLogix Packaged Controllers Quick Start and User Manual, publication IASIMP-QS010.

Table 1 - Diagnostic Indicators

 

Indicator

Status

Description

 

 

 

 

 

0 OUT

Amber

ON/OFF logic status of output 0

 

 

 

 

 

1 OUT

Amber

ON/OFF logic status of output 1

 

 

 

 

 

2 OUT

Amber

ON/OFF logic status of output 2

 

 

 

 

 

3 OUT

Amber

ON/OFF logic status of output 3

 

 

 

 

 

FUSE

Red

Overcurrent

 

 

 

 

45272

OK

Off

No power is applied

 

 

 

 

 

 

Red (briefly)

Performing self-test

 

 

 

 

 

 

Solid green

OK, normal operating condition

 

 

 

 

 

 

Flashing green

OK, module in Program or Fault mode

 

 

 

 

 

 

Solid red or amber

Hardware error. Cycle power to the module. If problem persists,

 

 

 

replace the module.

 

 

 

 

 

 

Flashing red

Recoverable fault. Reconfigure, reset, or perform error recovery.

 

 

 

See Non-critical versus Critical Module Errors on page 113. The

 

 

 

OK indicator flashes red for all of the error codes in the

 

 

 

Configuration Error Codes table on page 117.

 

 

 

 

 

A0

Amber

ON/OFF status of input A0

 

 

 

 

 

A1

Amber

ON/OFF status of input A1

 

 

 

 

 

B0

Amber

ON/OFF status of input B0

 

 

 

 

 

B1

Amber

ON/OFF status of input B1

 

 

 

 

 

Z0

Amber

ON/OFF status of input Z0

 

 

 

 

 

Z1

Amber

ON/OFF status of input Z1

 

 

 

 

 

ALL ON

Possible causes for all status indicators to be On include the following:

 

 

Bus error has occurred—controller hard fault. Cycle power.

 

 

During load upgrade of controller—normal operation. Do not cycle power during the

 

 

load upgrade.

 

 

 

All indicators flash on briefly during powerup—normal operation.

 

 

 

 

14

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Chapter 2

Module Operation

Counter Defaults

This chapter details the operation of the 1769-HSC module. We strongly suggest that you review this information before configuring your module.

Topic

Page

 

 

Counter Defaults

15

 

 

Module Operation Block Diagrams

16

 

 

Number of Counters

18

 

 

Summary of Available Counter Configurations

18

 

 

Input Filtering

20

 

 

Operational Mode Selection

21

 

 

Input Frequency

28

 

 

Counter Types

28

 

 

Modifying Count Value

29

 

 

Rate/Timer Functionality

32

 

 

Output Control

36

 

 

When the module powers up, all output array and configuration array values are set to their default values. Refer to Chapter 4 on page 65 or Appendix D on page 149 for default values. All input array values are cleared. None of the module data is retentive through a power cycle.

Power cycling the module has the following effects:

Clears stored counts and configurations

Clears faults and flags

Turns outputs off

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

15

Chapter 2 Module Operation

Module Operation Block

Diagrams

To provide an overview of the module operation, the block diagrams indicate relationships between module functions and configuration parameters.

Inputs

The following diagram illustrates how the inputs function.

Input

Filtering

Decoded

Discrete Input State

 

 

NumberOfCounters

Operational Mode

Pulse

Direction

DirInvert

DirInhibit

Count

Min/Max and Linear/Ring

Overflow (ResetOvf)(1)

Underflow (ResetUdf)(1)

Store

CtrnConfig.StorageMode_0

RisingEdgeZ (reset REZ)(1)

ZInhibit

ZInvert

Enable

CtrnEn

CtrnConfig.StorageMode_1

InputStateZn ‘gating’

Direct Write

HiLimOrDirWr

LoadDirectWrite

ToThisCounter

Preset

CtrnSoftPreset

CtrnConfig.StorageMode_2 and Rising Edge Z

Automatic PresetWarning (Preset Warning)(1)

(1) Resets.

Pulse Interval(2)

See page 32 to determine how and when to use to calculate rates.

(2)Does not apply to packaged controller.

Rate(3)

Update Time

Scalar

Hysteresis

Rate Valid

Overflow

Underflow

Preset

Direct Write

(3)Does not apply to packaged controller.

16

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Operation

Chapter 2

 

 

Outputs

The following diagram illustrates how the outputs function.

 

 

 

Mode

 

Object Value

 

Run

 

 

Program

 

Current Count

 

 

 

Fault

 

Current Rate

 

 

 

 

 

 

 

Mode (Program/Fault/Run)

Discrete

Ranges

Overcurrent

Hold Last State

 

 

 

On Mask

High Limit

Overcurrent Flags

Program Mode

 

 

 

Off Mask

Low Limit

OverCurrentLatchOff

Fault Mode

 

Type(1)

ResetBlownFuse

User-defined Safe State

 

Invert

 

Program State

 

Counter

 

Fault State

 

 

Safe State Run

 

Active

 

 

 

Program State Run

 

Output Control

 

 

 

Fault State Run

 

Range Enable

 

Program to Fault Enable

 

 

Readback (Real and Virtual)

 

Feedback

Output Real Only)

 

 

 

(1)In the packaged controller, the Type parameter is fixed at Count because the rate measurement is not supported.

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

17

Chapter 2 Module Operation

Number of Counters

Summary of Available

Counter Configurations

The module has six input points: A0, B0, Z0, A1, B1, and Z1. Through these inputs, the module can function with 1, 2, 3, or 4 counters depending upon the number of counters and the operational mode configuration of the input points.

The table summarizes the input configurations available for all counters, based on the number of counters.

No. of Counters

Counter

Operational Mode

Gate or Preset Functionality

 

 

 

 

 

1

Counter

0

Any

All

 

 

 

 

 

 

 

1 through 3

Not available

 

 

 

 

 

 

2

Counters

0

Any

All

 

 

 

 

 

 

 

1

Any

All

 

 

 

 

 

 

 

2 and 3

Not available

 

 

 

 

 

 

3

Counters

0

Any

All

 

 

 

 

 

 

 

1

Pulse/Internal Direction

All

 

 

 

 

 

 

 

2

Pulse/Internal Direction

None

 

 

 

 

 

 

 

3

Not available

 

 

 

 

 

 

4

Counters

0

Pulse/Internal Direction

All

 

 

 

 

 

 

 

1

Pulse/Internal Direction

All

 

 

 

 

 

 

 

2

Pulse/Internal Direction

None

 

 

 

 

 

 

 

3

Pulse/Internal Direction

None

 

 

 

 

 

18

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Operation

Chapter 2

 

 

The counter options and operating modes are summarized in Figure 2.

Figure 2 - Summary of Available Counters

 

AO

 

 

 

 

 

 

 

AO

 

 

 

 

 

 

 

 

 

 

Counter 0

 

Counter 2

 

 

Counter 0

 

 

Counter 2

 

 

 

 

 

 

 

 

 

 

 

 

BO

 

Any Mode

 

Not Available

 

BO

 

Any Mode

 

 

Not Available

 

 

ZO

 

 

 

 

 

 

 

ZO

 

 

 

 

 

 

 

 

 

A1

 

 

 

 

 

 

 

A1

 

 

 

 

 

 

 

 

 

 

Counter 1

 

Counter 3

 

 

Counter 1

 

 

Counter 3

 

 

B1

 

 

 

B1

 

 

 

 

 

 

Not Available

 

Not Available

 

 

Any Mode

 

 

Not Available

 

 

Z1

 

 

 

Z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Counter(1)

 

 

 

2 Counters(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AO

 

 

 

 

 

 

 

AO

 

 

 

 

 

 

 

 

 

Counter 0

 

 

Counter 2

 

B1

Counter 0

 

 

Counter 2

 

 

 

BO

 

 

 

 

 

 

 

B1

 

Any Mode

 

 

Pulse

 

 

 

Pulse

 

 

 

Pulse

 

 

ZO

 

 

 

 

Internal

 

 

ZO

Internal

 

 

Internal

 

 

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter 1

 

 

Counter 3

 

 

A1

Counter 1

 

 

Counter

 

BO

 

 

 

 

 

 

 

 

 

 

 

 

 

Pulse

 

 

 

 

 

 

Pulse

 

 

 

Pulse

 

 

 

 

 

Not Available

 

 

 

 

 

 

 

 

 

Z1

 

Internal

 

 

 

Z1

Internal

 

 

Internal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Counters(1)

 

 

 

4 Counters(1)

 

45273

 

 

 

 

 

(1) The number of counters is defined by the NumberOfCounters bits in word 0 of the configuration array.

 

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

19

Chapter 2 Module Operation

Input Filtering

In many industrial environments, high frequency noise can be inadvertently coupled to the sensor wires. The module can help reject some noise by means of

built-in filters. Inputs are filtered by means of user-selectable, low-pass filters(1) set up during module configuration.

The available nominal pulse width filters are shown in the table.

Input

Filter

 

 

 

A0, A1, B0, B1, Z0, Z1

5 ms, 500 s, 10 s, no filter

 

(7.1 ms, 715

s, 18.5 s, no filter for the packaged controller)

 

 

 

The filters are selected for each input in the Filter Selection word of the module’s configuration array.

TIP

The input state bits (InputStateA0 through InputStateZ1) reflect the

 

filter’s inputs, but are NOT affected by the signal inhibit or invert

 

operations described on page 30.

Nom Filter Settings

 

 

Max Guaranteed Blocked Pulse Width

Min Guaranteed Pass Pulse Width

Pulse Width

 

Equivalent

Pulse Width

 

Equivalent

Pulse Width

 

Equivalent

 

 

 

 

 

Frequency(1)

 

 

Frequency(1)

 

 

Frequency(1)

No filter

 

1 MHz

N/A

 

N/A

250 ns

 

2 MHz

 

 

 

 

 

 

 

 

 

10 µs

 

50 kHz

7.4 µs

 

67.5 kHz

25 µs

 

20 kHz

 

 

 

 

 

 

 

 

 

500 µs

 

1 kHz

370 µs

 

1.35 kHz

1.25 ms

 

400 Hz

 

 

 

 

 

 

 

 

 

5 ms

 

100 Hz

3.7 ms

 

135 Hz

12.5 ms

 

40 Hz

 

 

 

 

 

 

 

 

 

(1)Equivalent frequency assumes a perfect 50% duty cycle and are for reference purposes only. Hence, the no-filter setting is guaranteed to pass 4 MHz even though the module’s maximum is 1 MHz. This lets the sensor and wiring to attenuate the pulse to 25% duty cycle while the module maintains pulse recognition.

Nom Filter Settings

 

 

Max Guaranteed Blocked Pulse Width

Min Guaranteed Pass Pulse Width

Pulse Width

 

Equivalent

Pulse Width

 

Equivalent

Pulse Width

 

Equivalent

 

 

 

 

 

Frequency(1)

 

 

Frequency(1)

 

 

Frequency(1)

No filter

 

250 kHz

0.83 µs

 

600 kHz

2.5 µs

 

200 kHz

 

 

 

 

 

 

 

 

 

18.5 µs

 

27 kHz

12.3 µs

 

40.5 kHz

28.6 µs

 

17.5 kHz

 

 

 

 

 

 

 

 

 

715 µs

 

700 Hz

495 µs

 

1.01 kHz

1.25 ms

 

400 Hz

 

 

 

 

 

 

 

 

 

7.1 ms

 

70 Hz

4.95 ms

 

101 Hz

12.5 ms

 

40 Hz

 

 

 

 

 

 

 

 

 

(1)Equivalent frequency assumes a perfect 50% duty cycle and are for reference purposes only. Hence, the no-filter setting is guaranteed to pass 4 MHz even though the module’s maximum is 1 MHz. This lets the sensor and wiring to attenuate the pulse to 25% duty cycle while the module maintains pulse recognition.

IMPORTANT The built-in filters are simple, averaging, low-pass filters. They are designed to block noise pulses of width equal to the values presented in Table Filter Pulse Width and Frequency. Applying full amplitude, 50% duty cycle signals that are of frequency above the selected filter’s threshold frequency can result in an average value signal of sufficient amplitude to turn the input on. A transition from no input to the full amplitude, 50% duty cycle signal (or back to no signal) can result in inadvertent input transitions.

(1) Low-pass filters block frequencies above the threshold frequency.

20

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Operation

Chapter 2

 

 

Operational Mode

Selection

A count channel’s operational mode configuration selection determines how the A and B inputs cause a counter channel to increment or decrement. The six available mode selections are the following:

Pulse/External Direction Input

Pulse/Internal Direction Input

Up and Down Pulse Input

X1 Quadrature Encoder Input

X2 Quadrature Encoder Input

X4 Quadrature Encoder Input

IMPORTANT The operational mode selection is limited by the number of counters selected.

With two counters selected, Counters 0 and 1 can be assigned any operational mode.

With three counters selected, Counter 0 can be assigned any mode, but Counters 1 and 2 can only be configured as pulse/internal direction.

With four counters selected, all counters must be configured for the pulse/internal direction mode.

See Figure 2 on page 19 for the operational modes available for the counters, based on the number of counters configured.

Direction Inhibit and Direction Invert Output Control Bits

These bits apply to all of the counter modes.

TIP

When set, the Direction Inhibit bit disables any physical input from

 

affecting count direction.

 

When set, the Direction Invert bit changes the direction of the counter in

 

all operational modes.

 

When Direction Inhibit is set, then Direction Invert is the direction.

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

21

Chapter 2 Module Operation

Pulse/External Direction Mode Selection

In this mode, the B input controls the direction of the counter, as shown in Figure 3. If the B input is low (0), the counter increments on the rising edges of input A. If the input B is high (1), the counter decrements on the rising edges of input A.

TIP

Two Output Control bits let you modify the operation of the B input from

 

your control program or during configuration. The Direction Inhibit bit,

 

when set (1), disables the operation of the B input.

 

The Direction Invert bit, when set (1), reverses the operation of the

 

B input, but only if the Direction Inhibit bit is not set. If the Direction

 

Inhibit bit is set, then the Direction Invert bit controls counter direction:

 

When the Direction Inhibit bit is set (1) and Direction Invert = 0, count

 

direction is up (forward).

 

When the Direction Inhibit bit is set (1) and Direction Invert = 1, count

 

direction is down (reversed).

Figure 3 - Pulse/External Direction Mode (direction inhibit = 0, direction invert = 0)

 

 

 

 

 

 

 

Count Pulse

Input A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direction Control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encoder or Sensor

Input B

 

 

 

 

 

 

 

 

Input Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor or Switch

 

 

Count Pulse

Direction Control

High = Decrement

Low = Increment

Count

22

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Operation

Chapter 2

 

 

Table 2 - Pulse External Direction Counting

Direction

Direction

Input A (count)

Input B (direction)

Change in

Inhibit Bit

Invert Bit

 

 

Count Value

 

 

 

 

 

0

0

 

0 or open

1

 

 

 

 

 

 

 

 

1

-1

 

 

 

 

 

 

 

0, 1,

Don’t care

0

 

 

 

 

 

0

1

 

0 or open

-1

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

0, 1,

Don’t care

0

 

 

 

 

 

1

0

 

0 or open

1

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

0, 1,

Don’t care

0

 

 

 

 

 

1

1

 

0 or open

-1

 

 

 

 

 

 

 

 

1

-1

 

 

 

 

 

 

 

0, 1,

Don’t care

0

 

 

 

 

 

See Direction Inhibit and Direction Invert Output Control Bits on page 21 for more information.

Pulse/Internal Direction Mode Selection

When the Pulse/Internal Direction mode is selected, the status of the Direction

Invert bit, as controlled by the user program, determines the direction of the counter. The counter increments on the rising edge of the module’s A input when the Direction Invert bit is reset (0). The counter decrements on the rising edge of the A input when the Direction Invert bit is set (1).

Table 3 - Pulse Internal Direction Counting - Counters 0 and 1

Direction

Direction

Input A (count)

Input B

Change in Count

Inhibit Bit

Invert Bit

 

 

Value

 

 

 

 

 

Don’t care

0

 

Don’t care

1

 

 

 

 

 

 

 

0, 1,

Don’t care

0

 

 

 

 

 

Don’t care

1

 

Don’t care

-1

 

 

 

 

 

 

 

0, 1,

Don’t care

0

 

 

 

 

 

Table 4 - Pulse Internal Direction Counting - Counters 2 and 3

Direction

Direction

Input A

Input B (count)

Change in Count

Inhibit Bit

Invert Bit

 

 

Value

 

 

 

 

 

Don’t care

0

Don’t care

 

1

 

 

 

 

 

 

 

Don’t care

0, 1,

0

 

 

 

 

 

Don’t care

1

Don’t care

 

-1

 

 

 

 

 

 

 

Don’t care

0, 1,

0

 

 

 

 

 

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

23

Chapter 2 Module Operation

Up and Down Pulses Mode Selection

In this mode, the counter channel increments on the rising edge of pulses applied to input A and decrements on the rising edge of pulses applied to input B. When set, the Direction Inhibit bit causes both A and B to increment. When set, the

Direction Invert bit causes B to increment and A to decrement. When the Direction Invert and Direction Inhibit bits are both set, both A and B decrement.

TIP

When both inputs transition simultaneously or near simultaneously, the

 

net result is no change to the count value.

Figure 4 - Up and Down Pulse Mode (direction inhibit = 0, direction invert = 0)

 

 

 

 

 

 

 

 

Input A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increment Pulse

 

 

 

 

 

 

 

 

 

 

 

 

 

(count up)

 

 

 

Incrementing Encoder

Input B

 

 

 

 

 

 

 

 

or Sensor

 

 

 

 

 

 

 

 

 

 

 

Input Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decrement Pulse

 

Module

 

 

 

 

 

 

(count down)

 

 

 

 

 

 

 

Decrementing Encoder or

 

 

 

 

 

 

 

 

Sensor

 

 

 

Increment Pulse

(Input A)

Decrement Pulse

(Input B)

Count

24

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Operation

Chapter 2

 

 

Table 5 - Up and Down Counting

Direction

Direction

Input A (count)

Input B (direction)

Change in

Inhibit Bit

Invert Bit

 

 

Count Value

 

 

 

 

 

0

0

 

0, 1,

1

 

 

 

 

 

 

 

0, 1,

 

-1

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

1

 

0, 1,

-1

 

 

 

 

 

 

 

0, 1,

 

1

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

0

 

0, 1,

1

 

 

 

 

 

 

 

0, 1,

 

1

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

1

 

0, 1,

-1

 

 

 

 

 

 

 

0, 1,

 

-1

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

X1 Quadrature Encoder Mode Selection

In this mode, when a quadrature encoder is attached to inputs A and B, the count direction is determined by the phase relation of inputs A and B. If A leads B, the counter increments. If B leads A, the counter decrements. In other words, when B is low, the count increments on the rising edge of input A and decrements on the falling edge of input A. If B is high, all rising transitions on input A are ignored.

The counter changes value only on one edge of input A as shown in Figure 5.

TIP

When both A and B transition at the same time, instead of in the defined

 

90° phase separation, the quadrature signal is invalid.

For more information see Direction Inhibit and Direction Invert Output

Control Bits on page 21 and their effect on Quadrature signals on page 27.

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

25

Chapter 2 Module Operation

Figure 5 - Quadrature Encoder Modes (direction inhibit = 0, direction invert = 0)

 

A

Input A

 

 

 

B

Input B

 

 

Quadrature

Z

Input Z

 

Encoder

 

 

Forward Rotation

 

Reverse Rotation

A

B

X1 Count

X2 Count

X4 Count

X2 Quadrature Encoder Mode Selection

The X2 Quadrature Encoder mode operates much like the X1 Quadrature

Encoder except that the resolution is doubled as shown in Figure 5 on page 26.

X4 Quadrature Encoder Mode Selection

The X4 Quadrature Encoder mode operates much like the X1 Quadrature

Encoder except that the resolution is quadrupled, as shown in Figure 5 on page 26.

Figure 6 shows how Direction Inhibit and Direction Invert affect the counter.

26

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Rockwell Automation 1769-HSC User Manual

Module Operation

Chapter 2

 

 

Figure 6 - Operation Using Various Direction Inhibit and Direction Invert Settings

 

A

Input A

 

 

Quadrature

B

Input B

Encoder

 

Z

 

 

Input Z

 

 

Forward Rotation

 

Reverse Rotation

A

 

B

 

DirectionInhibit = 0; DirectionInvert = 0

 

X1 Count Pulse

 

X2 Count Pulse

 

X4 Count Pulse

 

DirectionInhibit = 0; DirectionInvert = 1

 

X1 Count Pulse

 

X2 Count Pulse

 

X4 Count Pulse

 

DirectionInhibit = 1; DirectionInvert = 0

 

X1 Count Pulse

 

X2 Count Pulse

 

X4 Count Pulse

 

DirectionInhibit = 1; DirectionInvert = 1

 

X1 Count Pulse

 

X2 Count Pulse

 

X4 Count Pulse

 

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

27

Chapter 2 Module Operation

Input Frequency

Counter Types

Maximum input frequency is determined by the input configuration as shown in the table.

Input Configuration

Input Frequency

Input Frequency

 

1769-HSC Module

Packaged Controller

 

 

 

X4 Quadrature encoder

250 kHz

250 kHz

 

 

 

X2 Quadrature encoder

500 kHz

250 kHz

 

 

 

All other configurations

1 MHz

250 kHz

 

 

 

Each of the four possible counters can be configured to stop counting and set a flag at its limits (linear counter) or to rollover and set a flag at its limits (ring counter). A counter’s limits are programmed by the CtrnMaxCount and

CtrnMinCount words in the module’s configuration array. Both types are described below.

Linear Counter

Figure 7 illustrates linear counter operation. In linear operation, the current count

(Ctr[n].CurrentCount) value remains between, or equal to, the user-programmed minimum count (CtrnMinCount) and maximum count

(CtrnMaxCount) values. If the Ctr[n].CurrentCount value goes above (>) or below (<) these values, the counter stops counting, and an overflow/underflow bit is set. The overflow/underflow bits can be reset using the

CtrnResetCounterOverflow and CtrnResetCounterUnderflow bits.

Figure 7 - Linear Counter Diagram

Minimum Count Value

0

Maximum Count Value

Count Up

 

 

Counter Value

 

 

 

 

 

 

Underflow and Hold

 

 

Count Down

 

 

 

 

 

 

 

 

 

Overflow and Hold

Pulses are not accumulated in an overflow/underflow state. The counter begins counting again when pulses are applied in the proper direction. For example, if you exceed the maximum by 1000 counts, you do not need to apply 1000 counts in the opposite direction before the counter begins counting down. The first pulse in the opposite direction decrements the counter.

28

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Module Operation

Chapter 2

 

 

Modifying Count Value

Ring Counter

Figure 8 demonstrates ring counter operation. In ring counter operation, the current count (Ctr[n].CurrentCount) value changes between user-programmable minimum count (CtrnMinCount) and maximum count (CtrnMaxCount) values. If, when counting up, the counter reaches the CtrnMaxCount value, it rolls over to the CtrnMinCount value upon receiving the next count and sets the overflow bit. If, when counting down, the counter reaches the CtrnMinCount value, it rolls under to the CtrnMaxCount value upon receiving the next count and sets the underflow bit. These bits can be reset using the CtrnResetCounterOverflow and CtrnResetCounterUnderflow bits.

Figure 8 - Ring Counter Diagram

Maximum Count Value

Minimum Count Value

Rollover

Count Down

Count Up

 

The count value (Ctr[n].CurrentCount) can be stored, reset, or preset using the

Z-input, CtrReset bit in the configuration array, control bits in the output array, or overwritten using a Direct Write command.

Table 6 - Available Z Functions

Setting

For function

 

 

Store(1)

On rising edge of Z, store count in the Stored Count input word

Hold

While Z = 1, hold counter at its current value

 

 

Preset/Reset

On rising edge of Z, preset the count value to the value in the preset word

 

 

(1)If both a store and preset function are configured, the stored count is captured before the preset operation takes place.

IMPORTANT Because only the Z-inputs are used for external gating and presetting, these functions are not available for Counters 2 and 3, which do not have Z-inputs. All options are always available for Counters 0 and 1, regardless of input operational mode.

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

29

Chapter 2 Module Operation

Counter Enable/Disable

The counter can be enabled or disabled using the CtrnEn control bit. Be aware that disabling the counter does not inhibit any current count loading functions

(for example, preset or direct write) or any Z function.

Z Input Functions

There are three Z input functions: store, gate, and Z preset.

Store

The Z-input can be used to capture the current count value even when the counter is counting at full 1 MHz speed.

Gate

The Z-inputs can be used to gate (hold) the counter at its current value regardless of incoming A or B inputs. A gating function is typically one that lets pulses reach the counter (gate open) or not (gate closed).

Z Preset

Preset can be programmed to occur based on the actions of the Z-input signal.

Inhibit and Invert

The Z-input signals can be inverted and/or inhibited, depending on the user configuration of the CtrnZInvert and CtrnZInhibit output control bits. If the signal is inhibited, the invert bit is the Z signal for the actions described above.

For an explanation of those bits, see Z Inv - Z Invert (CtrnZInvert) on page 93 and Z Inh - Z Inhibit (CtrnZInhibit) on page 93.

Direct Write

You can arbitrarily change the current count value (Ctr[n].CurrentCount) to the direct write control value (Range12To15[n].HiLimOrDirWr). This ability applies to ranges 12…15. The direct write value takes effect when the Load Direct Write bit (Range12To15[n].LoadDirectWrite) transitions from 0 to 1.

If you attempt to preset and load direct write to a counter at the same time, only the preset (CtrnPreset) will take effect.

30

Rockwell Automation Publication 1769-UM006E-EN-P - July 2013

Loading...
+ 140 hidden pages