Analog Devices AD9012SQ, AD9012SE, AD9012BQ, AD9012BJ, AD9012AQ Datasheet

...
0 (0)
Analog Devices AD9012SQ, AD9012SE, AD9012BQ, AD9012BJ, AD9012AQ Datasheet

a

High-Speed 8-Bit

TTL A/D Converter

 

 

AD9012

FEATURES

100 MSPS Encode Rate

Very Low Input Capacitance—16 pF

Low Power—1 W

TTL Compatible Outputs

MIL-STD-883 Compliant Versions Available

APPLICATIONS

Radar Guidance

Digital Oscilloscopes/ATE Equipment

Laser/Radar Warning Receivers

Digital Radio

Electronic Warfare (ECM, ECCM, ESM)

Communication/Signal Intelligence

GENERAL DESCRIPTION

The AD9012 is an 8-bit, ultrahigh speed, analog-to-digital converter. The AD9012 is fabricated in an advanced bipolar process that allows operation at sampling rates up to one hundred megasamples/second. Functionally, the AD9012 is comprised of 256 parallel comparator stages whose outputs are decoded to drive the TTL compatible output latches.

FUNCTIONAL BLOCK DIAGRAM

OVERFLOW

 

 

AD9012

INHIBIT

 

 

ANALOG IN

 

 

 

 

R

256

 

 

OVERFLOW

VREF

 

 

 

 

 

 

 

R

 

 

 

D8 (MSB)

 

255

 

 

 

 

 

 

 

 

D

 

D7

R

 

E

 

 

C

 

 

 

 

 

 

 

128

O

 

D6

 

D

L

 

 

I

 

 

 

A

 

R/2

 

N

 

 

T

D5

REFMID

 

G

C

 

 

 

R/2

 

L

H

 

127

 

D4

 

O

 

 

 

 

 

 

G

 

 

 

 

I

 

D3

R

 

C

 

 

2

 

 

D2

 

 

 

 

R

 

 

 

D1 (LSB)

 

1

 

 

VREF

 

 

 

 

 

 

 

ENCODE

 

 

 

 

GND

HYSTERESIS

VS

VS

The exceptionally wide large-signal analog input bandwidth of 160 MHz is due to an innovative comparator design and very close attention to device layout considerations. The wide input bandwidth of the AD9012 allows very accurate acquisition of high speed pulse inputs without an external track-and-hold. The comparator output decoding scheme minimizes false codes, which is critical to high speed linearity.

The AD9012 is available in two grades: one with 0.5 LSB linearity and one with 0.75 LSB linearity. Both versions are

offered in an industrial grade, –25°C to +85°C, packaged in a 28-lead DIP and a 28-lead JLCC. The military temperature range devices, –55°C to +125°C, are available in ceramic DIP and LCC packages and are compliant to MIL-STD-883 Class B.

The AD9012 is available in versions compliant with MIL-STD- 883. Refer to the Analog Devices Military Products Databook or current AD9012/883B data sheet for detailed specifications.

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD9012–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (+VS = +5.0 V; –VS = –5.2 V; Differential Reference Voltage = 2.0 V; unless otherwise noted.)

 

 

Test

AD9012AQ/AJ

AD9012BQ/BJ

AD9012SQ/SE

AD9012TQ/TE

 

Parameter

Temp

Level

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESOLUTION

 

 

8

 

 

8

 

 

8

 

 

8

 

 

Bits

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC ACCURACY

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential Linearity

I

 

0.6

0.75

 

0.4

0.5

 

0.6

0.75

 

0.4

0.5

LSB

 

Full

VI

 

 

1.0

 

 

0.75

 

 

1.0

 

 

0.75

LSB

Integral Linearity

25°C

I

 

0.6

1.0

 

0.4

0.5

 

0.6

1.0

 

0.4

0.5

LSB

 

Full

VI

 

 

1.2

 

 

1.2

 

 

1.2

 

 

1.2

LSB

No Missing Codes

Full

VI

GUARANTEED

GUARANTEED

GUARANTEED

GUARANTEED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INITIAL OFFSET ERROR

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Top of Reference Ladder

I

 

7

15

 

7

15

 

7

15

 

7

15

mV

 

Full

VI

 

 

18

 

 

18

 

 

18

 

 

18

mV

Bottom of Reference Ladder

25°C

I

 

6

10

 

6

10

 

6

10

 

6

10

mV

 

Full

VI

 

 

13

 

 

13

 

 

13

 

 

13

mV

Offset Drift Coefficient

Full

V

 

25

 

 

25

 

 

25

 

 

25

 

µV/°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALOG INPUT

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

µA

Input Bias Current1

I

 

60

200

 

60

200

 

60

200

 

60

200

 

Full

VI

 

 

200

 

 

200

 

 

200

 

 

200

µA

Input Resistance

25°C

I

25

200

 

25

200

 

25

200

 

25

200

 

k

Input Capacitance

25°C

III

 

16

18

 

16

18

 

16

18

 

16

18

pF

Large Signal Bandwidth2

25°C

V

 

160

 

 

160

 

 

160

 

 

160

 

MHz

Analog Input Slew Rate3

25°C

V

 

440

 

 

440

 

 

440

 

 

440

 

V/µs

REFERENCE INPUT

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Ladder Resistance

VI

40

80

110

40

80

110

40

80

110

40

80

110

Ladder Temperature Coefficient

25°C

V

 

0.25

 

 

0.25

 

 

0.25

 

 

0.25

 

/°C

Reference Input Bandwidth

V

 

10

 

 

10

 

 

10

 

 

10

 

MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DYNAMIC PERFORMANCE

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversion Rate

I

75

100

 

75

100

 

75

100

 

75

100

 

MSPS

Aperture Delay

25°C

V

 

3.8

 

 

3.8

 

 

3.8

 

 

3.8

 

ns

Aperture Uncertainty (Jitter)

25°C

V

 

15

 

 

15

 

 

15

 

 

15

 

ps

Output Delay (tPD)4, 5

25°C

I

4

4.9

11

4

4.9

11

4

4.9

11

4

4.9

11

ns

Transient Response6

25°C

V

 

8

 

 

8

 

 

8

 

 

8

 

ns

Overvoltage Recovery Time7

25°C

V

 

8

 

 

8

 

 

8

 

 

8

 

ns

Output Rise Time4

25°C

I

 

6.6

8.0

 

6.6

8.0

 

6.6

8.0

 

6.6

8.0

ns

Output Fall Time4

25°C

I

 

3.3

4.3

 

3.3

4.3

 

3.3

4.3

 

3.3

4.3

ns

Output Time Skew4, 8

25°C

V

 

3.0

 

 

3.0

 

 

3.0

 

 

3.0

 

ns

ENCODE INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logic “1” Voltage4

Full

VI

2.0

 

 

2.0

 

 

2.0

 

 

2.0

 

 

V

Logic “0” Voltage4

Full

VI

 

 

0.8

 

 

0.8

 

 

0.8

 

 

0.8

V

Logic “1” Current

Full

VI

 

 

250

 

 

250

 

 

250

 

 

250

µA

Logic “0” Current

Full

VI

 

 

400

 

 

400

 

 

400

 

 

400

µA

Input Capacitance

25°C

V

 

2.5

 

 

2.5

 

 

2.5

 

 

2.5

 

pF

Encode Pulsewidth (Low)9

25°C

I

2.5

 

 

2.5

 

 

2.5

 

 

2.5

 

 

ns

Encode Pulsewidth (High)9

25°C

I

2.5

 

 

2.5

 

 

2.5

 

 

2.5

 

 

ns

OVERFLOW INHIBIT INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µA

0 V Input Current

Full

VI

 

200

250

 

200

250

 

200

250

 

200

250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC LINEARITY10

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effective Bits11

V

 

7.5

 

 

7.5

 

 

7.5

 

 

7.5

 

Bits

In-Band Harmonics

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dc to 1.23 MHz

I

48

55

 

48

55

 

48

55

 

48

55

 

dBc

dc to 9.3 MHz

25°C

V

 

50

 

 

50

 

 

50

 

 

50

 

dBc

dc to 19.3 MHz

25°C

V

 

44

 

 

44

 

 

44

 

 

44

 

dBc

Signal-to-Noise Ratio12

25°C

I

46

47.6

 

46

47.6

 

46

47.6

 

46

47.6

 

dBc

Noise Power Ratio13

25°C

V

 

37

 

 

37

 

 

37

 

 

37

 

dBc

DIGITAL OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logic “1” Voltage

Full

VI

2.4

 

 

2.4

 

 

2.4

 

 

2.4

 

 

V

Logic “0” Voltage

Full

VI

 

 

0.4

 

 

0.4

 

 

0.4

 

 

0.4

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER SUPPLY14

25°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Positive Supply Current (+5.0 V)

I

 

33

45

 

33

45

 

33

45

 

33

45

mA

 

Full

VI

 

 

48

 

 

48

 

 

48

 

 

48

mA

Supply Current (–5.2 V)

25°C

I

 

152

179

 

152

179

 

152

179

 

152

179

mA

 

Full

VI

 

 

191

 

 

191

 

 

191

 

 

191

mA

Nominal Power Dissipation

25°C

V

 

955

 

 

955

 

 

955

 

 

955

 

mW

Reference Ladder Dissipation

25°C

V

 

44

 

 

44

 

 

44

 

 

44

 

mW

Power Supply Rejection Ratio15

25°C

I

 

0.85

2.5

 

0.85

2.5

 

0.8

2.5

 

0.8

2.5

mV/V

–2–

REV. E

AD9012

NOTES

1Measured with Analog Input = 0 V.

2Measured by FFT analysis where fundamental is –3 dBc.

3Input slew rate derived from rise time (10% to 90%) of full-scale step input. 4Outputs terminated with two equivalent ’LS00 type loads. (See load circuit.) 5Measured from ENCODE into data out for LSB only.

6For full-scale step input, 8-bit accuracy is attained in specified time.

7Recovers to 8-bit accuracy in specified time, after 150% full-scale input overvoltage. 8Output time skew includes high-to-low and low-to-high transitions as well as bit-to-bit time skew differences.

9ENCODE signal rise/fall times should be less than 30 ns for normal operation. 10Measured at 75 MSPS encode rate. Harmonic data based on worst case harmonics. 11Analog input frequency = 1.23 MHz.

12RMS signal to rms noise, including harmonics with 1.23 MHz. analog input signal.

13NPR measured @ 0.5 MHz. Noise Source is 250 mW (rms) from 0.5 MHz to 8 MHz.

14Supplies should remain stable within ± 5% for normal operation. 15Measured at –5.2 V ± 5% and +5.0 V ± 5%.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS1

 

 

 

 

 

 

 

 

 

 

 

 

 

VS

 

Positive Supply Voltage (+VS)

. . . . . . . . . . . . . . . . . . . . . . 6 V

 

 

 

 

 

 

 

 

 

 

 

 

1k

 

Analog to Digital Supply Voltage Differential (–VS) . . .

0.5 V

 

 

 

TTL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Negative Supply Voltage (–VS)

. . . . . . . . . . . . . . . . . . . . –6 V

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog Input Voltage . . . . . . . . . . . . . . . . . . . .

–VS to +0.5 V

 

 

 

15pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENCODE Input Voltage . . . . . . . . . . . . . . . . . –0.5 V to +5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OVERFLOW INH Input Voltage . . . . . . . . . . . –5.2 V to 0 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Input Voltage (+VREF –VREF)2 . . .

–3.5 V to +0.1 V

 

 

 

Figure 1. Load Circuit

 

Differential Reference Voltage . . . . . . . . . . . . . . . . . . . .

2.1 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Midpoint Current . . . . . . . . . . . . . . . . . . . . ± 4 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . .

30 mA

 

EXPLANATION OF TEST LEVELS

 

Operating Temperature Range

 

–25°C to +85°C

 

Test Level

 

 

 

 

 

 

 

 

 

 

 

 

AD9012AQ/BQ/AJ/BJ . . . . . . . . . . . . . . .

 

I

– 100% production tested.

 

 

 

 

 

 

 

AD9012SE/SQ/TE/TQ . . . . . . . . . . . . .

–55°C to +125°C

 

 

 

 

 

 

 

 

Storage Temperature Range . . . . . . . . . . .

–65°C to +150°C

 

II

– 100% production tested at 25°C, and sample tested at

Junction Temperature3 . . . . . . . . . . . . . . . . . . . . . . . .

150°C

 

 

specified temperatures. AC testing done on sample basis.

Lead Soldering Temperature (10 sec) . . . . . . . . . . . . .

300°C

 

III – Sample tested only.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

 

 

 

 

 

 

 

IV – Parameter is guaranteed by design and characterization

1Absolute maximum ratings are limiting values, to be applied individually, and

 

beyond which the serviceability of the circuit may be impaired. Functional

 

 

testing.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operability under any of these conditions is not necessarily implied. Exposure to

 

V

– Parameter is a typical value only.

 

absolute maximum rating conditions for extended periods may affect device

 

VI – All devices are 100% production tested at 25°C. 100%

reliability.

 

 

 

 

 

 

 

2+VREF –VREF under all circumstances.

 

 

 

 

 

 

production tested at temperature extremes for extended

3Maximum junction temperature (tJ max) should not exceed 150°C for ceramic

 

 

temperature devices; guaranteed by design and

and plastic packages:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

characterization testing for industrial devices.

 

tJ = PD (θJA) + tA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PD (θJC) + tc

 

 

 

 

 

 

 

 

 

ORDERING GUIDE

 

where

 

 

 

 

 

 

 

 

 

 

PD = power dissipation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θJA = thermal impedance from junction to ambient (°C/W)

 

 

 

 

 

 

 

 

 

 

Temperature

 

Package

θJC = thermal impedance from junction to case (°C/W)

 

 

 

 

Device

Linearity

 

 

 

Ranges

 

Options*

tA = ambient temperature (°C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–25°C to +85°C

 

 

tC = case temperature (°C)

 

 

 

 

 

 

AD9012AQ

0.75 LSB

 

 

Q-28

typical thermal impedances are:

 

 

 

 

 

 

AD9012BQ

0.50 LSB

 

 

 

–25°C to +85°C

 

Q-28

Ceramic DIP θJA = 42°C/W; θJC = 10°C/W

 

 

 

 

 

 

 

 

 

 

 

 

AD9012AJ

0.75 LSB

 

 

 

–25°C to +85°C

 

J-28A

Ceramic LCC θJA = 50°C/W; θJC = 15°C/W

 

 

 

 

 

 

 

 

 

 

 

 

AD9012BJ

0.50 LSB

 

 

 

–25°C to +85°C

 

J-28A

JLCC θJA = 59°C/W; θJC = 15°C/W.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD9012SQ

0.75 LSB

 

–55°C to +125°C

 

Q-28

 

Recommended Operating Conditions

 

 

 

AD9012SE

0.75 LSB

 

–55°C to +125°C

 

E-28A

 

 

 

 

 

 

 

 

 

AD9012TQ

0.50 LSB

 

–55°C to +125°C

 

Q-28

Parameter

 

Input Voltage

 

 

 

 

AD9012TE

0.50 LSB

 

–55°C to +125°C

 

E-28A

Min

Nominal

Max

 

 

*E = Leadless Ceramic Chip Carrier; J = Ceramic Leaded Chip Carrier;

–VS

–5.46

–5.20

 

–4.94

 

 

 

Q = Cerdip.

 

 

 

 

 

 

 

 

 

 

 

 

+VS

+4.75

5.00

 

+5.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+VREF

–VREF

0.0 V

 

+0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–VREF

–2.1

–2.0

 

+VREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog Input

–VREF

 

 

+VREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAUTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily

 

 

 

 

 

 

 

WARNING!

 

accumulate on the human body and test equipment and can discharge without detection. Although

 

the AD9012 features proprietary ESD protection circuitry, permanent damage may occur on

 

 

 

 

 

 

 

devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are

 

 

 

 

ESD SENSITIVE DEVICE

recommended to avoid performance degradation or loss of functionality.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REV. E

 

 

 

 

 

 

–3–

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading...
+ 5 hidden pages