Analog Devices AD9218BST-80, AD9218BST-65, AD9218BST-40, AD9218BST-105, AD9218-65PCB Datasheet

...
0 (0)

a

10-Bit, 40/65/80/105 MSPS

3 V Dual A/D Converter

 

 

 

 

 

AD9218

 

 

 

FEATURES

Dual 10-Bit, 40 MSPS, 65 MSPS, 80 MSPS, and 105 MSPS ADC

Low Power: 275 mW at 105 MSPS per Channel On-Chip Reference and Track/Holds

300 MHz Analog Bandwidth Each Channel SNR = 57 dB @ 41 MHz, Encode = 80 MSPS

1 V p-p or 2 V p-p Analog Input Range Each Channel Single 3.0 V Supply Operation (2.7 V–3.6 V) Power-Down Mode for Single Channel Operation Two’s Complement or Offset Binary Output Mode Output Data Alignment Mode

Pin-Compatible with 8-Bit AD9288 –75 dBc Crosstalk between Channels

APPLICATIONS

Battery-Powered Instruments

Hand-Held Scopemeters

Low Cost Digital Oscilloscopes

I and Q Communications

Ultrasound Equipment

FUNCTIONAL BLOCK DIAGRAM

ENCODE A

TIMING

AD9218

 

 

AINA

T/H

ADC

OUTPUT

 

D9A–D0A

 

REGISTER

AINA

 

10

10

 

 

 

 

 

USER

REFINA

 

 

 

 

SELECT #1

 

 

 

 

USER

REFOUT

 

REF

 

 

 

 

 

SELECT #2

REFINB

 

 

 

 

DATA

 

 

 

 

 

FORMAT/

AINB

 

 

 

 

GAIN

T/H

ADC

OUTPUT

 

D9B–D0B

A B

REGISTER

 

10

10

IN

 

 

 

 

 

ENCODE B

TIMING

 

 

 

 

 

 

VD

GND

VDD

GENERAL DESCRIPTION

The AD9218 is a dual 10-bit monolithic sampling analog-to- digital converter with on-chip track-and-hold circuits and is optimized for low cost, low power, small size and ease of use. The product operates at a 105 MSPS conversion rate with outstanding dynamic performance over its full operating range. Each channel can be operated independently.

The ADC requires only a single 3.0 V (2.7 V to 3.6 V) power supply and an encode clock for full operation. No external reference or driver components are required for many applications. The digital outputs are TTL/CMOS-compatible and a separate output power supply pin supports interfacing with 3.3 V or 2.5 V logic.

The clock input is TTL/CMOS-compatible and the 10-bit digital outputs can be operated from 3.0 V (2.5 V to 3.6 V) supplies. User-selectable options are available to offer a combination of power-down modes, digital data formats and digital data timing schemes. In power-down mode, the digital outputs are driven to a high-impedance state.

Fabricated on an advanced CMOS process, the AD9218 is available in a 48-lead surface-mount plastic package (7 × 7 mm LQFP) specified over the industrial temperature range (–40°C to +85°C).

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

PRODUCT HIGHLIGHTS

Low Power—Just 275 mW power dissipation per channel at 105 MSPS. Other speed grade proportionally scaled down while maintaining high ac performance.

Pin Compatibility Upgrade—Allows easy migration from 8-bit to 10-bit. Pin-compatible with the 8-bit AD9288 dual ADC.

Ease of Use—On-chip reference and user controls provide flexibility in system design.

High Performance—Maintain 54 dB SNR at 105 MSPS with a Nyquist input.

Channel Crosstalk—Very low at –75 dBc.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD9218–SPECIFICATIONS

DC SPECIFICATIONS (VDD = 3.0 V, VD = 3.0 V; external reference, unless otherwise noted.)

 

 

Test

AD9218BST-40/-65

AD9218BST-80/-105

 

 

Parameter

Temp

Level

Min

Typ

Max

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

RESOLUTION

 

 

 

10

 

 

10

 

Bits

 

 

 

 

 

 

 

 

 

 

ACCURACY

 

 

 

 

 

 

 

 

 

No Missing Codes1

Full

VI

 

GNT

 

 

GNT

 

 

Offset Error2

25°C

I

–18

2

18

–18

2

18

LSB

Gain Error2

25°C

I

–2

3

8

–2

3.5

8

% FS

Differential Nonlinearity

25°C

I

–1

±0.3/± 0.6

1/1.3

–1

±0.5/± 0.8

1.2/1.7

LSB

(DNL)

 

 

 

±0.8

 

 

±0.6/± 0.9

 

 

 

Full

VI

 

 

 

 

LSB

Integral Nonlinearity (INL)

25°C

I

–1/–1.6

±0.3/± 1

1/1.6

–1.35/–2.7

±0.75/± 2

1.35/2.7

LSB

 

Full

VI

 

± 1

 

 

±1/±2.3

 

LSB

TEMPERATURE DRIFT

 

 

 

 

 

 

 

 

ppm/°C

Offset Error

Full

V

 

10

 

 

4

 

Gain Error2

Full

V

 

80

 

 

100

 

ppm/°C

Reference

Full

V

 

40

 

 

40

 

ppm/°C

REFERENCE

25°C

 

 

 

 

 

 

 

 

Internal Reference Voltage

I

1.18

1.24

1.28

1.18

1.24

1.28

V

(REFOUT)

 

 

 

 

 

 

 

 

k

Input Resistance (REFIN A, B)

Full

V

9

11

13

9

11

13

 

 

 

 

 

 

 

 

 

 

ANALOG INPUTS

 

 

 

 

 

 

 

 

 

Differential Input Voltage

Full

V

 

1 or 2

 

 

1

 

V

Range (AIN, AIN)3

 

 

 

 

 

 

 

 

 

Common-Mode Voltage

Full

V

 

VD/3

 

 

VD/3

 

V

Input Resistance

Full

VI

8

10

14

8

10

14

k

Input Capacitance

25°C

V

 

3

 

 

3

 

pF

POWER SUPPLY

 

 

 

 

 

 

 

 

 

VD

Full

IV

2.7

3

3.6

2.7

3

3.6

V

VDD

Full

IV

2.7

3

3.6

2.7

3

3.6

V

Supply Currents

 

 

 

 

 

 

 

 

 

IVD (VD = 3.0 V)4

Full

VI

 

108/117

113/122

 

172/183

175/188

mA

IVDD (VDD = 3.0 V)4

25°C

V

 

7/11

 

 

13/17

 

mA

Power Dissipation DC5

Full

VI

 

325/350

340/365

 

515/550

525/565

mW

IVD Power-Down Current6

Full

VI

 

20

 

 

22

 

mA

Power Supply Rejection Ratio

25°C

I

 

± 1

 

 

± 1

 

mV/V

NOTES

1No Missing Codes across industrial temperature range guaranteed for -40 MSPS, -65 MSPS, and -80 MSPS grades. No missing codes at room temperature guaranteed for -105 grade.

2Gain error and gain temperature coefficients are based on the ADC only (with a fixed 1.25 V external reference) -65 Grade in 2 V p-p range, -40, -85, -105 Grades in 1 V p-p range.

3(AIN – AIN) = ± 0.5 V in 1 V range (full scale), (AIN – AIN) = ± 1 V in 2 V range (full scale).

4AC Power Dissipation measured with rated encode and a 10.3 MHz analog input @ 0.5 dBFS, C LOAD = 5 pF. 5DC Power Dissipation measured with rated encode and a dc analog input (Outputs Static, IV DD = 0)

6In power-down state IVDD = ± 10 A typical (all grades).

Specifications subject to change without notice.

–2–

REV. 0

AD9218

DIGITAL SPECIFICATIONS (VDD = 3.0 V, VD = 3.0 V; external reference, unless otherwise noted.)

 

 

Test

AD9218BST-40/-65

AD9218BST-80/-105

 

Parameter

Temp

Level

Min

Typ

Max

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

DIGITAL INPUTS

 

 

 

 

 

 

 

 

 

Encode Input Common Mode

Full

V

 

VD/2

 

 

VD/2

 

V

Encode “1” Voltage

Full

VI

2

 

 

2

 

 

V

Encode “0” Voltage

Full

VI

 

 

0.8

 

 

0.8

V

Encode Input Resistance

Full

VI

1.8

2.0

2.3

1.8

2.0

2.3

k

Logic “1” Voltage—S1, S2, DFS

Full

VI

2

 

 

2

 

 

V

Logic “0” Voltage—S1, S2, DFS

Full

VI

 

 

0.8

 

 

0.8

V

Logic “1” Current—S1

Full

VI

–50

± 10

+50

–50

± 10

+50

µA

Logic “0” Current—S1

Full

VI

–400

–230

–50

–400

–230

–50

µA

Logic “1” Current—S2

Full

VI

50

230

400

50

230

400

µA

Logic “0” Current—S2

Full

VI

–50

± 10

+50

–50

± 10

+50

µA

Logic “1” Current—DFS

Full

VI

30

100

200

30

100

200

µA

Logic “0” Current—DFS

Full

VI

–400

–230

–50

–400

–230

–50

µA

Input Capacitance—S1, S2, Encode Inputs

25°C

V

 

2

 

 

2

 

pF

Input Capacitance DFS

25°C

V

 

4.5

 

 

4.5

 

pF

 

 

 

 

 

 

 

 

 

 

DIGITAL OUTPUTS

 

 

 

 

 

 

 

 

 

Logic “1” Voltage

Full

VI

2.45

 

 

2.45

 

 

V

Logic “0” Voltage

Full

VI

 

 

0.05

 

 

0.05

V

Output Coding

 

 

Two’s Comp. or Offset Binary

Two’s Comp. or Offset Binary

 

 

 

 

 

 

 

 

 

 

 

Specifications subject to change without notice.

AC SPECIFICATIONS (VDD = 3.0 V, VD = 3.0 V; external reference, unless otherwise noted.)

 

 

Test

AD9218BST-40/-65

AD9218BST-80/-105

 

Parameter

Temp

Level

Min

Typ

Max

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

DYNAMIC PERFORMANCE1

 

 

 

 

 

 

 

 

 

Signal-to-Noise Ratio (SNR)

 

 

 

 

 

 

 

 

 

(Without Harmonics)

25°C

 

 

 

 

 

 

 

 

fIN = 10.3 MHz

I

58/55

59/57

 

57/53

58/55

 

dB

fIN = Nyquist2

25°C

I

-/54

59/56

 

55/52

57/54

 

dB

Signal-to-Noise Ratio (SINAD)

 

 

 

 

 

 

 

 

 

(With Harmonics)

25°C

 

 

 

 

 

 

 

 

fIN = 10.3 MHz

I

58/54

59/56

 

56/52

58/53

 

dB

fIN = Nyquist2

25°C

I

-/53

59/55

 

55/51

57/53

 

dB

Effective Number of Bits

25°C

 

 

 

 

 

 

 

 

fIN = 10.3 MHz

I

9.4/8.8

9.6/9.1

 

9.1/8.4

9.4/8.6

 

Bits

fIN = Nyquist2

25°C

I

-/8.6

9.6/8.9

 

9/8.3

9.3/8.6

 

Bits

Second Harmonic Distortion

25°C

 

 

 

 

 

 

 

 

fIN = 10.3 MHz

I

–72/–66

–89/–77

 

–69/–60

–77/–68

 

dBc

fIN = Nyquist2

25°C

I

-/–63

–89/–72

 

–65/–57

–76/–66

 

dBc

Third Harmonic Distortion

25°C

 

 

 

 

 

 

 

 

fIN = 10.3 MHz

I

–68/–62

–79/–68

 

–62/–57

–71/–63

 

dBc

fIN = Nyquist2

25°C

I

-/–60

–78/–64

 

–63/–57

–73/–69

 

dBc

Spurious Free Dynamic Range SFDR

25°C

 

 

 

 

 

 

 

 

fIN = 10.3 MHz

I

–68/–62

–79/–67

 

–62/–57

–69/–62

 

dBc

fIN = Nyquist2

25°C

I

-/–60

–78/–64

 

–63/–57

–70/–63

 

dBc

Two-Tone Intermod Distortion (IMD)

25°C

 

 

 

 

 

 

 

 

fIN1 = 10 MHz, fIN2 = 11 MHz

V

 

–74/–73

 

 

 

 

dBc

at –7 dBFS

25°C

 

 

 

 

 

 

 

 

fIN1 = 30 MHz, fIN2 = 31 MHz

V

 

–73/–73

 

 

–77/–67

 

dBc

at –7 dBFS

25°C

 

 

 

 

 

 

 

 

Analog Bandwidth, Full Power

V

 

300

 

 

300

 

MHz

Crosstalk

25°C

V

 

–75

 

 

–75

 

dBc

 

 

 

 

 

 

 

 

 

 

NOTES

1AC specs based on an analog input voltage of –0.5 dBFS at 10.3 MHz unless otherwise noted. AC specs for -40, -80, -105 grades are tested in 1 V p-p range and driven differentially. AC specs for -65 grade are tested in 2 V p-p range and driven differentially.

2The -65, -80, and -105 grades are tested close to Nyquist for that grade: 31 MHz, 39 MHz, and 51 MHz for the -65, -80, and -105 grades respectively.

Specifications subject to change without notice.

REV. 0

–3–

AD9218–SPECIFICATIONS

SWITCHING SPECIFICATIONS (VDD = 3.0 V, VD = 3.0 V; external reference, unless otherwise noted.)

 

 

Test

AD9218BST-40/-65

AD9218BST-80/-105

 

Parameter

Temp

Level

Min Typ

Max

Min Typ

Max

Unit

 

 

 

 

 

 

 

 

ENCODE INPUT PARAMETERS

 

 

 

 

 

 

 

Maximum Encode Rate

Full

VI

40/65

 

80/105

 

MSPS

Minimum Encode Rate

Full

IV

 

20/20

 

20/20

MSPS

Encode Pulsewidth High (tEH)

Full

IV

7/6

 

5/3.8

 

ns

Encode Pulsewidth Low (tEL)

Full

IV

7/6

 

5/3.8

 

ns

Aperture Delay (tA)

25°C

V

2

 

2

 

ns

Aperture Uncertainty (Jitter)

25°C

V

3

 

3

 

ps rms

DIGITAL OUTPUT PARAMETERS

 

 

 

 

 

 

 

Output Valid Time (tV)*

Full

VI

3

 

3

 

ns

Output Propagation Delay (tPD)*

Full

VI

4.5

7

4.5

6

ns

Output Rise Time (tR)

25°C

V

1

 

1.0

 

ns

Output Fall Time (tF)

25°C

V

1.2

 

1.2

 

ns

Out of Range Recovery Time

25°C

V

5

 

5

 

ns

Transient Response Time

25°C

V

5

 

5

 

ns

Recovery Time from Power-Down

25°C

V

10

 

10

 

Cycles

Pipeline Delay

Full

IV

5

 

5

 

Cycles

 

 

 

 

 

 

 

 

NOTES

*tV and tPD are measured from the 1.5 level of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 5 pF or a dc current of ± 40 A. Rise and fall times measured from 10% to 90%.

Specifications subject to change without notice.

SAMPLE N

SAMPLE

 

SAMPLE

SAMPLE

 

N+1

 

N+5

N+6

AINA,

 

 

 

 

AINB

 

 

 

 

tA

SAMPLE

SAMPLE

SAMPLE

 

N+2

N+3

N+4

 

tEH

tEL

 

 

 

1/fS

 

 

 

ENCODE

A&B

 

 

 

 

 

tPD

tV

D9A–D0A

DATA N–5

DATA N–4

DATA N–3

DATA N–2

DATA N–1

DATA N

D9B–D0B

DATA N–5

DATA N–4

DATA N–3

DATA N–2

DATA N–1

DATA N

Figure 1. Normal Operation, Same Clock (S1 = 1, S2 = 0) Channel Timing

–4–

REV. 0

Analog Devices AD9218BST-80, AD9218BST-65, AD9218BST-40, AD9218BST-105, AD9218-65PCB Datasheet

AD9218

SAMPLE

SAMPLE

SAMPLE

 

 

 

SAMPLE

 

 

 

 

N

N+1

N+2

 

 

 

SAMPLE

 

 

 

 

 

 

N+7

 

 

 

 

 

 

 

 

 

 

 

N+8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AINA,

 

 

 

 

 

 

 

 

 

 

 

AINB

 

 

 

 

 

 

 

 

 

 

 

tA

 

SAMPLE

 

SAMPLE SAMPLE

SAMPLE

 

 

 

 

 

tEL

N+3

 

N+4

N+5

N+6

 

 

 

 

 

tEH

1/fS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENCODE A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPD

 

 

tV

ENCODE B

 

 

 

 

 

 

 

 

 

 

 

D9A–D0A

DATA N–10

DATA N–8

DATA N–6

DATA N–4

DATA N–2

DATA N

DATA N+2

D9B–D0B

DATA N–9

DATA N–7

DATA N–5

DATA N–3

DATA N–1

DATA N+1

Figure 2. Normal Operation with Two Clock Sources (S1 = 1, S2 = 0) Channel Timing

SAMPLE

SAMPLE SAMPLE

 

 

SAMPLE

 

 

 

N

N+1

N+2

 

 

SAMPLE

 

 

 

 

N+7

 

 

 

 

 

 

 

 

N+8

 

 

AINA,

 

 

 

 

 

 

 

 

AINB

 

 

 

 

 

 

 

 

tA

 

SAMPLE

SAMPLE SAMPLE

SAMPLE

 

 

 

tEL

N+3

N+4

N+5

N+6

 

 

 

tEH

1/fS

 

 

 

 

 

 

 

 

 

 

 

 

 

ENCODE A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPD

 

tV

ENCODE B

 

 

 

 

 

 

 

 

D9A–D0A

DATA N–10

DATA N–8

 

DATA N–6

DATA N–4

DATA N–2

DATA N

DATA N+2

D9B–D0B

DATA N–11

DATA N–9

 

DATA N–7

DATA N–5

DATA N–3

DATA N–1

DATA N+1

Figure 3. Data Align with Two Clock Sources (S1 = 1, S2 = 1) Channel Timing

REV. 0

–5–

AD9218

ABSOLUTE MAXIMUM RATINGS1

 

 

VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 4 V

Analog Inputs . . . . . . . . . . . . . . . . . . . .

–0.5 V to VD + 0.5

V

Digital Inputs . . . . . . . . . . . . . . . . . . .

–0.5 V to VDD + 0.5

V

REFIN Inputs . . . . . . . . . . . . . . . . . . . . .

–0.5 V to VD + 0.5

V

Digital Output Current . . . . . . . . . . . . . .

. . . . . . . . . . . 20 mA

Operating Temperature . . . . . . . . . . . . . .

. . –55°C to +125°C

Storage Temperature . . . . . . . . . . . . . . . .

. . –65°C to +150°C

Maximum Junction Temperature . . . . . .

. . . . . . . . . . . 150°C

Maximum Case Temperature . . . . . . . . .

. . . . . . . . . . . 150°C

θJA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 57°C/W

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

2Measured on a four-layer board with solid ground plane.

EXPLANATION OF TEST LEVELS

Test Level

I 100% production tested.

II100% production tested at 25°C and sample tested at specified temperatures.

III Sample tested only.

IV Parameter is guaranteed by design and characterization testing.

V Parameter is a typical value only.

VI 100% production tested at 25°C; guaranteed by design and characterization testing for industrial temperature range; 100% production tested at temperature extremes for military devices.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9218 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

WARNING!

ESD SENSITIVE DEVICE

 

 

Temperature

 

 

 

Package

Model

 

Range

 

 

Package Description

Option

 

 

 

 

 

 

 

 

AD9218BST-40, -65, -80, -105

 

–40°C to +85°C

 

Metric Quad Flat Pack (1.4 mm thick: LQFP)

ST-48

AD9218-65PCB

 

25°C

 

 

Evaluation Board (Supports -40/-65 Grade)

 

AD9218-105PCB

 

25°C

 

 

Evaluation Board (Supports -80/-105 Grade)

 

 

 

 

 

 

Table I. User Select Modes

 

 

 

 

 

 

 

 

 

S1

S2

User Select Options

 

 

 

 

 

 

 

 

 

0

 

0

Power-Down Both Channel A and B.

 

0

 

1

Power-Down Channel B Only.

 

1

 

0

Normal Operation (Data Align Disabled).

 

1

 

1

Data Align Enabled (data from both channels

 

 

 

 

 

available on rising edge of Clock A. Channel B

 

 

 

 

 

data is delayed by a 1/2 clock cycle.)

 

 

 

 

 

 

 

 

 

 

–6–

REV. 0

AD9218

 

 

 

 

 

 

 

PIN FUNCTION DESCRIPTIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin No.

Mnemonic

 

 

 

 

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, 12, 16, 27, 29, 32, 34, 45

GND

 

 

 

 

 

Ground

 

 

 

 

 

 

 

 

 

2

AINA

 

 

 

 

 

Analog Input for Channel A

 

 

3

AINA

 

 

 

 

 

Analog Input for Channel A (Complementary)

4

DFS/GAIN

 

 

 

 

Data Format Select and Analog Input Gain Mode. (Low = offset binary out-

 

 

 

 

 

 

 

 

 

put available, 1 V p-p supported; high = two’s complement output available,

 

 

 

 

 

 

 

 

 

1 V p-p supported; floating = offset binary output available, 2 V p-p supported;

 

 

 

 

 

 

 

 

 

Set to VREF = two’s complement output available, 2 V p-p supported.)

5

REFINA

 

 

 

 

 

Reference Voltage Input for Channel A

6

REFOUT

 

 

 

 

 

Internal Reference Voltage

 

 

7

REFINB

 

 

 

 

 

Reference Voltage Input for Channel B

8

S1

 

 

 

 

 

User Select #1 (Refer to Table I)

9

S2

 

 

 

 

 

User Select #2 (Refer to Table I)

10

AINB

 

 

 

 

 

Analog Input for Channel B (Complementary)

11

AINB

 

 

 

 

 

Analog Input for Channel B

 

 

13, 30, 31, 48

VD

 

 

 

 

 

Analog Supply (3 V)

 

 

 

 

14

ENCB

 

 

 

 

 

Clock Input for Channel B

 

 

15, 28, 33, 46

VDD

 

 

 

 

 

Digital Supply (2.5 V to 3.6 V)

 

17–26

D9B–D0B

 

 

 

 

 

Digital Output for Channel B (D9B = MSB)

35–44

D0A–D9A

 

 

 

 

 

Digital Output for Channel A (D9A = MSB)

47

ENCA

 

 

 

 

 

Clock Input for Channel A

 

 

 

 

 

 

 

 

 

 

 

PIN CONFIGURATION

 

 

 

 

 

 

 

 

 

 

V

 

A

V

GND

(MSB)

D8

D7

D6

D5

D4

D3

D2

 

 

 

 

 

 

 

 

 

 

 

ENC

D9

 

 

 

 

 

 

 

 

 

 

D

 

DD

 

A

A

A

A

A

A

A

A

 

 

 

 

 

 

 

 

48

 

47

46

45

44

43

42

41

40

39

38

37

 

 

 

GND

1

 

PIN 1

 

 

 

 

 

 

 

 

 

36

D1A

 

AINA

2

 

 

 

 

 

 

 

 

 

 

 

 

IDENTIFIER

 

 

 

 

 

 

 

35

D0A

 

 

AINA

3

 

 

 

 

 

 

 

 

 

 

 

 

34

GND

 

DFS/GAIN

4

 

 

 

 

 

 

 

 

 

 

 

 

33

VDD

 

REFINA

5

 

 

 

 

 

AD9218

 

 

 

32

GND

 

REFOUT

6

 

 

 

 

 

 

 

 

31

VD

 

 

 

 

 

 

TOP VIEW

 

 

 

 

REF

IN

B

7

 

 

 

 

 

 

 

 

30

V

D

 

 

 

 

 

 

(Not to Scale)

 

 

 

 

 

 

 

S1

8

 

 

 

 

 

 

 

 

 

 

 

 

29

GND

 

 

 

 

S2

9

 

 

 

 

 

 

 

 

 

 

 

 

28

VDD

 

 

AINB

10

 

 

 

 

 

 

 

 

 

 

 

 

27

GND

 

AINB 11

 

 

 

 

 

 

 

 

 

 

 

26

D0B

 

GND 12

 

 

 

 

 

 

 

 

 

 

 

25

D1B

 

 

 

 

 

 

13

 

14

15

16

17

18

19

20

21

22

23

24

 

 

 

 

 

 

 

 

 

 

V

 

ENC

V

GND

(MSB)D9

D8

D7

D6

D5

D4

D3

D2

 

 

 

 

 

 

 

 

 

 

D

B

DD

 

B

B

B

B

B

B

B

B

 

 

REV. 0

–7–

AD9218

TERMINOLOGY

Analog Bandwidth

The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.

Aperture Delay

The delay between the 50% point of the rising edge of the ENCODE command and the instant at which the analog input is sampled.

Aperture Uncertainty (Jitter)

The sample-to-sample variation in aperture delay.

Crosstalk

Coupling onto one channel being driven by a low level (–40 dBFS) signal when the adjacent interfering channel is driven by a full-scale signal.

Differential Analog Input Resistance, Differential Analog Input Capacitance and Differential Analog Input Impedance

The real and complex impedances measured at each analog input port. The resistance is measured statically and the capacitance and differential input impedances are measured with a network analyzer.

Differential Analog Input Voltage Range

The peak-to-peak differential voltage that must be applied to the converter to generate a full-scale response. Peak differential voltage is computed by observing the voltage on a single pin and subtracting the voltage from the other pin, which is 180 degrees out of phase. Peak-to-peak differential is computed by rotating the inputs phase 180 degrees and again taking the peak measurement. The difference is then computed between both peak measurements.

Differential Nonlinearity

The deviation of any code width from an ideal 1 LSB step.

Effective Number of Bits

The effective number of bits (ENOB) is calculated from the measured SNR based on the equation:

ENOB = SNRMEASURED – 1.76 dB

6.02

ENCODE Pulsewidth/Duty Cycle

Pulsewidth high is the minimum amount of time that the ENCODE pulse should be left in Logic 1 state to achieve rated performance; pulsewidth low is the minimum time ENCODE pulse should be left in low state. See timing implications of changing tENCH in text. At a given clock rate, these specifications define an acceptable ENCODE duty cycle.

Full-Scale Input Power

Expressed in dBm. Computed using the following equation:

 

V 2 Full Scale rms

 

 

 

 

 

 

ZINPUT

PowerFull Scale

= 10 log

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gain Error

Gain error is the difference between the measured and ideal full scale input voltage range of the ADC.

Harmonic Distortion, Second

The ratio of the rms signal amplitude to the rms value of the second harmonic component, reported in dBc.

Harmonic Distortion, Third

The ratio of the rms signal amplitude to the rms value of the third harmonic component, reported in dBc.

Integral Nonlinearity

The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a “best straight line” determined by a least square curve fit.

Minimum Conversion Rate

The encode rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.

Maximum Conversion Rate

The encode rate at which parametric testing is performed.

Output Propagation Delay

The delay between a differential crossing of ENCODE and ENCODE and the time when all output data bits are within valid logic levels.

Noise (for Any Range within the ADC)

 

 

FSdBm SNRdBc SignaldBFS

VNOISE =

 

 

 

 

Z 0.001 10

10

 

Where Z is the input impedance, FS is the full scale of the device for the frequency in question, SNR is the value for the particular input level, and Signal is the signal level within the ADC reported in dB below full scale. This value includes both thermal and quantization noise.

Power Supply Rejection Ratio

The ratio of a change in input offset voltage to a change in power supply voltage.

Signal-to-Noise-and-Distortion (SINAD)

The ratio of the rms signal amplitude (set 1 dB below full scale) to the rms value of the sum of all other spectral components, including harmonics but excluding dc.

Signal-to-Noise Ratio (without Harmonics)

The ratio of the rms signal amplitude (set at 1 dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc.

Spurious-Free Dynamic Range (SFDR)

The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. May be reported in dBc (i.e., degrades as signal level is lowered), or dBFS (always related back to converter full scale).

Two-Tone Intermodulation Distortion Rejection

The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc.

Two-Tone SFDR

The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. May be reported in dBc (i.e., degrades as signal level is lowered), or in dBFS (always related back to converter full scale).

–8–

REV. 0

Loading...
+ 16 hidden pages