Analog Devices AD977CRS, AD977CR, AD977CN, AD977BRS, AD977BR Datasheet

...
0 (0)

a

16-Bit, 100 kSPS/200 kSPS

BiCMOS A/D Converter

 

 

 

 

 

AD977/AD977A

 

 

 

FEATURES Fast 16-Bit ADC

100 kSPS Throughput Rate—AD977

200 kSPS Throughput Rate—AD977A Single 5 V Supply Operation

Power Dissipation 100 mW Max Power-Down Mode 50 W

Input Ranges:

Unipolar; 0 V–10 V, 0 V–5 V and 0 V–4 V Bipolar; 10 V, 5 V and 3.3 V

Choice of External or Internal 2.5 V Reference High Speed Serial Interface

On-Chip Clock

20-Lead Skinny DIP or SOIC Package

28-Lead Skinny SSOP Package

FUNCTIONAL BLOCK DIAGRAM

 

 

REF

 

 

VANA

AGND1

 

 

 

 

4k

 

2.5V

 

AD977/

 

CAP

 

 

 

 

 

 

 

 

 

REFERENCE

AD977A

 

 

4R

 

 

 

R1IN

 

 

 

 

 

 

 

 

 

 

 

 

 

SYNC

 

2R

 

 

 

 

 

 

R2IN

 

 

 

 

 

SERIAL

BUSY

 

 

 

 

 

 

R3IN

R

4R

 

SWITCHED

 

DATA

DATACLK

 

CAP ADC

INTERFACE

 

 

 

DATA

 

 

 

 

 

 

 

 

AGND2

R = 5k AD977

 

 

 

 

 

 

R = 2.5k AD977A

 

 

 

 

 

 

 

 

 

 

 

VDIG

 

CONTROL LOGIC &

 

CLOCK

 

INTERNAL CALIBRATION CIRCUITRY

 

 

 

 

 

DGND

PWRD

R/C

CS

TAG

SB/BTC EXT/INT

 

GENERAL DESCRIPTION

The AD977/AD977A is a high speed, low power 16-bit A/D converter that operates from a single 5 V supply. The AD977A has a throughput rate of 200 kSPS whereas the AD977 has a throughput rate of 100 kSPS. Each part contains a successive approximation, switched capacitor ADC, an internal 2.5 V reference, and a high speed serial interface. The ADC is factory calibrated to minimize all linearity errors. The AD977/AD977A is specified for full scale bipolar input ranges of ± 10 V, ±5 V and

± 3.3 V, and unipolar ranges of 0 V to 10 V, 0 V to 5 V and 0 V to 4 V.

The AD977/AD977A is comprehensively tested for ac parameters such as SNR and THD, as well as the more traditional dc parameters of offset, gain and linearity.

PRODUCT HIGHLIGHTS

1.Fast Throughput

The AD977/AD977A is a high speed, 16-bit ADC based on a factory calibrated switched capacitor architecture.

2.Single-Supply Operation

The AD977/AD977A operates from a single 5 V supply and dissipates only 100 mW max.

3.Comprehensive DC and AC Specifications

In addition to the traditional specifications of offset, gain and linearity, the AD977/AD977A is fully tested for SNR and THD.

REV. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2000

AD977/AD977A

AD977–SPECIFICATIONS (–40 C to +85 C, FS = 100 kHz, VDIG = VANA = 5 V, unless otherwise noted)

 

 

A Grade

 

 

 

 

B Grade

 

 

C Grade

 

 

Parameter

Min

Typ

Max

 

 

Min

Typ

Max

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

RESOLUTION

16

 

 

 

16

 

 

16

 

 

Bits

ANALOG INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±10 V, 0 V to 5 V, . . . (See Table II)

 

 

 

 

Voltage Range

 

 

 

 

 

 

 

Impedance

 

 

 

 

 

See Table II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling Capacitance

 

40

 

 

 

 

40

 

 

40

 

pF

THROUGHPUT SPEED

 

 

 

 

 

 

 

 

 

 

 

s

Complete Cycle

 

 

10

 

 

 

 

10

 

 

10

Throughput Rate

100

 

 

 

100

 

 

100

 

 

kHz

DC ACCURACY

 

 

±3

 

 

 

 

±2.0

 

±3

 

LSB1

Integral Linearity Error

 

 

 

 

 

 

 

 

Differential Linearity Error

–2

 

+3

 

 

–1

 

+1.75

 

±2

 

LSB

No Missing Codes

15

 

 

 

16

 

 

 

15

 

Bits

Transition Noise2

 

1.0

±0.5

 

 

 

1.0

±0.25

 

1.0

±0.5

LSB

Full-Scale Error3, 4

 

±7

 

 

 

±7

 

±7

%

Full-Scale Error Drift

 

 

 

 

 

 

 

 

ppm/°C

Full-Scale Error

 

 

±0.5

 

 

 

 

±0.25

 

 

±0.5

 

Ext. REF = 2.5 V

 

 

 

 

 

 

 

 

%

Full-Scale Error Drift

 

±2

 

 

 

 

±2

 

 

±2

 

ppm/°C

Ext. REF = 2.5 V

 

 

 

 

 

 

 

 

Bipolar Zero Error3

 

 

±10

 

 

 

 

±10

 

 

±15

 

Bipolar Ranges

 

 

 

 

 

 

 

 

mV

Bipolar Zero Error Drift

 

±2

 

 

 

 

±2

 

 

±2

 

ppm/°C

Bipolar Ranges

 

 

 

 

 

 

 

 

Unipolar Zero Error3

 

 

±10

 

 

 

 

±10

 

 

±10

 

Unipolar Ranges

 

 

 

 

 

 

 

 

mV

Unipolar Zero Error Drift

 

±2

 

 

 

 

±2

 

 

±2

 

ppm/°C

Unipolar Ranges

 

 

 

 

 

 

 

 

Recovery to Rated Accuracy

 

 

 

 

 

 

 

 

 

 

 

 

After Power-Down5

 

 

 

 

 

 

 

 

 

 

 

 

2.2 F to CAP

 

1

 

 

 

 

1

 

 

1

 

ms

Power Supply Sensitivity

 

 

 

 

 

 

 

 

 

 

 

 

VANA = VDIG = VD = 5 V ± 5%

 

 

±8

 

 

 

 

±8

 

 

±8

LSB

AC ACCURACY

 

 

 

 

 

 

 

 

 

 

 

 

Spurious Free Dynamic Range6

90

 

 

 

96

 

 

90

 

 

dB7

Total Harmonic Distortion6

 

 

–90

 

 

 

 

–96

 

 

–90

dB

Signal-to-(Noise+Distortion)6

83

 

 

 

85

 

 

83

 

 

dB

–60 dB Input

 

27

 

 

 

 

28

 

 

27

 

dB

Signal-to-Noise6

83

 

 

 

85

 

 

83

 

 

dB

Full Power Bandwidth8

 

700

 

 

 

 

700

 

 

700

 

kHz

–3 dB Input Bandwidth

 

1.5

 

 

 

 

1.5

 

 

1.5

 

MHz

SAMPLING DYNAMICS

 

 

 

 

 

 

 

 

 

 

 

 

Aperture Delay

 

40

 

 

 

 

40

 

 

40

 

ns

Transient Response, Full-Scale Step

 

 

2

 

 

 

 

2

 

 

2

s

Overvoltage Recovery9

 

150

 

 

 

 

150

 

 

150

 

ns

REFERENCE

 

 

 

 

 

 

 

 

 

 

 

 

Internal Reference Voltage

2.48

2.5

2.52

 

2.48

2.5

2.52

2.48

2.5

2.52

V

Internal Reference Source Current

 

1

 

 

 

 

1

 

 

1

 

A

External Reference Voltage Range

 

 

 

 

 

 

 

 

 

 

 

 

for Specified Linearity

2.3

2.5

2.7

 

2.3

2.5

2.7

2.3

2.5

2.7

V

External Reference Current Drain

 

 

 

 

 

 

 

 

 

 

 

A

Ext. REF = 2.5 V

 

 

100

 

 

 

 

100

 

 

100

NOTES

1LSB means Least Significant Bit. With a ±10 V input, one LSB is 305 µV. 2Typical rms noise at worst case transitions and temperatures.

3Measured with fixed resistors as shown in Figures 11, 12 and 13. Adjustable to zero. Tested at room temperature.

4Full-Scale Error is expressed as the % difference between the actual full-scale code transition voltage and the ideal full scale transition voltage, and includes the effect of offset error. For bipolar input ranges, the Full-Scale Error is the worst case of either the –Full Scale or +Full Scale code transition voltage errors. For unipolar input ranges, Full-Scale Error is with respect to the +Full-Scale code transition voltage.

5External 2.5 V reference connected to REF.

6fIN = 20 kHz, 0.5 dB down unless otherwise noted.

7All specifications in dB are referred to a full scale ±10 V input.

8Full-Power Bandwidth is defined as full-scale input frequency at which Signal-to-(Noise+Distortion) degrades to 60 dB, or 10 bits of accuracy. 9Recovers to specified performance after a 2 × FS input overvoltage.

Specifications subject to change without notice.

–2–

REV. D

AD977/AD977A

AD977A–SPECIFICATIONS(–40 C to +85 C, FS = 200 kHz, VDIG = VANA = 5 V, unless otherwise noted)

 

 

A Grade

 

 

 

 

B Grade

 

 

C Grade

 

 

Parameter

Min

Typ

Max

 

 

Min

Typ

Max

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

RESOLUTION

16

 

 

 

16

 

 

16

 

 

Bits

ANALOG INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±10 V, 0 V to 5 V, . . . (See Table II)

 

 

 

 

Voltage Range

 

 

 

 

 

 

 

Impedance

 

 

 

 

 

See Table II

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling Capacitance

 

40

 

 

 

 

40

 

 

40

 

pF

THROUGHPUT SPEED

 

 

 

 

 

 

 

 

 

 

 

s

Complete Cycle

 

 

5

 

 

 

 

5

 

 

5

Throughput Rate

200

 

 

 

200

 

 

200

 

 

kHz

DC ACCURACY

 

 

±3

 

 

 

 

±2.0

 

±3

 

LSB1

Integral Linearity Error

 

 

 

 

 

 

 

 

Differential Linearity Error

–2

 

+3

 

 

–1

 

+1.75

 

±2

 

LSB

No Missing Codes

15

 

 

 

16

 

 

 

15

 

Bits

Transition Noise2

 

1.0

±0.5

 

 

 

1.0

±0.25

 

1.0

±0.5

LSB

Full-Scale Error3, 4

 

±7

 

 

 

±7

 

±7

%

Full-Scale Error Drift

 

 

 

 

 

 

 

 

ppm/°C

Full-Scale Error

 

 

±0.5

 

 

 

 

±0.25

 

 

±0.5

 

Ext. REF = 2.5 V

 

 

 

 

 

 

 

 

%

Full-Scale Error Drift

 

±2

 

 

 

 

±2

 

 

±2

 

ppm/°C

Ext. REF = 2.5 V

 

 

 

 

 

 

 

 

Bipolar Zero Error3

 

 

±10

 

 

 

 

±10

 

 

±15

 

Bipolar Ranges

 

 

 

 

 

 

 

 

mV

Bipolar Zero Error Drift

 

±2

 

 

 

 

±2

 

 

±2

 

ppm/°C

Bipolar Ranges

 

 

 

 

 

 

 

 

Unipolar Zero Error3

 

 

±10

 

 

 

 

±10

 

 

±10

 

Unipolar Ranges

 

 

 

 

 

 

 

 

mV

Unipolar Zero Error Drift

 

±2

 

 

 

 

±2

 

 

±2

 

ppm/°C

Unipolar Ranges

 

 

 

 

 

 

 

 

Recovery to Rated Accuracy

 

 

 

 

 

 

 

 

 

 

 

 

After Power-Down5

 

 

 

 

 

 

 

 

 

 

 

 

2.2 F to CAP

 

1

 

 

 

 

1

 

 

1

 

ms

Power Supply Sensitivity

 

 

 

 

 

 

 

 

 

 

 

 

VANA = VDIG = VD = 5 V ± 5%

 

 

±8

 

 

 

 

±8

 

 

±8

LSB

AC ACCURACY

 

 

 

 

 

 

 

 

 

 

 

 

Spurious Free Dynamic Range6

90

 

 

 

96

 

 

90

 

 

dB7

Total Harmonic Distortion6

 

 

–90

 

 

 

 

–96

 

 

–90

dB

Signal-to-(Noise+Distortion)6

83

 

 

 

85

 

 

83

 

 

dB

–60 dB Input

 

27

 

 

 

 

28

 

 

27

 

dB

Signal-to-Noise6

83

 

 

 

85

 

 

83

 

 

dB

Full Power Bandwidth8

 

1

 

 

 

 

1

 

 

1

 

MHz

–3 dB Input Bandwidth

 

2.7

 

 

 

 

2.7

 

 

2.7

 

MHz

SAMPLING DYNAMICS

 

 

 

 

 

 

 

 

 

 

 

 

Aperture Delay

 

40

 

 

 

 

40

 

 

40

 

ns

Transient Response, Full-Scale Step

 

 

1

 

 

 

 

1

 

 

1

s

Overvoltage Recovery9

 

150

 

 

 

 

150

 

 

150

 

ns

REFERENCE

 

 

 

 

 

 

 

 

 

 

 

 

Internal Reference Voltage

2.48

2.5

2.52

 

2.48

2.5

2.52

2.48

2.5

2.52

V

Internal Reference Source Current

 

1

 

 

 

 

1

 

 

1

 

A

External Reference Voltage Range

 

 

 

 

 

 

 

 

 

 

 

 

for Specified Linearity

2.3

2.5

2.7

 

2.3

2.5

2.7

2.3

2.5

2.7

V

External Reference Current Drain

 

 

 

 

 

 

 

 

 

 

 

 

Ext. REF = 2.5 V

 

 

1.2

 

 

 

 

1.2

 

 

1.2

mA

NOTES

1LSB means Least Significant Bit. With a ±10 V input, one LSB is 305 µV. 2Typical rms noise at worst case transitions and temperatures.

3Measured with fixed resistors as shown in Figures 11, 12 and 13. Adjustable to zero. Tested at room temperature.

4Full-Scale Error is expressed as the % difference between the actual full-scale code transition voltage and the ideal full scale transition voltage, and includes the effect of offset error. For bipolar input ranges, the Full-Scale Error is the worst case of either the –Full Scale or +Full Scale code transition voltage errors. For unipolar input ranges, Full-Scale Error is with respect to the +Full-Scale code transition voltage.

5External 2.5 V reference connected to REF.

6fIN = 20 kHz, 0.5 dB down unless otherwise noted.

7All specifications in dB are referred to a full scale ±10 V input.

8Full-Power Bandwidth is defined as full-scale input frequency at which Signal-to-(Noise+Distortion) degrades to 60 dB, or 10 bits of accuracy. 9Recovers to specified performance after a 2 × FS input overvoltage.

Specifications subject to change without notice.

REV. D

–3–

AD977/AD977A–SPECIFICATIONS (Both Specs)

 

 

 

 

 

A, B, C Grades

 

 

 

 

Parameter

 

Conditions

Min

Typ

 

Max

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

DIGITAL INPUTS

 

 

 

 

 

 

 

 

 

 

Logic Levels

 

 

 

 

 

 

 

 

 

 

VIL

 

 

 

–0.3

 

 

+0.8

 

 

V

VIH

 

 

 

2.0

 

 

VDIG + 0.3

V

IIL

 

 

 

 

 

 

± 10

 

 

A

IIH

 

 

 

 

 

 

± 10

 

 

A

DIGITAL OUTPUTS

 

 

 

 

 

 

 

 

 

 

Data Format

 

 

 

 

Serial 16-Bits

 

 

 

 

Data Coding

 

 

 

 

Binary Two’s Complement or Straight Binary

 

Pipeline Delay

 

 

 

Conversion Results Only Available after Completed Conversion

 

VOL

 

ISINK = 1.6 mA

 

 

 

0.4

 

 

V

VOH

 

ISOURCE = 500 A

4

 

 

 

 

 

V

POWER SUPPLIES

 

 

 

 

 

 

 

 

 

 

Specified Performance

 

 

 

 

 

 

 

 

 

 

VDIG

 

 

 

4.75

5

 

5.25

 

 

V

VANA

 

 

 

4.75

5

 

5.25

 

 

V

IDIG

 

 

 

 

4

 

 

 

 

mA

IANA

 

 

 

 

11

 

 

 

 

mA

Power Dissipation

 

 

 

 

 

 

 

 

 

 

PWRD LOW

 

 

 

 

 

 

100

 

 

mW

PWRD HIGH

 

 

 

 

50

 

 

 

 

W

TEMPERATURE RANGE

 

 

 

 

 

 

 

 

 

°C

Specified Performance

 

TMIN to TMAX

–40

 

 

+85

 

 

Specifications subject to change without notice.

 

 

 

 

 

 

 

TIMING SPECIFICATIONS (AD977A: FS = 200 kHz, AD977: FS = 100 kHz, VDIG = VANA = 5 V, –40 C to +85 C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD977A

 

AD977

 

 

 

 

 

 

 

Symbol

Min Typ

Max

Min Typ

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

 

Convert Pulsewidth

 

 

t1

50

 

50

 

 

ns

R/C, CS to BUSY Delay

 

 

t2

 

83

 

83

 

ns

BUSY LOW Time

 

 

t3

 

4.0

 

8.0

 

s

BUSY Delay after End of Conversion

 

t4

50

 

50

 

 

ns

Aperture Delay

 

 

t5

40

 

40

 

 

ns

Conversion Time

 

 

t6

3.8

4.0

7.6

8.0

 

s

Acquisition Time

 

 

t7

1.0

 

2.0

 

 

s

Throughput Time

 

 

t6 + t7

 

5

 

10

 

s

R/C Low to DATACLK Delay

 

 

t8

220

 

350

 

 

ns

DATACLK Period

 

 

t9

220

 

450

 

 

ns

DATA Valid Setup Time

 

 

t10

50

 

100

 

 

ns

DATA Valid Hold Time

 

 

t11

20

 

20

 

 

ns

EXT. DATACLK Period

 

 

t12

66

 

100

 

 

ns

EXT. DATACLK HIGH

 

 

t13

20

 

20

 

 

ns

EXT. DATACLK LOW

 

 

t14

30

 

30

 

 

ns

R/C, CS to EXT. DATACLK Setup Time

 

t15

20

t12 + 5

20

t12 + 5

 

ns

R/C to CS Setup Time

 

 

t16

10

 

10

 

 

ns

EXT. DATACLK to SYNC Delay

 

 

t17

15

66

15

66

 

ns

EXT. DATACLK to DATA Valid Delay

 

t18

25

66

25

66

 

ns

CS to EXT. DATACLK Rising Edge Delay

 

t19

10

 

10

 

 

ns

Previous DATA Valid after CS, R/C Low

 

t20

3.5

 

7.5

 

 

s

BUSY to EXT. DATACLK Setup Time

 

t21

5

 

5

 

 

ns

Final EXT. DATACLK to BUSY Rising Edge

 

t22

 

1.7

 

3.5

 

s

TAG Valid Setup Time

 

 

t23

0

 

0

 

 

ns

TAG Valid Hold Time

 

 

t24

20

 

20

 

 

ns

Specifications subject to change without notice.

–4–

REV. D

AD977/AD977A

ABSOLUTE MAXIMUM RATINGS1

Analog Inputs

R1IN, R2IN , R3IN . . . . . . .

. . . . . .

. . . . . . . . . . . . . . . ±25 V

CAP . . . . . . . . . . . . . . . . .

+VANA + 0.3 V to AGND2 – 0.3 V

REF . . . . . . . . . . . . . . . . .

. . . . Indefinite Short to AGND2,

Ground. . .Voltage. . . . . .Differences. . . . . . . . . .

. . . . . .

Momentary Short to VANA

 

±0.3 V

DGND, AGND1, AGND2 . . . . . .

Supply Voltages

 

 

VANA . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . 7 V

VDIG to VANA . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . ±7 V

VDIG . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . 7 V

Digital Inputs . . . . . . . . . . .

. . . . . . .

. –0.3 V to VDIG + 0.3 V

Internal Power Dissipation2

 

 

PDIP (N), SOIC (R), SSOP (RS) .

. . . . . . . . . . . . 700 mW

Junction Temperature . . . . .

. . . . . . .

. . . . . . . . . . . . . . 150°C

Storage Temperature Range N, R . . .

. . . . . –65°C to +150°C

Lead Temperature Range

 

300°C

(Soldering 10 sec) . . . . . .

. . . . . . .

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2Specification is for device in free air:

20-Lead PDIP: θJA = 100°C/W, θJC = 31°C/W,

20-Lead SOIC: θJA = 75°C/W, θJC = 24°C/W,

28-Lead SSOP: θJA = 109°C/W, θJC = 39°C/W.

 

 

 

 

 

 

 

PIN CONFIGURATIONS

 

 

 

 

 

 

 

 

 

SOIC and DIP

 

 

 

 

 

 

 

 

 

 

 

SSOP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1IN

1

 

 

 

20

VDIG

R1IN

1

 

28

VDIG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AGND1

2

 

27

VANA

AGND1

2

 

 

 

19

VANA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2IN

3

 

26

PWRD

R2IN

3

 

 

 

18

PWRD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3IN

4

 

25

BUSY

R3IN

4

AD977

17

BUSY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

AD977A

16

 

 

 

 

 

 

 

NC

5

 

24 CS

CAP

CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOP VIEW

 

 

 

 

 

 

CAP

6

AD977

23

NC

 

 

 

 

 

 

 

 

 

 

 

REF

6

(Not to Scale)

15

R/C

REF

7

AD977A

22

NC

 

 

 

 

 

 

 

 

 

 

 

AGND2

7

 

 

 

14

TAG

 

 

NC

8

TOP VIEW

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Not to Scale)

R/C

SB/BTC

8

 

 

 

13

DATA

AGND2

9

 

20

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXT/INT

 

9

 

 

 

12

DATACLK

 

 

NC

10

 

19

TAG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DGND

10

 

 

 

11

SYNC

 

 

NC

11

 

18

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SB/BTC

 

12

 

17

DATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXT/INT

 

13

 

16

DATACLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYNC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DGND

14

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC = NO CONNECT

 

 

 

 

 

1.6mA IOL

TO OUTPUT

PIN

1.4V CL

100pF

500 A IOH

Figure 1. Load Circuit for Digital Interface Timing

ORDERING GUIDE

 

Temperature

Throughput

 

 

Package

Model

Range

Rate

Max INL

Min S/(N+D)

Options*

 

 

 

 

 

 

AD977AN

–40°C to +85°C

100 kSPS

± 3.0 LSB

83 dB

N-20

AD977BN

–40°C to +85°C

100 kSPS

± 2.0 LSB

85 dB

N-20

AD977CN

–40°C to +85°C

100 kSPS

± 3.0 LSB

83 dB

N-20

AD977AAN

–40°C to +85°C

200 kSPS

83 dB

N-20

AD977ABN

–40°C to +85°C

200 kSPS

± 2.0 LSB

85 dB

N-20

AD977ACN

–40°C to +85°C

200 kSPS

 

83 dB

N-20

AD977AR

–40°C to +85°C

100 kSPS

± 3.0 LSB

83 dB

R-20

AD977BR

–40°C to +85°C

100 kSPS

± 2.0 LSB

85 dB

R-20

AD977CR

–40°C to +85°C

100 kSPS

± 3.0 LSB

83 dB

R-20

AD977AAR

–40°C to +85°C

200 kSPS

83 dB

R-20

AD977ABR

–40°C to +85°C

200 kSPS

± 2.0 LSB

85 dB

R-20

AD977ACR

–40°C to +85°C

200 kSPS

 

83 dB

R-20

AD977ARS

–40°C to +85°C

100 kSPS

± 3.0 LSB

83 dB

RS-28

AD977BRS

–40°C to +85°C

100 kSPS

± 2.0 LSB

85 dB

RS-28

AD977CRS

–40°C to +85°C

100 kSPS

± 3.0 LSB

83 dB

RS-28

AD977AARS

–40°C to +85°C

200 kSPS

83 dB

RS-28

AD977ABRS

–40°C to +85°C

200 kSPS

± 2.0 LSB

85 dB

RS-28

AD977ACRS

–40°C to +85°C

200 kSPS

 

83 dB

RS-28

*N = 20-lead 300 mil plastic DIP; R = 20-lead SOIC; RS = 28-lead SSOP.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD977/AD977A feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. D

–5–

AD977/AD977A

 

 

 

PIN FUNCTION DESCRIPTIONS

 

 

 

 

Pin No.

Pin No.

 

 

DIP/SOIC

SSOP

Mnemonic

Description

 

 

 

 

1, 3, 4

1, 3, 4

R1IN, R2IN, R3IN

Analog Input. Refer to Table I, Table II for input range configuration.

2

2

AGND1

Analog Ground. Used as the ground reference point for the REF pin.

5

6

CAP

Reference buffer output. Connect a 2.2 F tantalum capacitor between CAP and

 

 

 

Analog Ground.

6

7

REF

Reference Input/Output. The internal 2.5 V reference is available at this pin.

 

 

 

Alternatively an external reference can be used to override the internal reference. In

 

 

 

either case, connect a 2.2 F tantalum capacitor between REF and Analog Ground.

7

9

AGND2

Analog Ground.

8

12

SB/BTC

This digital input is used to select the data format of a conversion result. With SB/BTC

 

 

 

tied LOW, conversion data will be output in Binary Two’s Complement format. With

 

 

 

SB/BTC connected to a logic HIGH, data is output in Straight Binary format.

9

13

EXT/INT

Digital select input for choosing the internal or an external data clock. With EXT/INT

 

 

 

tied LOW, after initiating a conversion, 16 DATACLK pulses transmit the previous

 

 

 

conversion result as shown in Figure 3. With EXT/INT set to a logic HIGH, output

 

 

 

data is synchronized to an external clock signal connected to the DATACLK input.

 

 

 

Data is output as indicated in Figure 4 through Figure 9.

10

14

DGND

Digital Ground.

11

15

SYNC

Digital output frame synchronization for use with an external data clock

 

 

 

(EXT/INT = Logic HIGH). When a read sequence is initiated, a pulse one

 

 

 

DATACLK period wide is output synchronous to the external data clock.

12

16

DATACLK

Serial data clock input or output, dependent upon the logic state of the EXT/INT

 

 

 

pin. When using the internal data clock (EXT/INT = Logic LOW), a conversion

 

 

 

start sequence will initiate transmission of 16 DATACLK periods. Output data is

 

 

 

synchronous to this clock and is valid on both its rising and falling edges (Figure 3).

 

 

 

When using an external data clock (EXT/INT = Logic HIGH), the CS and R/C

 

 

 

signals control how conversion data is accessed.

13

17

DATA

The serial data output is synchronized to DATACLK. Conversion results are

 

 

 

stored in an on-chip register. The AD977 provides the conversion result, MSB first,

 

 

 

from its internal shift register. The DATA format is determined by the logic level of

 

 

 

SB/BTC. When using the internal data clock (EXT/INT = Logic LOW), DATA is

 

 

 

valid on both the rising and falling edges of DATACLK. Between conversions

 

 

 

DATA will remain at the level of the TAG input when the conversion was started.

 

 

 

Using an external data clock (EXT/INT = Logic HIGH) allows previous conversion

 

 

 

data to be accessed during a conversion (Figures 5, 7 and 9) or the conversion

 

 

 

result can be accessed after the completion of a conversion (Figures 4, 6 and 8).

14

19

TAG

This digital input can be used with an external data clock, (EXT/INT = Logic

 

 

 

HIGH) to daisy chain the conversion results from two or more AD977s onto a

 

 

 

single DATA line. The digital data level on TAG is output on DATA with a delay

 

 

 

of 16 or 17 external DATACLK periods after the initiation of the read sequence.

 

 

 

Dependent on whether a SYNC is not present or present.

15

21

R/C

Read/Convert Input. Is used to control the conversion and read modes of the

 

 

 

AD977. With CS LOW; a falling edge on R/C holds the analog input signal inter-

 

 

 

nally and starts a conversion, a rising edge enables the transmission of the conver-

 

 

 

sion result.

16

24

CS

Chip Select Input. With R/C LOW, a falling edge on CS will initiate a conversion.

 

 

 

With R/C HIGH, a falling edge on CS will enable the serial data output sequence.

17

25

BUSY

Busy Output. Goes LOW when a conversion is started, and remains LOW until the

 

 

 

conversion is completed and the data is latched into the on-chip shift register.

18

26

PWRD

Power-Down Input. When set to a logic HIGH power consumption is reduced and

 

 

 

conversions are inhibited. The conversion result from the previous conversion is

 

 

 

stored in the onboard shift register.

19

27

VANA

Analog Power Supply. Nominally 5 V.

20

28

VDIG

Digital Power Supply. Nominally 5 V.

–6–

REV. D

AD977/AD977A

DEFINITION OF SPECIFICATIONS

INTEGRAL NONLINEARITY ERROR (INL)

Linearity error refers to the deviation of each individual code from a line drawn from “negative full scale” through “positive full scale.” The point used as “negative full scale” occurs 1/2 LSB before the first code transition. “Positive full scale” is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.

DIFFERENTIAL NONLINEARITY ERROR (DNL)

In an ideal ADC, code transitions are 1 LSB apart. Differential nonlinearity is the maximum deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

FULL-SCALE ERROR

The last + transition (from 011 . . . 10 to 011 . . . 11 for two’s complement format) should occur for an analog voltage 1 1/2 LSB below the nominal full scale (9.9995422 V for a ±10 V range). The full-scale error is the deviation of the actual level of the last transition from the ideal level.

BIPOLAR ZERO ERROR

Bipolar zero error is the difference between the ideal midscale input voltage (0 V) and the actual voltage producing the midscale output code.

UNIPOLAR ZERO ERROR

In unipolar mode, the first transition should occur at a level 1/2 LSB above analog ground. Unipolar zero error is the deviation of the actual transition from that point.

SPURIOUS FREE DYNAMIC RANGE

The difference, in decibels (dB), between the rms amplitude of the input signal and the peak spurious signal.

TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of a full-scale input signal and is expressed in decibels.

SIGNAL TO (NOISE AND DISTORTION) (S/[N+D]) RATIO

S/(N+D) is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/(N+D) is expressed in decibels.

FULL POWER BANDWIDTH

The full power bandwidth is defined as the full-scale input frequency at which the S/(N+D) degrades to 60 dB, 10 bits of accuracy.

APERTURE DELAY

Aperture delay is a measure of the acquisition performance, and is measured from the falling edge of the R/C input to when the input signal is held for a conversion.

TRANSIENT RESPONSE

The time required for the AD977/AD977A to achieve its rated accuracy after a full-scale step function is applied to its input.

OVERVOLTAGE RECOVERY

The time required for the ADC to recover to full accuracy after an analog input signal 150% of full-scale is reduced to 50% of the full-scale value.

REV. D

–7–

Analog Devices AD977CRS, AD977CR, AD977CN, AD977BRS, AD977BR Datasheet

AD977/AD977A

CONVERSION CONTROL

The AD977/AD977A is controlled by two signals: R/C and CS. When R/C is brought low, with CS low, for a minimum of 50 ns, the input signal will be held on the internal capacitor array and a conversion “n” will begin. Once the conversion process does begin, the BUSY signal will go low until the conversion is complete. Internally, the signals R/C and CS are OR’d together and there is no requirement on which signal is taken low first when initiating a conversion. The only requirement is that there be at least 10 ns of delay between the two signals being taken low. After the conversion is complete the BUSY signal will return high and the AD977/AD977A will again resume tracking the input signal. Under certain conditions the CS pin can be tied Low and R/C will be used to determine whether you are initiating a conversion or reading data. On the first conversion, after the AD977/AD977A is powered up, the DATA output will be indeterminate.

Conversion results can be clocked serially out of the AD977/ AD977A using either an internal clock, generated by the AD977/AD977A, or by using an external clock. The AD977/ AD977A is configured for the internal data clock mode by pulling the EXT/INT pin low. It is configured for the external clock mode by pulling the EXT/INT pin high.

INTERNAL DATA CLOCK MODE

The AD977/AD977A is configured to generate and provide the data clock when the EXT/INT pin is held low. Typically CS will be tied low and R/C will be used to initiate a conversion “n.” During the conversion the AD977/AD977A will output 16 bits of data, MSB first, from conversion “n-1” on the DATA pin. This data will be synchronized with 16 clock pulses provided on the DATACLK pin. The output data will be valid on both the rising and falling edge of the data clock as shown in Figure 3. After the LSB has been presented, the DATA pin will assume whatever state the TAG input was at during the start of conversion, and the DATACLK pin will stay low until another conversion is initiated.

EXTERNAL DATA CLOCK MODE

The AD977/AD977A is configured to accept an externally supplied data clock when the EXT/INT pin is held high. This mode of operation provides several methods by which conversion results can be read from the AD977/AD977A. The output data from conversion “n-1” can be read during conversion “n,” or the output data from conversion “n” can be read after the conversion is complete. The external clock can be either a continuous or discontinuous clock. A discontinuous clock can be either

 

t1

 

 

 

 

 

CS, R/C

 

 

 

 

 

 

 

 

 

t3

 

 

 

BUSY

 

 

 

 

 

 

 

t2

 

 

 

t4

 

 

t5

 

 

 

 

 

 

 

 

 

 

MODE

ACQUIRE

 

CONVERT

 

ACQUIRE

CONVERT

 

 

 

t6

 

t7

 

 

Figure 2. Basic Conversion Timing

 

 

 

t8

 

 

 

 

 

R/C

 

 

 

 

 

 

 

t1

t9

 

 

 

 

 

 

 

 

 

 

DATACLK

 

1

2

3

15

16

 

t10

 

t11

 

 

 

DATA

 

MSB VALID

BIT 14

BIT 13

BIT 1

LSB VALID

 

 

 

VALID

VALID

VALID

 

 

t2

 

 

t6

 

 

 

 

 

 

 

 

BUSY

Figure 3. Serial Data Timing for Reading Previous Conversion Results with Internal Clock (CS, EXT/ INT and TAG Set to Logic Low)

–8–

REV. D

Loading...
+ 16 hidden pages