Analog Devices AD7804BN, AD7805CR, AD7805BST, AD7805BRS, AD7805BR Datasheet

...
0 (0)
Analog Devices AD7804BN, AD7805CR, AD7805BST, AD7805BRS, AD7805BR Datasheet

a+3.3 V to +5 V Quad/Octal 10-Bit DACs

AD7804/AD7805/AD7808/AD7809*

FEATURES

Four 10-Bit DACs in One Package

Serial and Parallel Loading Facilities Available AD7804 Quad 10-Bit Serial Loading

AD7805 Quad 10-Bit Parallel Loading AD7808 Octal 10-Bit Serial Loading AD7809 Octal 10-Bit Parallel Loading

+3.3 V to +5 V Operation Power-Down Mode Power-On Reset

Standby Mode (All DACs/Individual DACs) Low Power All CMOS Construction

10-Bit Resolution

Double Buffered DAC Registers Dual External Reference Capability

APPLICATIONS

Optical Disk Drives

Instrumentation and Communication Systems

Process Control and Voltage Setpoint Control

Trim Potentiometer Replacement

Automatic Calibration

GENERAL DESCRIPTION

The AD7804/AD7808 are quad/octal 10-bit digital-to-analog converters, with serial load capabilities, while the AD7805/AD7809 are quad/octal 10-bit digital-to-analog converters with parallel load capabilities. These parts operate from a +3.3 V to +5 V

(±10%) power supply and incorporates an on-chip reference.

These DACs provide output signals in the form of VBIAS ± VSWING. VSWING is derived internally from VBIAS. On-chip control registers include a system control register and channel control registers.

The system control register has control over all DACs in the package. The channel control registers allow individual control of DACs. The complete transfer function of each individual

DAC can be shifted around the VBIAS point using an on-chip Sub DAC. All DACs contain double buffered data inputs,

which allow all analog outputs to be simultaneously updated using the asynchronous LDAC input.

Control Features

Channels Controlled

Main DAC

Sub DAC

Hardware Clear

All

Ï

Ï

System Control

 

 

 

Power Down1

All

Ï

Ï

System Standby2

All

Ï

Ï

System Clear

All

Ï

 

Input Coding

All

Ï

Ï

Channel Control

 

 

 

Channel Standby2

Selective

Ï

Ï

Channel Clear

Selective

Ï

 

VBIAS

Selective

Ï

Ï

NOTES

1Power-down function powers down all internal circuitry including the reference. 2Standby functions power down all circuitry except for the reference.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

 

 

AVDD

DVDD AGND DGND

 

REFOUT

1.23V REF

POWER ON

AD7804/

VOUTF*

 

RESET

 

 

 

 

VOUTE*

REFIN

 

 

 

AD7808

 

 

 

 

 

 

AVDD

 

VBIAS

 

 

DIVIDER

 

VOUTD

COMP

 

 

MUX

DAC D

 

CHANNEL D

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

VBIAS

VOUTC

 

 

 

MUX

DAC C

 

CHANNEL C

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

VBIAS

VOUTB

 

 

 

MUX

DAC B

 

CHANNEL B

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

VBIAS

VOUTA

 

 

 

MUX

DAC A

PD**

CHANNEL A

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

SYSTEM

 

 

 

VOUTH*

 

CONTROL REG

 

 

 

 

FSIN

INPUT SHIFT

 

VOUTG*

CLKIN

REGISTER &

 

 

SDIN

CONTROL LOGIC

 

 

 

 

 

 

 

 

ONLY AD7804 SHOWN FOR CLARITY

CLR LDAC

 

*SHOWS ADDITIONAL CHANNELS ON THE AD7808 **PIN ON THE AD7808 ONLY

 

 

 

AVDD DVDD

AGND DGND

 

REFOUT

 

1.23V REF

POWER ON

AD7805/

VOUTF*

 

 

 

RESET

 

VOUTE*

REFIN

 

 

 

 

 

AD7809

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVDD

 

 

VBIAS

 

 

 

DIVIDER

 

 

VOUTD

COMP

 

 

 

MUX

DAC D

 

 

CHANNEL D

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

 

 

VBIAS

VOUTC

 

 

 

 

MUX

DAC C

 

 

CHANNEL C

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

 

 

VBIAS

VOUTB

 

 

 

 

MUX

DAC B

 

 

CHANNEL B

 

DATA

DAC

 

 

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

 

 

VBIAS

VOUTA

 

 

 

 

MUX

DAC A

 

 

CHANNEL A

 

DATA

DAC

 

PD**

CONTROL REG

 

REGISTER

REGISTER

 

 

 

 

 

 

 

 

 

SYSTEM

 

 

 

 

 

 

CONTROL REG

 

 

 

 

VOUTH*

CS

CONTROL

INPUT

 

 

 

VOUTG*

WR

LOGIC

REGISTER

 

 

 

MODE A0

A1 A2**

DB9 DB2

DB1 DB0

CLR LDAC

 

ONLY AD7805 SHOWN FOR CLARITY

*SHOWS ADDITIONAL CHANNELS ON THE AD7809 **PIN ON THE AD7809 ONLY

*Patent pending. Index on Page 26.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1998

AD7804/AD7805/AD7808/AD7809

AD7804/AD7805–SPECIFICATIONS (AVDD and DVDD = 3.3 V 6 10% to 5 V 6 10%; AGND = DGND = 0 V; Reference = Internal Reference; CL = 100 pF; RL = 2 kV to GND. Sub DAC at Midscale. All specifications TMIN to TMAX unless otherwise noted.)

Parameter

 

B Grade1

 

C Grade1

Units

Comments

STATIC PERFORMANCE

 

 

 

 

 

 

 

 

MAIN DAC

 

 

 

 

 

 

 

 

Resolution

10

 

10

 

Bits

 

Relative Accuracy

±3

 

±3

 

LSB max

 

Gain Error

±3

 

±3

 

% FSR max

 

Bias Offset Error2

 

–80/+40

 

 

–80/+40

 

mV max

DAC Code = 0.5 Full Scale

Zero-Scale Error3

 

VBIAS

/ +40

 

VBIAS

/ +40

mV max

DAC Code = 000H for Offset Binary

 

16

16

 

 

 

 

 

 

 

Monotonicity

9

 

10

 

Bits

and 200H for Twos Complement Coding

Minimum Load Resistance

2

 

2

 

kΩ min

 

SUB DAC

 

 

 

 

 

 

 

 

Resolution

8

 

8

 

Bits

 

Differential Nonlinearity

±0.125

 

±0.125

 

LSB typ

Refers to an LSB of the Main DAC

 

±0.5

 

±0.5

 

LSB max

 

 

 

 

 

 

 

 

 

 

OUTPUT CHARACTERISTICS

 

VBIAS ± 15/16 × VBIAS

 

VBIAS ± 15/16 × VBIAS

 

 

Output Voltage Range3

 

 

V

Twos Complement Coding

 

 

VBIAS/16 to 31/16 × VBIAS

 

VBIAS/16 to 31/16 × VBIAS

V

Offset Binary Coding

Voltage Output Settling Time to 10 Bits

4

 

4

 

µs max

Typically 1.5 µs

Slew Rate

2.5

 

2.5

 

V/µs typ

 

Digital-to-Analog Glitch Impulse

1

 

1

 

nV-s typ

1 LSB Change Around the Major Carry

Digital Feedthrough

0.5

 

0.5

 

nV-s typ

 

Digital Crosstalk

0.5

 

0.5

 

nV-s typ

 

Analog Crosstalk

±0.2

 

±0.2

 

LSB typ

 

DC Output Impedance

2

 

2

 

Ω typ

VDD ± 10%

Power Supply Rejection Ratio

0.002

 

0.002

 

%/% typ

DAC REFERENCE INPUTS

 

 

 

 

 

 

 

 

REF IN Range

 

1.0 to VDD/2

 

1.0 to VDD/2

V min to V max

 

REF IN Input Leakage

±1

 

±1

 

µA max

Typically ±1 nA

DIGITAL INPUTS

 

 

 

 

 

 

 

 

Input High Voltage, VIH @ VDD = 5 V

2.4

 

2.4

 

V min

 

Input High Voltage, VIH @ VDD = 3.3 V

2.1

 

2.1

 

V min

 

Input Low Voltage, VIL @ VDD = 5 V

0.8

 

0.8

 

V max

 

Input Low Voltage, VIL @ VDD = 3.3 V

0.6

 

0.6

 

V max

 

Input Leakage Current

±10

 

 

µA max

 

 

 

Input Capacitance

10

 

10

 

pF max

 

Input Coding

 

Twos Comp/Binary

 

Twos Comp/Binary

 

 

REFERENCE OUTPUT

 

 

 

 

 

 

 

 

REF OUT Output Voltage

1.23

 

1.23

 

V nom

 

REF OUT Error

±8

 

±8

 

% max

 

REF OUT Temperature Coefficient

 

–100

 

 

–100

 

ppm/°C typ

 

REF OUT Output Impedance

5

 

5

 

kΩ nom

 

POWER REQUIREMENTS

 

 

 

 

 

 

 

 

VDD (AVDD and DVDD)

3/5.5

 

3/5.5

 

V min to V max

 

IDD (AIDD Plus DIDD)

 

 

 

 

 

 

 

Excluding Load Currents

Normal Mode

12

 

12

 

mA max

VIH = VDD, VIL = DGND

System Standby (SSTBY) Mode

250

 

250

 

µA

VIH = VDD, VIL = DGND

Power-Down (PD) Mode

 

 

 

 

 

 

 

 

@ +25°C

0.8

 

0.8

 

µA max

VIH = VDD, VIL = DGND

TMIN–TMAX

1.5

 

1.5

 

µA max

 

Power Dissipation

 

 

 

 

 

 

 

Excluding Power Dissipated in Load

Normal Mode

66

 

66

 

mW max

 

System Standby (SSTBY) Mode

1.38

 

1.38

 

mW max

 

Power-Down (PD) Mode

 

 

 

 

 

 

 

 

@ +25°C

4.4

 

4.4

 

µW max

 

TMIN–TMAX

8.25

 

8.25

 

µW max

 

NOTES

1Temperature range is – 40°C to +85°C. 2Can be minimized using the Sub DAC.

3VBIAS is the center of the output voltage swing and can be VDD/2, Internal Reference or REFIN as determined by MX1 and MX0 in the channel control register. Specifications subject to change without notice.

–2–

REV. A

AD7804/AD7805/AD7808/AD7809

AD7808/AD7809–SPECIFICATIONS (AVDD and DVDD = 3.3 V 6 10% to 5 V 6 10%; AGND = DGND = 0 V; Reference = Internal Reference; CL = 100 pF; RL = 2 kV to GND. Sub DAC at Midscale. All specifications TMIN to TMAX unless otherwise noted.)

Parameter

B Grade1

Units

Comments

STATIC PERFORMANCE

 

 

 

MAIN DAC

 

 

 

Resolution

10

Bits

 

Relative Accuracy

±4

LSB max

 

Gain Error

±3

% FSR max

 

Bias Offset Error2

±60

mV max

DAC Code = 0.5 Full Scale

Zero-Scale Error

±35

mV max

DAC Code = 000H for Offset Binary

Monotonicity

9

Bits

and 200H for Twos Complement

Minimum Load Resistance

2

kΩ min

Coding

SUB DAC

 

 

 

Resolution

8

Bits

 

Differential Nonlinearity

±0.125

LSB typ

Refers to an LSB of the Main DAC

 

±0.5

LSB max

 

OUTPUT CHARACTERISTICS

VBIAS ± 15/16 × VBIAS

 

 

Output Voltage Range3

V

Twos Complement Coding

 

VBIAS/16 to 31/16 × VBIAS

V

Offset Binary Coding

Voltage Output Settling Time to 10 Bits

4

µs max

Typically 1.5 µs

Slew Rate

2.5

V/µs typ

 

Digital-to-Analog Glitch Impulse

1

nV-s typ

1 LSB Change Around the Major Carry

Digital Feedthrough

0.5

nV-s typ

 

Digital Crosstalk

0.5

nV-s typ

 

Analog Crosstalk

±0.2

LSB typ

 

DC Output Impedance

2

Ω typ

VDD ± 10%

Power Supply Rejection Ratio

0.002

%/% typ

DAC REFERENCE INPUTS

 

 

 

REF IN Range

1.0 to VDD/2

V min to V max

 

REF IN Input Leakage

±1

µA max

Typically ±1 nA

DIGITAL INPUTS

 

 

 

Input High Voltage, VIH @ VDD = 5 V

2.4

V min

 

Input High Voltage, VIH @ VDD = 3.3 V

2.1

V min

 

Input Low Voltage, VIL @ VDD = 5 V

0.8

V max

 

Input Low Voltage, VIL @ VDD = 3.3 V

0.6

V max

 

Input Leakage Current

±10

µA max

 

Input Capacitance

8

pF max

 

Input Coding

Twos Comp/Binary

 

 

REFERENCE OUTPUT

 

 

 

REF OUT Output Voltage

1.23

V nom

 

REF OUT Error

±8

% max

 

REF OUT Temperature Coefficient

–100

ppm/°C typ

 

REF OUT Output Impedance

5

kΩ nom

 

POWER REQUIREMENTS

 

 

 

VDD (AVDD and DVDD)

3/5.5

V min to V max

 

IDD (AIDD Plus DIDD)

 

 

Excluding Load Currents

Normal Mode

18

mA max

VIH = VDD, VIL = DGND

System Standby (SSTBY) Mode

250

µA max

VIH = VDD, VIL = DGND

Power-Down (PD) Mode

 

 

 

@ +25°C

1

µA max

VIH = VDD, VIL = DGND

TMIN–TMAX

3

µA max

 

Power Dissipation

 

 

Excluding Power Dissipated in Load

Normal Mode

99

mW max

 

System Standby (SSTBY) Mode

1.38

mW max

 

Power-Down (PD) Mode

 

 

 

@ +25°C

5.5

µW max

 

TMIN–TMAX

16.5

µW max

 

NOTES

1Temperature range is – 40°C to +85°C. 2Can be minimized using the Sub DAC.

3VBIAS is the center of the output voltage swing and can be VDD/2, Internal Reference or REFIN as determined by MX1 and MX0 in the channel control register. Specifications subject to change without notice.

REV. A

–3–

AD7804/AD7805/AD7808/AD7809

AD7804/AD7808 TIMING CHARACTERISTICS1(VDD = 3.3 V 6 10% to 5 V 6 10%; AGND = DGND = 0 V; Reference =

Internal Reference. All specifications TMIN to TMAX unless otherwise noted.)

 

Limit at TMIN, TMAX

 

 

Parameter

All Versions

Units

Description

 

 

 

 

t1

100

ns min

CLKIN Cycle Time

t2

40

ns min

CLKIN High Time

t3

40

ns min

CLKIN Low Time

t4

30

ns min

FSIN Setup Time

t5

30

ns min

Data Setup Time

t6

5

ns min

Data Hold Time

t6A

6

ns min

LDAC Hold Time

t7

90

ns max

FSIN Hold Time

 

20

ns min

LDAC, CLR Pulsewidth

t8

40

ns min

t9

100

ns min

LDAC Setup Time

NOTES

1Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are specified with tr = tf = 5 ns and timed from a voltage of (VIL + VIH)/2.

Specifications subject to change without notice.

 

 

 

t1

CLKIN(I)

 

 

 

 

 

t2

t3

 

 

 

 

t4

 

t7

FSIN(I)

 

 

 

 

t5

t6

 

 

 

 

SDIN(I)

DB15

 

DB0

 

 

 

t6A

 

 

 

t5

LDAC1

 

 

 

LDAC2

 

 

t9

 

 

t8

CLR

 

 

t8

1TIMING REQUIREMENTS FOR SYNCHRONOUS LDAC UPDATE OR LDAC MAY BE TIED PERMANENTLY LOW IF REQUIRED.

2TIMING REQUIREMENTS FOR ASYNCHRONOUS LDAC UPDATE.

Figure 1. Timing Diagram for AD7804 and AD7808

–4–

REV. A

AD7804/AD7805/AD7808/AD7809

AD7805/AD7809 TIMING CHARACTERISTICS1 (VDD = 3.3 V 6 10% to 5 V 6 10%; AGND = DGND = 0 V; Reference

= Internal Reference. All specifications TMIN to TMAX unless otherwise noted.)

 

Limit at TMIN, TMAX

 

 

Parameter

All Versions

Unit

Description

 

 

 

 

t1

25

ns min

Mode Valid to Write Setup Time

t2

4.5

ns min

Mode Valid to Write Hold Time

t3

25

ns min

Address Valid to Write Setup Time

t4

4.5

ns min

Address Valid to Write Hold Time

t5

25

ns min

Data Setup Time

t6

4.5

ns min

Data Hold Time

t6A

6

ns min

LDAC Valid to Write Hold Time

t7

40

ns min

Chip Select to Write Setup Time

t8

0

ns min

Chip Select to Write Hold Time

t9

40

ns min

Write Pulsewidth

t10

100

ns min

Time Between Successive Writes

t11

40

ns min

LDAC, CLR Pulsewidth

t12

100

ns min

Write to LDAC Setup Time

NOTE

1Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are specified with tr = tf = 5 ns and timed from a voltage of (VIL + VIH)/2.

Specifications subject to change without notice.

t1

t2

MODE

t4

t3

A0, A1, A2

t8 t7

CS

t10

t9

WR

t6

t5

DATA

t6A

LDAC 1

t12t11

LDAC 2

t11

CLR

1TIMING REQUIREMENTS FOR SYNCHRONOUS LDAC UPDATE OR LDAC MAY BE TIED PERMANENTLY LOW IF REQUIRED.

2TIMING REQUIREMENTS FOR ASYNCHRONOUS LDAC UPDATE.

Figure 2. Timing Diagram for AD7805/AD7809 Parallel Write

REV. A

–5–

AD7804/AD7805/AD7808/AD7809

ABSOLUTE MAXIMUM RATINGS1

(TA = +25°C unless otherwise noted)

DVDD to DGND . . . . . . . . . . . .

. . . . . . . . . .

. . –0.3 V to +7 V

AVDD to AGND . . . . . . . . . . . .

. . . . . . . . . .

. . –0.3 V to +7 V

AGND to DGND . . . . . . . . . . .

. . . . . . . . . .

. . –0.3 V + 0.3 V

Digital Input Voltage to DGND

. . . . . –0.3 V to DVDD + 0.3 V

Analog Input Voltage to AGND

. . . . . –0.3 V to AVDD + 0.3 V

COMP to AGND . . . . . . . . . . .

. . . . –0.3 V to AVDD + 0.3 V

REF OUT to AGND . . . . . . . . . .

. . . . . . . .

–0.3 V to + AVDD

REF IN to AGND . . . . . . . . . . . .

. . . –0.3 V to AVDD + 0.3 V

VOUT to AGND2 . . . . . . . . . . . . .

. . . –0.3 V to AVDD + 0.3 V

Input Current to Any Pin Except Supplies3 .

. . . . . . . ± 10 mA

Operating Temperature Range

 

 

AD7804/AD7805 Commercial Plastic

–40°C to +85°C

(B, C Versions) . . . . . . . . . . .

. . . . . . . . .

AD7808/AD7809 Commercial Plastic

–40°C to +85°C

(B, C Versions) . . . . . . . . . . .

. . . . . . . . .

Storage Temperature Range . . . .

. . . . . . . .

–65°C to +150°C

Junction Temperature . . . . . . . . .

. . . . . . . . .

. . . . . . . +150°C

SOIC (R-16) Package, Power Dissipation . . .

. . . . . . 450 mW

θJA Thermal Impedance . . . . . .

. . . . . . . . .

. . . . . . . 75°C/W

Lead Temperature, Soldering

 

+215°C

Vapor Phase (60 sec) . . . . . .

. . . . . . . . .

Infrared (15 sec) . . . . . . . . . .

. . . . . . . . .

. . . . . . . +220°C

PDIP (N-16) Package, Power Dissipation . . .

. . . . . . 670 mW

θJA Thermal Impedance . . . . . .

. . . . . . . . .

. . . . . . 116°C/W

Lead Temperature, Soldering (10 sec) . . . .

. . . . . . . +260°C

SOIC (R-24) Package, Power Dissipation . . .

. . . . . . 450 mW

θJA Thermal Impedance . . . . . .

. . . . . . . . .

. . . . . . . 75°C/W

Lead Temperature, Soldering

 

+215°C

Vapor Phase (60 sec) . . . . . .

. . . . . . . . .

Infrared (15 sec) . . . . . . . . . .

. . . . . . . . .

. . . . . . . +220°C

PDIP (N-24) Package, Power Dissipation . . . . . . . . . 670 mW

θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 105°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C

SOIC (R-28) Package, Power Dissipation . . . . . . . . . 875 mW

θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 70°C/W Lead Temperature, Soldering

Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C PDIP (N-28) Package, Power Dissipation . . . . . . . . . 875 mW

θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C

SSOP (RS-28) Package, Power Dissipation . . . . . . . . 875 mW

θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 110°C/W Lead Temperature, Soldering

Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C TQFP (ST-44B) Package, Power Dissipation . . . . . . 450 mW

θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 116°C/W Lead Temperature, Soldering

Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2The outputs may be shorted to voltages in this range provided the power dissipation of the package is not exceeded.

3Transient currents of up to 100 mA will not cause SCR latch-up.

ORDERING GUIDE

 

Supply

Temperature

Relative

 

Package

Model

Voltage

Range

Accuracy

Package Descriptions

Options

AD7804BN

3.3 V to 5 V

–40°C to +85°C

± 3 LSB

16-Lead Plastic DIP

N-16

AD7804BR

3.3 V to 5 V

–40°C to +85°C

± 3 LSB

16-Lead Small Outline IC

R-16

AD7805BN

3.3 V to 5 V

–40°C to +85°C

± 3 LSB

28-Lead Plastic DIP

N-28

AD7805BR

3.3 V to 5 V

–40°C to +85°C

± 3 LSB

28 Lead Small Outline IC

R-28

AD7805BRS

3.3 V to 5 V

–40°C to +85°C

± 3 LSB

28-Lead Shrink Small Outline Package

RS-28

AD7805CR

3.3 V to 5 V

–40°C to +85°C

± 3 LSB

28-Lead Small Outline IC

R-28

AD7808BN

3.3 V to 5 V

–40°C to +85°C

± 4 LSB

24-Lead Plastic DIP

N-24

AD7808BR

3.3 V to 5 V

–40°C to +85°C

± 4 LSB

24 Lead Small Outline IC

R-24

AD7809BST

3.3 V to 5 V

–40°C to +85°C

± 4 LSB

44-Lead Thin Plastic Quad Flatpack (TQFP)

ST-44B

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–6–

REV. A

 

 

 

 

AD7804/AD7805/AD7808/AD7809

 

 

 

 

 

 

 

 

AD7804/AD7808 PIN FUNCTION DESCRIPTION

 

 

 

 

 

AD7804

AD7808

 

 

 

Pin No.

Pin No.

Mnemonic

 

Description

 

 

 

 

 

1

1, 6

AGND

 

Ground reference point for analog circuitry.

2, 3

2, 3

VOUTB, VOUTA

 

Analog output voltage from the DACs.

4

4

REFOUT

 

Reference Output. This is a bandgap reference and is typically 1.23 V.

 

5

PD

 

Active low input used to put the part into low power mode reducing current consumption

 

 

 

 

to 1 A.

 

7, 8

VOUTF, VOUTE

 

Analog output voltages from the DACs.

5

9

FSIN

 

Level-triggered control input (active low). This is the frame synchronization signal for the

 

 

 

 

input data. When FSIN goes low, it enables the input shift register and data is transferred

 

 

 

 

on the falling edges of CLKIN.

6

10

LDAC

 

LDAC Input. When this digital input is taken low, all DAC registers are simultaneously

 

 

 

 

updated with the contents of the data registers. If LDAC is tied permanently low, or is

 

 

 

 

low on the sixteenth falling clock edge with timing similar to that of SDIN, an automatic

 

 

 

 

update will take place.

7

11

SDIN

 

Serial Data Input. These devices accept a 16-bit word. Data is clocked into the input shift

 

 

 

 

register on the falling edge of CLKIN.

8

12

DGND

 

Ground reference point for digital circuitry.

9

13

DVDD

 

Digital Power Supply.

10

14

CLKIN

 

Clock Input. Data is clocked into the input shift register on the falling edges of CLKIN.

 

 

 

 

Duty Cycle should be between 40% and 60%.

11

15

CLR

 

Asynchronous CLR Input. When this input is taken low, all Main DAC outputs are

 

 

 

 

cleared either to VBIAS or to VBIAS/16 volts. All Sub DACs are also cleared and thus the

 

 

 

 

transfer function of the Main DAC will remain centered around the VBIAS point.

 

16

NC

 

No Connect. This pin should be left open circuit.

 

17, 18

VOUTH, VOUTG

 

Analog output voltages from the DACs.

12

20

REFIN

 

This is an external reference input for the DACs. When this reference is selected for a

 

 

 

 

DAC in the control register, the analog output from the selected DAC swings around this

 

 

 

 

point.

13

21

COMP

 

Compensation Pin. This pin provides an output from the internal VDD/2 divider and is

 

 

 

 

provided for ac bypass purposes only. This pin should be decoupled with 1 nF capacitors

 

 

 

 

to both AVDD and AGND. This pin can be overdriven with an external reference, thus

 

 

 

 

giving the facility for two external references on the part.

14, 15

22, 23

VOUTD, VOUTC

 

Analog output voltage from the DACs.

16

19, 24

AVDD

 

Analog Power Supply. +3.3 V to +5 V.

AD7804 PIN CONFIGURATION

AD7808 PIN CONFIGURATION

 

 

 

 

 

 

 

AGND

 

 

 

 

 

AVDD

AGND

1

 

 

 

16

AVDD

1

 

 

 

24

 

 

 

 

 

 

 

 

 

VOUT C

VOUT B

 

 

 

 

 

VOUT C

VOUT B

2

 

 

 

23

2

 

 

 

15

VOUT A

 

 

 

 

 

VOUT D

 

 

 

3

 

 

 

22

VOUT A

 

 

 

 

 

VOUT D

 

 

 

3

AD7804

14

REFOUT

4

 

 

 

21

COMP

REFOUT

 

 

COMP

 

 

 

4

13

PD

5

 

 

 

20

REFIN

 

 

TOP VIEW

 

REFIN

AD7808

FSIN

5

(Not to Scale)

12

AGND

6

TOP VIEW

19

AVDD

LDAC

 

 

 

 

 

CLR

6

 

 

 

11

V F

7

(Not to Scale)

18

V

G

SDIN

 

 

 

 

 

CLKIN

OUT

 

 

 

 

 

OUT

 

7

 

 

 

10

VOUT E

8

 

 

 

17

VOUT H

DGND

 

 

 

 

 

DVDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

9

FSIN

9

 

 

 

16

NC

 

 

 

 

 

 

 

 

LDAC

 

 

 

 

 

CLR

 

 

 

 

 

 

 

 

10

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDIN

 

 

 

 

 

CLKIN

 

 

 

 

 

 

 

11

 

 

 

14

 

 

 

 

 

 

 

DGND

 

 

 

 

 

DVDD

 

 

 

 

 

 

 

12

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC = NO CONNECT

 

 

REV. A

–7–

AD7804/AD7805/AD7808/AD7809

 

 

AD7805/AD7809 PIN FUNCTION DESCRIPTIONS

AD7805

AD7809

 

 

Pin No.

Pin No.

Mnemonic

Description

 

1, 11, 13,

NC

No Connect. These pins should be left open circuit.

 

20, 33

 

 

1

2, 5, 39, 40

AGND

Ground reference point for analog circuitry.

2, 3

41, 42

VOUTB, VOUTA

Analog output voltages from the DACs.

4

43

REFOUT

Reference Output. This is a bandgap reference and is typically 1.23 V.

5–10,

3, 4, 6, 7, 9,

DB9–DB2

Data Inputs. DB9 to DB2 are the 8 MSBs of the data word.

12, 13

10, 15, 23

 

 

19, 20

24, 26

DB1, DB0

DB1 and DB0 function as the 2 LSBs of the 10-bit word in 10-bit parallel mode but

 

 

 

have other functions when BYTE loading structure is used.

 

8, 12

VOUTF, VOUTE

Analog output voltages from the DACs.

11

14

LDAC

LDAC Input. When this digital input is taken low, all DAC registers are simultaneously

 

 

 

updated with the contents of the DAC data registers. If LDAC is permanently tied low, or is

 

 

 

low during the rising edge of WR similar to data inputs, an automatic update will take place.

14

16

DGND

Ground reference point for digital circuitry.

15

17

DVDD

Digital Power Supply.

16

18

WR

Write Input WR is an active low logic input which is used in conjunction with CS and

 

 

 

the address pins to write data to the relevant registers.

17

21

CS

Chip Select. Active low logic input.

18

19

CLR

Asynchronous CLR Input. When this input is taken low, all Main DAC outputs are

 

 

 

cleared either to VBIAS or to VBIAS/16 volts. All Sub DACs are also cleared and thus the

 

22, 25

VOUTH, VOUTG

transfer function of the MAIN DAC will remain centered around the VBIAS point.

 

Analog output voltages from the DACs.

21, 22

27, 29, 30

A2, A1, A0

DAC Address Inputs. These digital inputs are used in conjunction with CS and WR to

 

 

 

determine which DAC channel control register or DAC data register is loaded from the

 

 

 

input register. These address bits are don’t cares when writing to the system control register.

23

31

MODE

Logic Input. Logic high enables writing to the DAC data registers, a logic low enables

 

 

 

writing to the control registers.

24

32

REFIN

This is an external reference input for the DAC. When this reference is selected for the DAC

 

 

 

in the control register, the analog output from the selected DAC swings around this point.

25

34

COMP

Compensation Pin. This pin provides an output from the internal VDD/2 divider and is

 

 

 

provided for ac bypass purposes only. This pin should be decoupled with 1 nF capacitors

 

 

 

to both AVDD and AGND. This pin can be overdriven with an external reference, thus

 

 

 

giving the facility for two external references on the part.

26, 27

35, 36

VOUTD, VOUTC

Analog output voltages from the DACs.

28

28, 37, 38

AVDD

Analog Power Supply.

 

44

PD

Active low input used to put the part into low power mode reducing current consump-

 

 

 

tion to 1 A.

AD7805 PIN CONFIGURATION

AGND

 

 

 

 

 

AVDD

1

 

 

 

28

VOUT B

 

 

 

 

 

VOUT C

2

 

 

 

27

VOUT A

 

 

 

 

 

VOUT D

3

 

 

 

26

REFOUT

 

 

 

 

 

COMP

4

 

 

 

25

DB9

 

 

 

 

 

REFIN

5

 

 

 

24

DB8

 

 

 

 

 

MODE

6

AD7805

23

DB7

 

 

A0

7

TOP VIEW

22

DB6

 

(Not to Scale)

 

A1

8

21

DB5

 

 

 

 

 

DB0

9

 

 

 

20

 

 

 

 

 

 

DB1

DB4

10

 

 

 

19

 

 

 

 

 

 

CLR

LDAC

11

 

 

 

18

 

 

 

 

 

 

 

DB3

12

 

 

 

17

CS

 

 

 

 

 

 

 

DB2

13

 

 

 

16

WR

 

 

 

 

 

 

 

DGND

14

 

 

 

15

DVDD

 

 

 

 

 

 

 

AD7809 PIN CONFIGURATION

 

 

PD

REFOUT

V

V

AGND

AGND

AV

AV

V

V

COMP

 

 

 

 

 

A

B

 

 

DD

DD

C

D

 

 

 

 

 

 

OUT

OUT

 

 

OUT

OUT

 

 

 

 

44

43

42

41

40

39

38

37

36

35

34

 

NC

1

PIN 1

 

 

 

 

 

 

 

 

33

NC

AGND

2

 

 

 

 

 

 

 

 

32

REFIN

IDENTIFIER

 

 

 

 

 

 

DB9

3

 

 

 

 

 

 

 

 

 

 

31

MODE

DB8

4

 

 

 

 

 

 

 

 

 

 

30

A0

AGND

5

 

 

 

 

AD7809

 

 

 

29

A1

DB7

6

 

 

 

 

 

 

 

28

AVDD

 

 

 

TOP VIEW

 

 

 

DB6

7

 

 

 

(Not to Scale)

 

 

27

A2

VOUTF

8

 

 

 

 

 

 

 

 

 

 

26

DB0

DB5

9

 

 

 

 

 

 

 

 

 

 

25

VOUTG

DB4 10

 

 

 

 

 

 

 

 

 

 

24

DB1

NC 11

 

 

 

 

 

 

 

 

 

 

23

DB2

 

 

12

13

14

15

16

17

18

19

20

21

22

 

 

 

V

NC

LDAC

DB3

DGND

DV

WR

CLR

NC

CS

V

 

NC = NO CONNECT

E

 

 

 

 

DD

 

 

 

 

H

 

OUT

 

 

 

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

 

–8–

REV. A

AD7804/AD7805/AD7808/AD7809

TERMINOLOGY

Relative Accuracy

For the DACs, relative accuracy or endpoint nonlinearity is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the DAC transfer function. Figures 32 and 33 show the linearity at 3 V and 5 V respectively.

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ±1 LSB maximum ensures monotonicity.

Bias Offset Error

If the DACs are ideal, the output voltage of any DAC with

midscale code loaded will be equal to VBIAS where VBIAS is selected by MX1 and MX0 in the control register. The DAC bias

offset error is the difference between the actual output voltage and VBIAS, expressed in mV.

Gain Error

The difference between the actual and ideal analog output range, expressed as a percent of full-scale range. It is the deviation in slope of the DAC transfer characteristic from ideal.

Zero-Scale Error

The zero-scale error is the actual output minus the ideal output from any DAC when zero code is loaded to the DAC. If offset binary coding is used, the code loaded is 000Hex, and if twos complement coding is used, a code of 200HEX is loaded to the DAC to calculate the zero-scale error. Zero-scale error is expressed in mV.

Digital-to-Analog Glitch Impulse

Digital-to-analog glitch impulse is the impulse injected into the

analog output when the digital inputs change state with the DAC selected and the LDAC used to update the DAC. It is

normally specified as the area of the glitch in nV-s and is measured when the digital input code is changed by 1 LSB at the major carry transition. Regardless of whether offset binary or twos complement coding is used, the major carry transition occurs at

the analog output voltage change of VBIAS to VBIAS – 1 LSB or vice versa.

Digital Feedthrough

Digital feedthrough is a measure of the impulse injected into the analog output of a DAC from the digital inputs of the same DAC but is measured when the DAC is not updated. It is specified in nV secs and is measured with a full-scale code change on the data bus, i.e., from all 0s to all 1s and vice versa.

Digital Crosstalk

Digital crosstalk is the glitch impulse transferred to the output of one converter due to a digital code change to another DAC. It is specified in nV-s.

Analog Crosstalk

Analog crosstalk is a change in output of any DAC in response to a change in the output of one or more of the other DACs. It is measured in LSBs.

Power Supply Rejection Ratio (PSRR)

This specification indicates how the output of the DAC is affected by changes in the power supply voltage. Power-supply rejection ratio is quoted in terms of % change in output per % change in VDD for full-scale output of the DAC. VDD is varied

±10%.

AD7804/AD7808 INTERFACE SECTION

The AD7804 and AD7808 are serial input devices. Three lines control the serial interface, FSIN, CLKIN and SDIN. The timing diagram is shown in Figure 1.

Two mode bits (MD1 and MD0) which are DB13 and DB14 of the serial word written to the AD7804/AD7808 are used to determine whether writing is to the DAC data registers or the control registers of the device. These parts contain a system control register for controlling the operation of all DACs in the package as well as a channel control register for controlling the operation of each individual DAC. Table I shows how to access these registers.

Table I. Register Selection Table for the AD7804/AD7808

MD1

MD0

Function

 

 

 

0

0

Write enable to system control register.

0

1

Write enable to channel control register.

1

X

Write enable to DAC data registers.

 

 

 

When the FSIN input goes low, data appearing on the SDIN line is clocked into the input register on each falling edge of CLKIN. Data to be transferred to the AD7804/AD7808 is loaded MSB first. Figure 4 shows the loading sequence for the AD7804/AD7808 system control register, Figure 5 shows the

sequence for the channel control register write, and Figures 6 and 7 show the sequence for loading data to the Main and Sub DAC data registers. Figure 3 shows the internal registers associated with the AD7804/AD7808 serial interface DACs. Only one DAC structure is shown for clarity.

16-BIT

FSIN

INPUT SHIFT REGISTER

CLKIN

SDIN

 

DECODER

 

 

SYSTEM

 

 

 

CONTROL

 

 

 

REGISTER

 

 

 

 

CHANNEL

DATA REGISTER

DATA REGISTER

TO ALL

CONTROL

 

 

CHANNELS

REGISTER

10

8

SINGLE

 

DAC REGISTER

DAC REGISTER

 

 

 

CHANNEL

 

10

8

 

 

VOUT

 

10-BIT DAC

8-BIT DAC

 

(MAIN DAC)

(SUB DAC)

INTERNAL VREF

VBIAS

 

 

VDD/2

MUX

 

 

REFIN

 

 

 

Figure 3. AD7804/AD7808 Internal Registers

REV. A

–9–

Loading...
+ 19 hidden pages