Analog Devices AD9200SSOP, AD9200LQFP, AD9200KSTRL, AD9200KST, AD9200JSTRL Datasheet

...
0 (0)

a

Complete 10-Bit, 20 MSPS, 80 mW

CMOS A/D Converter

 

 

 

AD9200

 

 

FEATURES

CMOS 10-Bit, 20 MSPS Sampling A/D Converter Pin-Compatible with AD876

Power Dissipation: 80 mW (3 V Supply) Operation Between 2.7 V and 5.5 V Supply Differential Nonlinearity: 0.5 LSB Power-Down (Sleep) Mode

Three-State Outputs Out-of-Range Indicator

Built-In Clamp Function (DC Restore) Adjustable On-Chip Voltage Reference IF Undersampling to 135 MHz

A single clock input is used to control all internal conversion cycles. The digital output data is presented in straight binary output format. An out-of-range signal (OTR) indicates an overflow condition which can be used with the most significant bit to determine low or high overflow.

The AD9200 can operate with supply range from 2.7 V to 5.5 V, ideally suiting it for low power operation in high speed portable applications.

The AD9200 is specified over the industrial (–40°C to +85°C) and commercial (0°C to +70°C) temperature ranges.

PRODUCT HIGHLIGHTS

PRODUCT DESCRIPTION

The AD9200 is a monolithic, single supply, 10-bit, 20 MSPS analog-to-digital converter with an on-chip sample-and-hold amplifier and voltage reference. The AD9200 uses a multistage differential pipeline architecture at 20 MSPS data rates and guarantees no missing codes over the full operating temperature range.

The input of the AD9200 has been designed to ease the development of both imaging and communications systems. The user can select a variety of input ranges and offsets and can drive the input either single-ended or differentially.

The sample-and-hold (SHA) amplifier is equally suited for both multiplexed systems that switch full-scale voltage levels in successive channels and sampling single-channel inputs at frequencies up to and beyond the Nyquist rate. AC coupled input signals can be shifted to a predetermined level, with an onboard clamp circuit (AD9200ARS, AD9200KST). The dynamic performance is excellent.

The AD9200 has an onboard programmable reference. An external reference can also be chosen to suit the dc accuracy and temperature drift requirements of the application.

Low Power

The AD9200 consumes 80 mW on a 3 V supply (excluding the reference power). In sleep mode, power is reduced to below

5 mW.

Very Small Package

The AD9200 is available in both a 28-lead SSOP and 48-lead LQFP packages.

Pin Compatible with AD876

The AD9200 is pin compatible with the AD876, allowing older designs to migrate to lower supply voltages.

300 MHz On-Board Sample-and-Hold

The versatile SHA input can be configured for either singleended or differential inputs.

Out-of-Range Indicator

The OTR output bit indicates when the input signal is beyond the AD9200’s input range.

Built-In Clamp Function

Allows dc restoration of video signals with AD9200ARS and AD9200KST.

FUNCTIONAL BLOCK DIAGRAM

 

CLAMP

CLK

AVDD

DRVDD

CLAMP

IN

 

 

 

 

 

 

 

 

 

 

 

STBY

SHA

SHA

GAIN

SHA

GAIN

SHA

GAIN

SHA

 

GAIN

MODE

AIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A/D

 

 

 

 

 

 

 

 

 

 

 

REFTS

 

 

 

 

 

 

 

 

 

 

THREE-

REFBS

A/D

D/A

A/D

D/A

 

A/D

D/A

A/D

D/A

 

 

 

 

 

 

 

 

 

 

 

STATE

 

 

 

 

 

 

 

 

 

 

 

REFTF

 

 

 

 

CORRECTION LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

REFBF

 

 

 

 

 

 

 

 

 

 

 

VREF

 

 

 

 

OUTPUT BUFFERS

 

 

 

OTR

1V

 

AD9200

 

 

 

 

 

 

D9

REFSENSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

 

 

 

D0

 

 

 

 

 

 

 

 

 

 

 

(LSB)

AVSS

DRVSS

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1999

AD9200–SPECIFICATIONS

(AVDD = +3 V, DRVDD = +3 V, FS = 20 MHz (50% Duty Cycle), MODE = AVDD, 2 V Input

Span from 0.5 V to 2.5 V, External Reference, TMIN to TMAX unless otherwise noted)

 

Parameter

Symbol

 

Min

Typ

Max

Units

Condition

 

 

 

 

 

 

 

 

 

RESOLUTION

 

 

 

10

 

Bits

 

 

 

 

 

 

 

 

 

 

 

CONVERSION RATE

FS

 

 

 

20

MHz

 

 

 

 

 

 

 

 

 

 

 

DC ACCURACY

 

 

 

±0.5

±1

 

 

 

Differential Nonlinearity

DNL

 

 

LSB

REFTS = 2.5 V, REFBS = 0.5 V

Integral Nonlinearity

INL

 

 

±0.75

±2

LSB

 

 

Offset Error

EZS

 

 

0.4

1.2

% FSR

 

 

Gain Error

EFS

 

 

1.4

3.5

% FSR

 

 

REFERENCE VOLTAGES

 

 

 

 

 

 

 

 

Top Reference Voltage

REFTS

 

1

 

AVDD

V

 

 

Bottom Reference Voltage

REFBS

 

GND

 

AVDD – 1

V

 

 

Differential Reference Voltage

 

 

 

2

 

V p-p

 

 

Reference Input Resistance1

 

 

 

10

 

kΩ

REFTS, REFBS: MODE = AVDD

 

 

 

 

4.2

 

kΩ

Between REFTF and REFBF: MODE = AVSS

 

 

 

 

 

 

 

 

 

ANALOG INPUT

 

 

 

 

 

 

 

 

Input Voltage Range

AIN

 

REFBS

 

REFTS

V

REFBS Min = GND: REFTS Max = AVDD

Input Capacitance

CIN

 

 

1

 

pF

Switched

Aperture Delay

tAP

 

 

4

 

ns

 

 

Aperture Uncertainty (Jitter)

tAJ

 

 

2

 

ps

 

 

Input Bandwidth (–3 dB)

BW

 

 

 

 

 

 

 

Full Power (0 dB)

 

 

 

300

 

MHz

 

 

DC Leakage Current

 

 

 

23

 

µA

Input = ±FS

 

 

 

 

 

 

 

 

 

INTERNAL REFERENCE

 

 

 

 

 

 

 

 

Output Voltage (1 V Mode)

VREF

 

 

1

 

V

REFSENSE = VREF

Output Voltage Tolerance (1 V Mode)

 

 

 

±10

±25

mV

 

 

Output Voltage (2 V Mode)

VREF

 

 

2

 

V

REFSENSE = GND

Load Regulation (1 V Mode)

 

 

 

0.5

2

mV

1 mA Load Current

 

 

 

 

 

 

 

 

 

POWER SUPPLY

 

 

 

 

 

 

 

 

Operating Voltage

AVDD

 

2.7

3

5.5

V

 

 

 

DRVDD

2.7

3

5.5

V

 

 

Supply Current

IAVDD

 

 

26.6

33.3

mA

AVDD = 3 V, MODE = AVSS

Power Consumption

PD

 

 

80

100

mW

AVDD = DRVDD = 3 V, MODE = AVSS

Power-Down

 

 

 

4

 

mW

STBY = AVDD, MODE and CLOCK =

 

 

 

 

 

 

 

AVSS

Gain Error Power Supply Rejection

PSRR

 

 

1

 

% FS

 

 

 

 

 

 

 

 

 

 

 

DYNAMIC PERFORMANCE (AIN = 0.5 dBFS)

 

 

 

 

 

 

 

Signal-to-Noise and Distortion

SINAD

 

 

 

 

 

 

 

f = 3.58 MHz

 

 

54.5

57

 

dB

 

 

f = 10 MHz

 

 

 

54

 

dB

 

 

Effective Bits

 

 

 

 

 

 

 

 

f = 3.58 MHz

 

 

 

9.1

 

Bits

 

 

f = 10 MHz

 

 

 

8.6

 

Bits

 

 

Signal-to-Noise

SNR

 

 

 

 

 

 

 

f = 3.58 MHz

 

 

55

57

 

dB

 

 

f = 10 MHz

 

 

 

56

 

dB

 

 

Total Harmonic Distortion

THD

 

 

 

 

 

 

 

f = 3.58 MHz

 

 

–59

–66

 

dB

 

 

f = 10 MHz

 

 

 

–58

 

dB

 

 

Spurious Free Dynamic Range

SFDR

 

 

 

 

 

 

 

f = 3.58 MHz

 

 

–61

–69

 

dB

 

 

f = 10 MHz

 

 

 

–61

 

dB

 

 

Two-Tone Intermodulation

 

 

 

 

 

 

 

 

Distortion

IMD

 

 

68

 

dB

f = 44.49 MHz and 45.52 MHz

Differential Phase

DP

 

 

0.1

 

Degree

NTSC 40 IRE Mod Ramp

Differential Gain

DG

 

 

0.05

 

%

 

 

 

 

 

 

 

 

 

 

 

–2–

REV. E

AD9200

Parameter

Symbol

Min

Typ

Max

Units

Condition

 

 

 

 

 

 

 

DIGITAL INPUTS

 

 

 

 

 

 

High Input Voltage

VIH

2.4

 

 

V

 

Low Input Voltage

VIL

 

 

0.3

V

 

DIGITAL OUTPUTS

 

 

 

 

µA

 

High-Z Leakage

IOZ

–10

 

+10

Output = GND to VDD

Data Valid Delay

tOD

 

25

 

ns

CL = 20 pF

Data Enable Delay

tDEN

 

25

 

ns

 

Data High-Z Delay

tDHZ

 

13

 

ns

 

LOGIC OUTPUT (with DRVDD = 3 V)

 

 

 

 

 

 

High Level Output Voltage (IOH = 50 µA)

VOH

+2.95

 

 

V

 

High Level Output Voltage (IOH = 0.5 mA)

VOH

+2.80

 

 

V

 

Low Level Output Voltage (IOL = 1.6 mA)

VOL

 

 

+0.4

V

 

Low Level Output Voltage (IOL = 50 µA)

VOL

 

 

+0.05

V

 

LOGIC OUTPUT (with DRVDD = 5 V)

 

 

 

 

 

 

High Level Output Voltage (IOH = 50 µA)

VOH

+4.5

 

 

V

 

High Level Output Voltage (IOH = 0.5 mA)

VOH

+2.4

 

 

V

 

Low Level Output Voltage (IOL = 1.6 mA)

VOL

 

 

+0.4

V

 

Low Level Output Voltage (IOL = 50 µA)

VOL

 

 

+0.1

V

 

CLOCKING

 

 

 

 

 

 

Clock Pulsewidth High

tCH

22.5

 

 

ns

 

Clock Pulsewidth Low

tCL

22.5

 

 

ns

 

Pipeline Latency

 

 

3

 

Cycles

 

 

 

 

 

 

 

 

CLAMP2

 

 

±20

±40

 

CLAMPIN = 0.5 V–2.7 V, RIN = 10 Ω

Clamp Error Voltage

EOC

 

mV

Clamp Pulsewidth

tCPW

 

2

 

µs

CIN = 1 µF (Period = 63.5 µs)

NOTES

1See Figures 1a and 1b.

2Available only in AD9200ARS and AD9200KST.

Specifications subject to change without notice.

 

10kV

REFTS

 

AD9200

REFTS

AD9200

 

 

REFTF

 

10kV

4.2kV

REFBS

REFBF

 

 

0.4 3 VDD

REFBS

 

 

MODE

 

MODE

AVDD

 

Figure 1a. Figure 1b.

REV. E

–3–

AD9200

ABSOLUTE MAXIMUM RATINGS*

 

With

 

 

 

 

Respect

 

 

 

Parameter

to

Min

Max

Units

 

 

 

 

 

AVDD

AVSS

–0.3

+6.5

V

DRVDD

DRVSS

–0.3

+6.5

V

AVSS

DRVSS

–0.3

+0.3

V

AVDD

DRVDD

–6.5

+6.5

V

MODE

AVSS

–0.3

AVDD + 0.3

V

CLK

AVSS

–0.3

AVDD + 0.3

V

Digital Outputs

DRVSS

–0.3

DRVDD + 0.3

V

AIN

AVSS

–0.3

AVDD + 0.3

V

VREF

AVSS

–0.3

AVDD + 0.3

V

REFSENSE

AVSS

–0.3

AVDD + 0.3

V

REFTF, REFTB

AVSS

–0.3

AVDD + 0.3

V

REFTS, REFBS

AVSS

–0.3

AVDD + 0.3

V

Junction Temperature

 

+150

°C

Storage Temperature

–65

+150

°C

Lead Temperature

 

 

 

°C

10 sec

 

 

+300

 

 

 

 

 

AVDD

DRVDD

AVDD

DRVSS

AVSS

DRVSS

AVSS

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

ORDERING GUIDE

 

Temperature

Package

Package

Model

Range

Description

Options*

 

 

 

 

AD9200JRS

0°C to +70°C

28-Lead SSOP

RS-28

AD9200ARS

–40°C to +85°C

28-Lead SSOP

RS-28

AD9200JST

0°C to +70°C

48-Lead LQFP

ST-48

AD9200KST

0°C to +70°C

48-Lead LQFP

ST-48

AD9200JRSRL

0°C to +70°C

28-Lead SSOP (Reel)

RS-28

AD9200ARSRL

–40°C to +85°C

28-Lead SSOP (Reel)

RS-28

AD9200JSTRL

0°C to +70°C

48-Lead LQFP (Reel)

ST-48

AD9200KSTRL

0°C to +70°C

48-Lead LQFP (Reel)

ST-48

AD9200 SSOP-EVAL

Evaluation Board

 

AD9200 LQFP-EVAL

Evaluation Board

 

 

 

 

 

*RS = Shrink Small Outline; ST = Thin Quad Flatpack.

AVDD

AVDD

AVDD

 

 

AVSS

AVSS

AVSS

 

a. D0–D9, OTR

b. Three-State, Standby, Clamp

c. CLK

 

AVDD

 

REFBS

AVDD

AVSS

 

 

AVDD

 

REFBF

AVSS

AVSS

AVDD

REFTF

AVSS

AVDD

REFTS

AVSS

d. AIN

e. Reference

AVDD

AVDD

AVDD

AVDD

AVSS

AVSS

AVSS

f. CLAMPIN

g. MODE

h. REFSENSE

 

Figure 2. Equivalent Circuits

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9200 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AVSS

i. VREF

WARNING!

ESD SENSITIVE DEVICE

–4–

REV. E

AD9200

PIN CONFIGURATIONS

28-Lead Shrink Small Outline (SSOP)

48-Lead Plastic Thin Quad Flatpack (LQFP)

 

 

 

 

AVDD

AVSS

1

 

28

DRVDD

 

 

 

AIN

2

 

27

D0

 

 

 

 

3

 

26

VREF

D1

 

 

 

REFBS

4

 

25

D2

 

 

 

REFBF

5

AD9200

24

D3

 

 

 

6

TOP VIEW

23

MODE

D4

 

(Not to Scale)

 

 

7

22

REFTF

 

 

 

 

 

D5

8

 

21

REFTS

D6

 

 

 

 

9

 

20

CLAMPIN

D7

 

 

 

 

10

 

19

CLAMP

 

 

 

 

 

D8

11

 

18

REFSENSE

D9

 

 

 

 

12

 

17

STBY

 

 

 

 

OTR

13

 

16

THREE-STATE

 

 

 

 

DRVSS

14

 

15

CLK

 

 

 

 

 

 

NC

NC

NC

DRVDD

AVSS

NC

AVDD

NC

NC

AIN

VREF

NC

 

 

48

47

46

45

44

43

42

41

40

39

38

37

 

D0

1

PIN 1

 

 

 

 

 

 

 

 

 

36

NC

D1

2

 

 

 

 

 

 

 

 

 

 

 

IDENTIFIER

 

 

 

 

 

 

 

35

REFBS

D2

3

 

 

 

 

 

 

 

 

 

 

34

REFBF

D3

4

 

 

 

 

 

 

 

 

 

 

33

NC

D4

5

 

 

 

AD9200

 

 

 

32

MODE

NC

6

 

 

 

 

 

 

31

NC

 

 

 

TOP VIEW

 

 

 

NC

7

 

 

 

 

 

 

30

REFTF

 

 

 

(Not to Scale)

 

 

 

D5

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

REFTS

D6

9

 

 

 

 

 

 

 

 

 

 

28

CLAMPIN

D7

10

 

 

 

 

 

 

 

 

 

 

27

CLAMP

D8

11

 

 

 

 

 

 

 

 

 

 

26

REFSENSE

D9

12

 

 

 

 

 

 

 

 

 

 

25

NC

NC = NO CONNECT 13

14

15

16

17

18

19

20

21

22

23

24

 

 

NC

NC

NC

OTR

DRVSS

NC

NC

NC

NC

CLK

-STATE

STBY

 

 

 

 

 

 

 

 

 

 

 

 

THREE

 

 

PIN FUNCTION DESCRIPTIONS

SSOP

LQFP

 

 

Pin No.

Pin No.

Name

Description

 

 

 

 

1

44

AVSS

Analog Ground

2

45

DRVDD

Digital Driver Supply

3

1

D0

Bit 0, Least Significant Bit

4

2

D1

Bit 1

5

3

D2

Bit 2

6

4

D3

Bit 3

7

5

D4

Bit 4

8

8

D5

Bit 5

9

9

D6

Bit 6

10

10

D7

Bit 7

11

11

D8

Bit 8

12

12

D9

Bit 9, Most Significant Bit

13

16

OTR

Out-of-Range Indicator

14

17

DRVSS

Digital Ground

15

22

CLK

Clock Input

16

23

THREE-STATE

HI: High Impedance State. LO: Normal Operation

17

24

STBY

HI: Power-Down Mode. LO: Normal Operation

18

26

REFSENSE

Reference Select

19

27

CLAMP

HI: Enable Clamp Mode. LO: No Clamp

20

28

CLAMPIN

Clamp Reference Input

21

29

REFTS

Top Reference

22

30

REFTF

Top Reference Decoupling

23

32

MODE

Mode Select

24

34

REFBF

Bottom Reference Decoupling

25

35

REFBS

Bottom Reference

26

38

VREF

Internal Reference Output

27

39

AIN

Analog Input

28

42

AVDD

Analog Supply

 

 

 

 

REV. E

–5–

AD9200

DEFINITIONS OF SPECIFICATIONS Integral Nonlinearity (INL)

Integral nonlinearity refers to the deviation of each individual code from a line drawn from “zero” through “full scale”. The point used as “zero” occurs 1/2 LSB before the first code transition. “Full scale” is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line.

Differential Nonlinearity (DNL, No Missing Codes)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. It is often specified in terms of the resolution for which no missing codes (NMC) are guaranteed.

Offset Error

The first transition should occur at a level 1 LSB above “zero.” Offset is defined as the deviation of the actual first code transition from that point.

Gain Error

The first code transition should occur for an analog value 1 LSB above nominal negative full scale. The last transition should occur for an analog value 1 LSB below the nominal positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between the first and last code transitions.

Pipeline Delay (Latency)

The number of clock cycles between conversion initiation and the associated output data being made available. New output data is provided every rising edge.

(AVDD = +3 V, DRVDD = +3 V, FS = 20 MHz (50% Duty Cycle), MODE = AVDD, 2 V Input Typical Characterization Curves Span from 0.5 V to 2.5 V, External Reference, unless otherwise noted)

 

1.0

 

 

 

 

 

 

 

 

 

60

 

–0.5 AMPLITUDE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55

 

–6.0 AMPLITUDE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

SNR–dB

45

 

 

 

DNL

0

 

 

 

 

 

 

 

 

40

 

–20.0 AMPLITUDE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

 

 

–0.5

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

–1.0

 

 

 

 

 

 

 

 

 

20

 

 

 

128

256

384

512

640

768

896

1024

 

1.00E+05

1.00E+06

1.00E+07

1.00E+08

 

0

 

 

 

 

 

CODE OFFSET

 

 

 

 

 

INPUT FREQUENCY – Hz

 

Figure 3. Typical DNL

Figure 5. SNR vs. Input Frequency

1.0

0.5

INL

0

 

–0.5

–1.0

0

128

256

384

512

640

768

896

1024

CODE OFFSET

 

60

 

55

 

50

– dB

45

40

SINAD

35

 

30

 

25

20

1.00E+05

–0.5 AMPLITUDE

–6.0 AMPLITUDE

–20.0 AMPLITUDE

1.00E+06

1.00E+07

1.00E+08

INPUT FREQUENCY – Hz

 

Figure 4. Typical INL

Figure 6. SINAD vs. Input Frequency

–6–

REV. E

Analog Devices AD9200SSOP, AD9200LQFP, AD9200KSTRL, AD9200KST, AD9200JSTRL Datasheet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD9200

 

–30

 

 

 

 

80.5

 

 

 

 

 

 

 

 

 

 

 

–35

 

CLOCK = 20MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–40

–20.0 AMPLITUDE

 

 

mW–

79.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dB–THD

–45

 

 

 

CONSUMPTION

 

 

 

 

 

 

 

 

 

 

 

–50

 

 

 

79.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–55

–6.0 AMPLITUDE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–60

 

 

 

 

78.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER

 

 

 

 

 

 

 

 

 

 

 

 

–65

 

 

 

78.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–70

–0.5 AMPLITUDE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–75

 

 

 

 

77.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–80

 

 

 

 

77.0

 

 

 

 

 

 

 

 

 

 

 

1.00E+05

1.00E+06

1.00E+07

1.00E+08

 

0

2

4

6

8

10

12

14

16

18

20

 

 

INPUT FREQUENCY – Hz

 

 

 

 

 

CLOCK FREQUENCY – MHz

 

 

 

Figure 7. THD vs. Input Frequency

 

–70

 

 

 

 

–60

 

FIN = 1MHz

 

 

–50

 

 

 

THD – dB

–40

 

 

 

–30

 

 

 

 

–20

 

 

 

 

–10

 

 

 

 

0

 

10E+06

 

 

100E+03

1E+06

100E+06

CLOCK FREQUENCY – Hz

Figure 8. THD vs. Clock Frequency

 

1.005

 

 

 

 

 

 

 

 

1.004

 

 

 

 

 

 

 

 

1.003

 

 

 

 

 

 

 

V

1.002

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REF

1.001

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

1.000

 

 

 

 

 

 

 

 

0.999

 

 

 

 

 

 

 

 

0.998

 

0

20

40

60

80

 

 

–40

–20

100

 

 

 

 

TEMPERATURE – °C

 

 

 

Figure 10. Power Consumption vs. Clock Frequency (MODE = AVSS)

 

1M

 

 

 

 

900k

 

 

 

 

800k

 

 

 

 

700k

 

 

 

 

600k

 

 

 

HITS

500k

 

499856

 

 

 

 

400k

 

 

 

 

 

 

 

 

300k

 

 

 

 

200k

 

 

 

 

100k

54383

 

54160

 

0

N–1

N

N+1

 

 

 

 

 

CODE

 

Figure 11. Grounded Input Histogram

20

0

CLOCK = 20MHz

–20

–40

–60

–80

–100

–120

–140

0E+0 1E+6 2E+6 3E+6 4E+6 5E+6 6E+6 7E+6 8E+6 9E+6 10E+6 SINGLE TONE FREQUENCY DOMAIN

Figure 9. Voltage Reference Error vs. Temperature

Figure 12. Single-Tone Frequency Domain

REV. E

–7–

AD9200

 

0

 

–3

– dB

–6

–9

AMPLITUDE

–12

 

SIGNAL

–15

–18

 

 

–21

–24

–27

1.0E+6

10.0E+6

100.0E+6

1.0E+9

FREQUENCY – Hz

Figure 13. Full Power Bandwidth

 

25

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

10

 

 

 

 

REFBS = 0.5V

 

 

 

 

 

 

 

 

mA

5

 

 

 

 

REFTS = 2.5V

 

0

 

 

 

 

CLOCK = 20MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

I

–5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–10

 

 

 

 

 

 

 

–15

 

 

 

 

 

 

 

–20

 

 

 

 

 

 

 

–25

0.5

1.0

1.5

2.0

2.5

3.0

 

0

INPUT VOLTAGE – V

APPLYING THE AD9200

THEORY OF OPERATION

The AD9200 implements a pipelined multistage architecture to achieve high sample rate with low power. The AD9200 distributes the conversion over several smaller A/D subblocks, refining the conversion with progressively higher accuracy as it passes the results from stage to stage. As a consequence of the distributed conversion, the AD9200 requires a small fraction of the 1023 comparators used in a traditional flash type A/D. A sample-and-hold function within each of the stages permits the first stage to operate on a new input sample while the second, third and fourth stages operate on the three preceding samples.

OPERATIONAL MODES

The AD9200 is designed to allow optimal performance in a wide variety of imaging, communications and instrumentation applications, including pin compatibility with the AD876 A/D. To realize this flexibility, internal switches on the AD9200 are used to reconfigure the circuit into different modes. These modes are selected by appropriate pin strapping. There are three parts of the circuit affected by this modality: the voltage reference, the reference buffer, and the analog input. The nature of the application will determine which mode is appropriate: the descriptions in the following sections, as well as the Table I should assist in picking the desired mode.

Figure 14. Input Bias Current vs. Input Voltage

Table I. Mode Selection

 

Input

Input

MODE

REFSENSE

 

 

 

 

 

Modes

Connect

Span

Pin

Pin

REF

REFTS

 

REFBS

Figure

 

 

 

 

 

 

 

 

 

 

TOP/BOTTOM

AIN

1 V

AVDD

Short REFSENSE, REFTS and VREF Together

 

AGND

18

 

 

 

 

 

 

 

 

 

 

 

AIN

2 V

AVDD

AGND

Short REFTS and VREF Together

 

AGND

19

 

 

 

 

 

 

 

 

 

 

CENTER SPAN

AIN

1 V

AVDD/2

Short VREF and REFSENSE Together

AVDD/2

 

AVDD/2

20

 

 

 

 

 

 

 

 

 

 

 

AIN

2 V

AVDD/2

AGND

No Connect

AVDD/2

 

AVDD/2

 

 

 

 

 

 

 

 

 

 

 

Differential

AIN Is Input 1

1 V

AVDD/2

Short VREF and REFSENSE Together

AVDD/2

 

AVDD/2

29

 

REFTS and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFBS Are

 

 

 

 

 

 

 

 

 

Shorted Together

 

 

 

 

 

 

 

 

 

for Input 2

2 V

AVDD/2

AGND

No Connect

AVDD/2

 

AVDD/2

 

 

 

 

 

 

 

 

 

 

 

External Ref

AIN

2 V max

AVDD

AVDD

No Connect

Span = REFTS

21, 22

 

 

 

 

 

 

– REFBS (2 V max)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AGND

 

 

Short to

 

Short to

23

 

 

 

 

 

 

 

 

 

 

 

 

VREFTF

 

VREFBF

 

 

 

 

 

 

 

 

 

 

 

AD876

AIN

2 V

Float or

AVDD

No Connect

Short to

 

Short to

30

 

 

 

AVSS

 

 

VREFTF

 

VREFBF

 

 

 

 

 

 

 

 

 

 

 

–8–

REV. E

Loading...
+ 16 hidden pages