Analog Devices AD811AR-16-REEL7, AD811AR-16-REEL, AD811AR-16, AD811AN, AD811ACHIPS Datasheet

...
0 (0)

a

High Performance

Video Op Amp

FEATURES

High Speed

140 MHz Bandwidth (3 dB, G = +1)

120 MHz Bandwidth (3 dB, G = +2)

35 MHz Bandwidth (0.1 dB, G = +2)

2500 V/ms Slew Rate

25 ns Settling Time to 0.1% (For a 2 V Step) 65 ns Settling Time to 0.01% (For a 10 V Step)

Excellent Video Performance (RL =150 V)

0.01% Differential Gain, 0.018 Differential Phase

Voltage Noise of 1.9 nVHz

Low Distortion: THD = –74 dB @ 10 MHz Excellent DC Precision

3 mV max Input Offset Voltage Flexible Operation

Specified for 65 V and 615 V Operation

62.3 V Output Swing into a 75 V Load (VS = 65 V)

APPLICATIONS

Video Crosspoint Switchers, Multimedia Broadcast

Systems

HDTV Compatible Systems

Video Line Drivers, Distribution Amplifiers

ADC/DAC Buffers

DC Restoration Circuits

Medical—Ultrasound, PET, Gamma and Counter

Applications

PRODUCT DESCRIPTION

The AD811 is a wideband current-feedback operational amplifier, optimized for broadcast quality video systems. The –3 dB bandwidth of 120 MHz at a gain of +2 and differential gain and phase of 0.01% and 0.01° (RL = 150 Ω) make the AD811 an excellent choice for all video systems. The AD811 is designed to meet a stringent 0.1 dB gain flatness specification to a bandwidth of 35 MHz (G = +2) in addition to the low differential gain and phase errors. This performance is achieved whether driving one or two back terminated 75 Ω cables, with a low power supply current of 16.5 mA. Furthermore, the AD811 is specified over a power supply range of ± 4.5 V to ± 18 V.

 

0.10

 

 

 

 

 

 

 

 

 

0.20

 

 

0.09

 

 

 

 

RF = 649V

 

 

 

0.18

– Degrees

%

0.08

 

 

 

 

FC = 3.58MHz

 

 

0.16

 

 

 

 

 

100 IRE

 

 

 

 

0.07

 

 

 

 

MODULATED RAMP

 

0.14

DIFFERENTIAL GAIN

 

 

 

 

 

DIFFERENTIAL PHASE

0.06

 

 

 

 

RL = 150V

 

 

 

0.12

0.05

 

 

 

 

 

 

 

 

 

0.10

0.04

 

PHASE

 

 

 

 

 

 

0.08

0.03

 

 

 

 

 

 

 

 

 

0.06

0.02

GAIN

 

 

 

 

 

 

 

 

0.04

 

0.01

 

 

 

 

 

 

 

 

 

0.02

 

 

5

6

7

8

9

10

11

12

13

14

15

 

SUPPLY VOLTAGE –6Volts

REV. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD811

CONNECTION DIAGRAMS

8-Lead Plastic (N-8) 20-Lead LCC (E-20A) Package

Cerdip (Q-8)

SOIC (SO-8) Packages

NC

NC

NC

NC NC

 

3

2

1

20 19

NC

 

 

 

NC

 

NC 4

 

 

18 NC

1

 

8

 

NC 5

 

AD811

17 NC

 

 

2

 

 

+V S

 

 

–IN

 

 

7

 

–IN 6

 

 

16 +VS

+IN

 

3

 

6

OUTPUT

NC 7

 

 

15 NC

 

 

+IN 8

 

 

14 OUTPUT

–VS

4

AD811

5

NC

 

 

 

 

 

 

 

 

 

 

 

NC = NO CONNECT

 

 

 

9

10 11 12 13

 

 

 

 

 

 

 

S

NC NC NC NC

 

 

 

 

 

 

 

 

 

 

–V

 

 

 

 

 

 

 

 

 

 

NC = NO CONNECT

 

 

16-Lead SOIC (R-16) Package

20-Lead SOIC (R-20) Package

NC

1

 

 

 

16 NC

NC

1

 

20 NC

NC

2

 

 

 

15 NC

NC

2

 

19

NC

–IN

3

 

 

14 +V S

NC

3

 

18

NC

NC

4

 

 

 

13 NC

–IN

4

 

17 +V S

+IN

5

 

 

 

12 OUTPUT

NC

5

 

16 NC

NC

6

 

 

 

11 NC

+IN

6

 

15 OUTPUT

–VS

7

 

AD811

 

10

NC

NC

7

 

14 NC

NC

8

 

 

9

NC

–VS

8

 

13

NC

 

 

 

 

 

NC = NO CONNECT

 

NC

9

AD811

12

NC

 

 

NC 10

11 NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC = NO CONNECT

 

The AD811 is also excellent for pulsed applications where transient response is critical. It can achieve a maximum slew rate of greater than 2500 V/µs with a settling time of less than 25 ns to 0.1% on a 2 volt step and 65 ns to 0.01% on a 10 volt step.

The AD811 is ideal as an ADC or DAC buffer in data acquisition systems due to its low distortion up to 10 MHz and its wide unity gain bandwidth. Because the AD811 is a current feedback amplifier, this bandwidth can be maintained over a wide range of gains. The AD811 also offers low voltage and current noise of 1.9 nV/Hz and 20 pA/Hz, respectively, and excellent dc accuracy for wide dynamic range applications.

 

12

 

 

 

 

 

G = +2

 

 

9

RL

= 150V

615V

 

 

VS =

 

 

RG = RFB

 

– dB

6

 

 

 

3

 

 

 

GAIN

 

 

 

 

 

VS = 65V

 

0

 

 

 

 

–3

 

 

 

 

–6

 

 

 

 

1M

 

10 M

100 M

FREQUENCY – Hz

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1999

AD811–SPECIFICATIONS (@ TA = +258C and VS = 615 V dc, RLOAD = 150 Ω unless otherwise noted)

 

 

 

 

 

AD811J/A1

 

 

AD811S2

 

 

Model

Conditions

VS

Min

Typ

Max

Min

Typ

Max

Units

DYNAMIC PERFORMANCE

 

 

 

 

 

 

 

 

 

 

Small Signal Bandwidth (No Peaking)

 

 

 

 

 

 

 

 

 

 

–3 dB

RFB = 562 Ω

± 15 V

 

140

 

 

140

 

MHz

G = +1

 

 

 

 

G = +2

RFB = 649 Ω

± 15 V

 

120

 

 

120

 

MHz

G = +2

RFB = 562 Ω

± 5 V

 

80

 

 

80

 

MHz

G = +10

RFB = 511 Ω

± 15 V

 

100

 

 

100

 

MHz

0.1 dB Flat

RFB = 562 Ω

± 5 V

 

25

 

 

25

 

MHz

G = +2

 

 

 

 

 

RFB = 649 Ω

± 15 V

 

35

 

 

35

 

MHz

Full Power Bandwidth3

VOUT = 20 V p-p

± 15 V

 

40

 

 

40

 

MHz

Slew Rate

VOUT = 4 V p-p

± 5 V

 

400

 

 

400

 

V/µs

 

VOUT = 20 V p-p

± 15 V

 

2500

 

 

2500

 

V/µs

Settling Time to 0.1%

10 V Step,

AV = –1

± 15 V

 

50

 

 

50

 

ns

Settling Time to 0.01%

 

 

± 5 V

 

65

 

 

65

 

ns

Settling Time to 0.1%

2 V Step,

AV = –1

 

25

 

 

25

 

ns

Rise Time, Fall Time

RFB = 649, AV = +2

± 15 V

 

3.5

 

 

3.5

 

ns

Differential Gain

f = 3.58 MHz

± 15 V

 

0.01

 

 

0.01

 

%

Differential Phase

f = 3.58 MHz

± 15 V

 

0.01

 

 

0.01

 

Degree

THD @ fC = 10 MHz

VOUT = 2 V p-p, AV = +2

± 15 V

 

–74

 

 

–74

 

dBc

Third Order Intercept4

@ fC = 10 MHz

± 5 V

 

36

 

 

36

 

dBm

 

 

 

± 15 V

 

43

 

 

43

 

dBm

INPUT OFFSET VOLTAGE

 

 

± 5 V, ± 15 V

 

0.5

3

 

0.5

3

mV

 

TMIN to TMAX

 

 

 

5

 

 

5

mV

Offset Voltage Drift

 

 

 

 

5

 

 

5

 

µV/°C

INPUT BIAS CURRENT

 

 

± 5 V, ± 15 V

 

 

 

 

 

 

µA

–Input

 

 

 

2

5

 

2

5

 

TMIN to TMAX

± 5 V, ± 15 V

 

 

15

 

 

30

µA

+Input

 

 

 

2

10

 

2

10

µA

 

TMIN to TMAX

 

 

 

20

 

 

25

µA

TRANSRESISTANCE

TMIN to TMAX

 

 

 

 

 

 

 

 

 

VOUT = ± 10 V

 

 

 

 

 

 

 

 

 

RL =

± 15 V

0.75

1.5

 

0.75

1.5

 

MΩ

 

RL = 200 Ω

± 15 V

0.5

0.75

 

0.5

0.75

 

MΩ

 

VOUT = ± 2.5 V

 

 

 

 

 

 

 

 

 

RL = 150 Ω

± 5 V

0.25

0.4

 

0.125

0.4

 

MΩ

COMMON-MODE REJECTION

 

 

 

 

 

 

 

 

 

 

VOS (vs. Common Mode)

VCM = ± 2.5

± 5 V

 

 

 

 

 

 

 

TMIN to TMAX

56

60

 

50

60

 

dB

TMIN to TMAX

VCM = ± 10 V

± 15 V

60

66

 

56

66

 

dB

Input Current (vs. Common Mode)

TMIN to TMAX

 

 

1

3

 

1

3

µA/V

POWER SUPPLY REJECTION

VS = ± 4.5 V to ± 18 V

 

 

 

 

 

 

 

 

VOS

TMIN to TMAX

 

60

70

 

60

70

 

dB

+Input Current

TMIN to TMAX

 

 

0.3

2

 

0.3

2

µA/V

–Input Current

TMIN to TMAX

 

 

0.4

2

 

0.4

2

µA/V

INPUT VOLTAGE NOISE

f = 1 kHz

 

 

 

1.9

 

 

1.9

 

nV/Hz

INPUT CURRENT NOISE

f = 1 kHz

 

 

 

20

 

 

20

 

pA/Hz

OUTPUT CHARACTERISTICS

 

 

± 5 V

 

± 2.9

 

 

± 2.9

 

 

Voltage Swing, Useful Operating Range5

 

 

 

 

 

 

V

 

TJ = +25°C

± 15 V

 

± 12

 

 

± 12

 

V

Output Current

 

 

100

 

 

100

 

mA

Short-Circuit Current

 

 

 

 

150

 

 

150

 

mA

Output Resistance

(Open Loop @ 5 MHz)

 

 

9

 

 

9

 

Ω

INPUT CHARACTERISTICS

 

 

 

 

 

 

 

 

 

MΩ

+Input Resistance

 

 

 

 

1.5

 

 

1.5

 

–Input Resistance

 

 

 

 

14

 

 

14

 

Ω

Input Capacitance

+Input

 

 

 

7.5

 

 

7.5

 

pF

Common-Mode Voltage Range

 

 

± 5 V

 

± 3

 

 

± 3

 

V

 

 

 

± 15 V

 

± 13

 

 

± 13

 

V

POWER SUPPLY

 

 

 

± 4.5

 

± 18

± 4.5

 

± 18

 

Operating Range

 

 

± 5 V

 

 

V

Quiescent Current

 

 

 

14.5

16.0

 

14.5

16.0

mA

 

 

 

± 15 V

 

16.5

18.0

 

16.5

18.0

mA

TRANSISTOR COUNT

# of Transistors

 

 

40

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

1The AD811JR is specified with ± 5 V power supplies only, with operation up to ± 12 volts. 2See Analog Devices’ military data sheet for 883B tested specifications.

3FPBW = slew rate/(2 π VPEAK).

4Output power level, tested at a closed loop gain of two.

5Useful operating range is defined as the output voltage at which linearity begins to degrade.

Specifications subject to change without notice.

–2–

REV. D

AD811

ABSOLUTE MAXIMUM RATINGS1

±18

 

Supply Voltage . . . . . . . . . . . . .

. . . . . . . . . . .

V

AD811JR Grade Only . . . . .

. . . . . . . . . . .

. . . . . . . . .±12

V

Internal Power Dissipation2 . . .

. . . . . Observe Derating Curves

Output Short Circuit Duration

. . . . . Observe Derating Curves

Common-Mode Input Voltage

. . . . . . . . . . .

. . . . . . . . . . ± VS

Differential Input Voltage . . . .

. . . . . . . . . . .

. . . . . . . . . .± 6

V

Storage Temperature Range (Q, E) . . . . . . . .

–65°C to +150°C

Storage Temperature Range (N, R) . . . . . . . .

–65°C to +125°C

Operating Temperature Range

 

0°C to +70°C

AD811J . . . . . . . . . . . . . . . .

. . . . . . . . . . .

AD811A . . . . . . . . . . . . . . . .

. . . . . . . . . . .

. –40°C to +85°C

AD811S . . . . . . . . . . . . . . . .

. . . . . . . . . . .

–55°C to +125°C

Lead Temperature Range (Soldering 60 sec) .

. . . . . . . +300°C

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

28-Lead Plastic Package: θJA = 90°C/W 8-Lead Cerdip Package: θJA = 110°C/W 8-Lead SOIC Package: θJA = 155°C/W 16-Lead SOIC Package: θJA = 85°C/W 20-Lead SOIC Package: θJA = 80°C/W 20-Lead LCC Package: θJA = 70°C/W

ORDERING GUIDE

 

Temperature

Package

Model

Range

Option*

AD811AN

–40°C to +85°C

N-8

AD811AR-16

–40°C to +85°C

R-16

AD811AR-20

–40°C to +85°C

R-20

AD811JR

0°C to +70°C

SO-8

AD811SQ/883B

–55°C to +125°C

Q-8

5962-9313101MPA

–55°C to +125°C

Q-8

AD811SE/883B

–55°C to +125°C

E-20A

5962-9313101M2A

–55°C to +125°C

E-20A

AD811JR-REEL

0°C to +70°C

SO-8

AD811JR-REEL7

0°C to +70°C

SO-8

AD811AR-16-REEL

–40°C to +85°C

R-16

AD811AR-16-REEL7

–40°C to +85°C

R-16

AD811AR-20-REEL

–40°C to +85°C

R-20

AD811ACHIPS

–40°C to +85°C

Die

AD811SCHIPS

–55°C to +125°C

Die

*E = Ceramic Leadless Chip Carrier; N = Plastic DIP; Q = Cerdip; SO (R) = Small Outline IC (SOIC).

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD811 is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is +145°C. For the cerdip and LCC packages, the maximum junction temperature is +175°C. If these maximums are exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the “overheated” condition for an extended period can result in device burnout. To ensure proper operation, it is important to observe the derating curves in Figures 17 and 18.

While the AD811 is internally short circuit protected, this may not be sufficient to guarantee that the maximum junction temperature is not exceeded under all conditions. One important example is when the amplifier is driving a reverse terminated 75 Ω cable and the cable’s far end is shorted to a power supply. With power supplies of ± 12 volts (or less) at an ambient temperature of +25°C or less, if the cable is shorted to a supply rail, then the amplifier will not be destroyed, even if this condition persists for an extended period.

ESD SUSCEPTIBILITY

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 volts, which readily accumulate on the human body and on test equipment, can discharge without detection. Although the AD811 features proprietary ESD protection circuitry, permanent damage may still occur on these devices if they are subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

METALIZATION PHOTOGRAPH

Contact Factory for Latest Dimensions.

Dimensions Shown in Inches and (mm).

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD811 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. D

–3–

AD811–Typical Performance Characteristics

6Volts–

20

 

 

 

 

 

 

 

 

 

 

 

 

TA = +258C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RANGE

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

10

 

 

 

 

 

 

 

 

 

-COMMONMODE

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

 

 

 

 

 

SUPPLY VOLTAGE –6Volts

 

 

 

 

Figure 1. Input Common-Mode Voltage Range vs. Supply

MAGNITUDE OF THE OUTPUT VOLTAGE –6 Volts

20

TA = +258C

15

NO LOAD

10

RL = 150V

5

0

0

5

10

15

20

 

 

SUPPLY VOLTAGE –6 Volts

 

 

Figure 4. Output Voltage Swing vs. Supply

 

35

 

 

 

p–p

30

 

 

 

 

VS = 615V

 

 

– Volts

25

 

 

 

20

 

 

 

VOLTAGE

 

 

 

15

 

 

 

 

 

 

 

OUTPUT

10

 

VS = 65V

 

 

 

 

 

 

 

 

 

5

 

 

 

 

0

 

 

 

 

10

100

1k

10k

LOAD RESISTANCE –V

Figure 2. Output Voltage Swing vs. Resistive Load

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

NONINVERTING INPUT

 

 

 

 

 

 

 

 

65 TO 615V

 

 

 

 

mA

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VS = 65V

 

INPUT BIAS CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

INVERTING

 

 

 

 

 

 

 

 

 

INPUT

 

 

 

 

–10

 

 

 

 

 

 

 

 

 

–20

 

 

 

 

VS = 615V

 

 

 

–30

 

 

 

 

 

 

 

 

 

 

–60 –40

–20

0

20

40

60

80

100

120

140

 

 

 

JUNCTION TEMPERATURE –8C

 

 

 

Figure 3. Input Bias Current vs. Junction Temperature

mA

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

VS = 615V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPPLY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VS = 65V

 

 

 

 

 

 

 

 

 

 

QUIESCENT

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–60

–40

–20

0

20

40

60

80

100

120

140

 

 

 

 

 

 

 

 

JUNCTION TEMPERATURE –8C

 

 

 

 

 

 

Figure 5. Quiescent Supply Current vs. Junction

Temperature

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

mV

6

 

 

 

 

 

VS = 65V

 

 

 

4

 

 

 

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

OFFSET

 

 

 

 

 

 

 

 

 

 

–2

 

 

 

 

 

 

 

 

 

 

–4

 

 

 

 

VS = 615V

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

–6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–8

 

 

 

 

 

 

 

 

 

 

 

–10

 

 

 

 

 

 

 

 

 

 

 

–60

–40

–20

0

20

40

60

80

100

120

140

 

 

 

 

JUNCTION TEMPERATURE –8C

 

 

 

Figure 6. Input Offset Voltage vs. Junction Temperature

–4–

REV. D

Analog Devices AD811AR-16-REEL7, AD811AR-16-REEL, AD811AR-16, AD811AN, AD811ACHIPS Datasheet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD811

 

250

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VS = 615V

 

 

 

 

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 200V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOUT = 610V

 

 

 

 

SHORT CIRCUIT CURRENT –

200

 

 

 

 

 

 

 

 

 

 

TRANSRESISTANCE – MV

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VS = 615V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

100

 

 

 

VS = 65V

 

 

 

 

 

0.5

 

 

VS = 65V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 150V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOUT = 62.5V

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

–60

–40

–20

0

20

40

60

80

100

120

140

 

–60 –40

–20

0

20

40

60

80

100

120

140

 

 

 

 

JUNCTION TEMPERATURE –8C

 

 

 

 

 

 

JUNCTION TEMPERATURE –8C

 

 

 

Figure 7. Short Circuit Current vs. Junction Temperature

Figure 10. Transresistance vs. Junction Temperature

 

10

 

 

 

 

V

 

 

 

 

 

OUTPUT RESISTANCE

 

 

VS = 65V

 

 

1

 

 

 

 

 

 

 

 

 

CLOSED-LOOP

0.1

 

 

VS = 615V

 

 

 

 

 

 

 

 

GAIN = +2

 

 

 

 

RFB = 649V

 

 

0.01

 

 

 

 

 

10k

100k

1M

10M

100M

FREQUENCY – Hz

Figure 8. Closed-Loop Output Resistance vs. Frequency

10

 

 

 

 

 

 

 

 

 

 

RISE TIME

 

 

 

 

8

 

 

 

 

 

60

 

6

 

 

 

 

 

40

OVERSHOOT – %

 

OVERSHOOT

 

VS = 615V

 

 

 

VO

= 1V p–p

 

 

 

 

 

 

4

 

 

 

RL = 150V

20

RISETIMEns–

 

 

 

GAIN = +2

 

2

 

 

 

 

 

0

 

0

 

 

 

 

 

 

 

400

600

800

1.0k

1.2k

1.4k

1.6k

 

 

VALUE OF FEEDBACK RESISTOR (RFB) –V

 

 

Figure 9. Rise Time and Overshoot vs. Value of Feedback Resistor, RFB

 

100

 

 

 

100

Hz

 

NONINVERTING CURRENT VS = 65 TO 15V

Hz

 

 

 

 

– nV/

 

 

INVERTING CURRENT VS = 65 TO 15V

– pA/

NOISE VOLTAGE

10

 

10

 

 

 

 

 

VOLTAGE NOISE VS = 615V

NOISECURRENT

 

1

 

VOLTAGE NOISE VS = 65V

1

 

 

 

 

 

10

100

1k

10k

100k

 

 

 

FREQUENCY – Hz

 

 

Figure 11. Input Noise vs. Frequency

 

200

 

 

 

 

 

10

 

 

 

 

 

 

VO = 1V p–p

 

 

 

MHz

160

 

 

 

VS= 615V

 

8

 

 

 

 

 

RL= 150V

 

 

 

–3dB BANDWIDTH –

 

 

 

 

GAIN = +2

 

 

PEAKING – dB

120

 

 

 

 

 

6

 

 

 

BANDWIDTH

 

 

80

 

 

 

 

 

4

 

 

 

 

 

 

 

 

40

 

PEAKING

 

 

 

2

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

400

600

800

1.0k

1.2k

1.4k

1.6k

 

 

 

VALUE OF FEEDBACK RESISTOR (RFB) –V

 

 

Figure 12. 3 dB Bandwidth and Peaking vs. Value of RFB

REV. D

–5–

Loading...
+ 10 hidden pages