Analog Devices AD8310 d Datasheet

0 (0)

Fast, Voltage-Out DC–440 MHz,

95 dB Logarithmic Amplifier

AD8310

FEATURES

Multistage demodulating logarithmic amplifier Voltage output, rise time <15 ns

High current capacity: 25 mA into grounded RL 95 dB dynamic range: −91 dBV to +4 dBV Single supply of 2.7 V min at 8 mA typ

DC–440 MHz operation, ±0.4 dB linearity Slope of +24 mV/dB, intercept of −108 dBV Highly stable scaling over temperature Fully differential dc-coupled signal path 100 ns power-up time, 1 mA sleep current

FUNCTIONAL BLOCK DIAGRAM

 

 

VPOS

BAND GAP REFERENCE

 

AD8310

ENBL

 

ENABLE

SUPPLY

5

8mA

 

 

 

7

 

 

 

AND BIASING

 

 

 

 

 

 

 

 

 

 

 

SIX 14.3dB 900MHz

 

 

 

 

BFIN

6

BUFFER

 

 

INHI

AMPLIFIER STAGES

 

 

 

 

 

+INPUT

8

 

 

 

 

 

 

 

INPUT

 

–INPUT

1

1.0k

 

MIRROR

 

 

 

 

 

INLO

 

 

2µA

 

+

VOUT

 

 

 

 

 

3

 

 

 

4

OUTPUT

 

 

 

 

/dB

 

 

 

 

 

2

3k

 

 

 

 

 

 

 

NINE DETECTOR CELLS

 

3k

 

 

 

 

 

 

SPACED 14.3dB

 

COMM

1k

 

 

 

 

COMMON

2

COMM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMM

 

 

 

 

 

 

 

INPUT-OFFSET

 

 

OFLT

3

OFFSET

 

 

 

 

 

 

 

 

 

 

 

COMPENSATION LOOP

 

 

 

 

33pF

 

FILTER

001

 

 

 

 

 

 

 

COMM

 

 

01084-

 

 

 

 

 

 

 

 

 

 

 

APPLICATIONS

Conversion of signal level to decibel form

Transmitter antenna power measurement

Receiver signal strength indication (RSSI)

Low cost radar and sonar signal processing

Network and spectrum analyzers

Signal-level determination down to 20 Hz

True-decibel ac mode for multimeters

GENERAL DESCRIPTION

The AD8310 is a complete, dc–440 MHz demodulating logarithmic amplifier (log amp) with a very fast voltage mode output, capable of driving up to 25 mA into a grounded load in under 15 ns. It uses the progressive compression (successive detection) technique to provide a dynamic range of up to 95 dB to ±3 dB law conformance or 90 dB to a ±1 dB error bound up to 100 MHz. It is extremely stable and easy to use, requiring no significant external components. A single-supply voltage of

2.7 V to 5.5 V at 8 mA is needed, corresponding to a power consumption of only 24 mW at 3 V. A fast-acting CMOScompatible enable pin is provided.

Each of the six cascaded amplifier/limiter cells has a smallsignal gain of 14.3 dB, with a −3 dB bandwidth of 900 MHz. A total of nine detector cells are used to provide a dynamic range that extends from −91 dBV (where 0 dBV is defined as the amplitude of a 1 V rms sine wave), an amplitude of about ±40 µV, up to +4 dBV (or ±2.2 V). The demodulated output is accurately scaled, with a log slope of 24 mV/dB and an intercept of –108 dBV. The scaling parameters are supplyand temperature-independent.

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1.

The fully differential input offers a moderately high impedance (1 kΩ in parallel with about 1 pF). A simple network can match the input to 50 Ω and provide a power sensitivity of −78 dBm to +17 dBm. The logarithmic linearity is typically within ±0.4 dB up to 100 MHz over the central portion of the range, but it is somewhat greater at 440 MHz. There is no minimum frequency limit; the AD8310 can be used down to low audio frequencies. Special filtering features are provided to support this wide range.

The output voltage runs from a noise-limited lower boundary of 400 mV to an upper limit within 200 mV of the supply voltage for light loads. The slope and intercept can be readily altered using external resistors. The output is tolerant of a wide variety of load conditions and is stable with capacitive loads of 100 pF.

The AD8310 provides a unique combination of low cost, small size, low power consumption, high accuracy and stability, high dynamic range, a frequency range encompassing audio to UHF, fast response time, and good load-driving capabilities, making this product useful in numerous applications that require the reduction of a signal to its decibel equivalent.

The AD8310 is available in the industrial temperature range of –40°C to +85°C in an 8-lead MSOP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

AD8310

TABLE OF CONTENTS

 

Specifications.....................................................................................

3

Absolute Maximum Ratings............................................................

4

ESD Caution..................................................................................

4

Pin Configuration and Function Descriptions.............................

5

Typical Performance Characteristics .............................................

6

Theory of Operation ........................................................................

9

Progressive Compression ............................................................

9

Slope and Intercept Calibration................................................

10

Offset Control .............................................................................

10

Product Overview...........................................................................

11

Enable Interface ..........................................................................

11

Input Interface.............................................................................

11

Offset Interface ...........................................................................

12

Output Interface .........................................................................

12

Using the AD8310...........................................................................

14

Basic Connections ......................................................................

14

Transfer Function in Terms of Slope and Intercept...............

15

REVISION HISTORY

 

10/04—Data Sheet Changed from Rev. C to Rev. D

 

Format Updated ..........................................................

Universal

Typical Performance Characteristics Reordered .........................

6

Changes to Figures 41 and 42 .......................................................

20

7/03—Data Sheet Changed from Rev. B to Rev. C

 

Replaced TPC 12...............................................................................

5

Change to DC-Coupled Input Section ........................................

14

Replaced Figure 20 .........................................................................

15

Updated Outline Dimensions .......................................................

16

2/03—Data Sheet Changed from Rev. A to Rev. B

 

Change to Evaluation Board Section ...........................................

15

Change to Table III.........................................................................

16

Updated Outline Dimensions .......................................................

16

1/00—Data Sheet Changed from Rev. 0 to Rev. A

 

10/99—Revision 0: Initial Version

 

dBV vs. dBm................................................................................

15

Input Matching ...........................................................................

15

Narrow-Band Matching ............................................................

16

General Matching Procedure....................................................

16

Slope and Intercept Adjustments .............................................

17

Increasing the Slope to a Fixed Value ......................................

17

Output Filtering..........................................................................

18

Lowering the High-Pass Corner Frequency of the Offset

 

Compensation Loop ..................................................................

18

Applications.....................................................................................

19

Cable-Driving .............................................................................

19

DC-Coupled Input .....................................................................

19

Evaluation Board ............................................................................

20

Outline Dimensions .......................................................................

22

Ordering Guide ..........................................................................

22

Rev. D | Page 2 of 24

 

 

 

 

 

 

 

AD8310

 

 

 

 

 

 

 

 

 

 

 

SPECIFICATIONS

 

 

 

 

 

 

 

 

 

TA = 25°C, VS = 5 V, unless otherwise noted.

 

 

 

 

 

 

 

Table 1.

 

 

 

 

 

 

 

 

 

Parameter

Conditions

Min

Typ

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

 

INPUT STAGE

Inputs INHI, INLO

 

 

 

 

 

 

 

Maximum Input1

Single-ended, p-p

±2.0

±2.2

 

 

V

 

 

 

 

 

4

 

 

dBV

 

Equivalent Power in 50 Ω

Termination resistor of 52.3 Ω

 

17

 

 

dBm

 

 

Differential drive, p-p

 

20

 

 

dBm

 

Noise Floor

Terminated 50 Ω source

 

1.28

 

 

nV/√Hz

 

Equivalent Power in 50 Ω

440 MHz bandwidth

 

−78

 

 

dBm

 

Input Resistance

From INHI to INLO

800

1000

1200

 

 

Input Capacitance

From INHI to INLO

 

1.4

 

 

pF

 

DC Bias Voltage

Either input

 

3.2

 

 

V

 

 

 

 

 

 

 

 

 

 

 

LOGARITHMIC AMPLIFIER

Output VOUT

 

 

 

 

 

 

 

±3 dB Error Dynamic Range

From noise floor to maximum input

 

95

 

 

dB

 

Transfer Slope

10 MHz ≤ f ≤ 200 MHz

22

24

26

 

mV/dB

 

 

Overtemperature, –40°C < TA < +85°C

20

 

26

 

mV/dB

 

Intercept (Log Offset)2

10 MHz ≤ f ≤ 200 MHz

−115

−108

−99

 

dBV

 

 

Equivalent dBm (re 50 Ω)

−102

−95

−86

 

dBm

 

 

Overtemperature, −40°C ≤ TA ≤ +85°C

−120

 

−96

 

dBV

 

 

Equivalent dBm (re 50 Ω)

−107

 

−83

 

dBm

 

 

Temperature sensitivity

 

−0.04

 

 

dB/°C

 

Linearity Error (Ripple)

Input from –88 dBV (–75 dBm) to +2 dBV (+15 dBm)

 

±0.4

 

 

dB

 

Output Voltage

Input = –91 dBV (–78 dBm)

 

0.4

 

 

V

 

 

Input = 9 dBV (22 dBm)

 

2.6

 

 

V

 

Minimum Load Resistance, RL

 

 

 

100

 

 

 

Maximum Sink Current

 

 

 

0.5

 

 

mA

 

Output Resistance

 

 

 

0.05

 

 

 

Video Bandwidth

 

 

 

25

 

 

MHz

 

Rise Time (10% to 90%)

Input Level = −43 dBV (−30 dBm), RL ≥ 402 Ω, CL ≤ 68 pF

 

15

 

 

ns

 

 

Input Level = −3 dBV (+10 dBm), RL ≥ 402 Ω, CL ≤ 68 pF

 

20

 

 

ns

 

Fall Time (90% to 10%)

Input Level = −43 dBV (−30 dBm), RL ≥ 402 Ω, CL ≤ 68 pF

 

30

 

 

ns

 

 

Input Level = −3 dBV (+10 dBm), RL ≥ 402 Ω, CL ≤ 68 pF

 

40

 

 

ns

 

Output Settling Time to 1%

Input Level = −13 dBV (0 dBm), RL ≥ 402 Ω, CL ≤ 68 pF

 

40

 

 

ns

 

POWER INTERFACES

 

 

 

 

 

 

 

 

 

Supply Voltage, VPOS

 

 

2.7

 

5.5

 

V

 

Quiescent Current

Zero-signal

6.5

8.0

9.5

 

mA

 

Overtemperature

−40°C < TA< +85°C

5.5

8.5

10

 

mA

 

Disable Current

 

 

 

0.05

 

 

µA

 

Logic Level to Enable Power

High condition, −40°C < TA< +85°C

 

2.3

 

 

V

 

Input Current when High

3 V at ENBL

 

35

 

 

µA

 

Logic Level to Disable Power

Low condition, −40°C < TA< +85°C

 

0.8

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1The input level is specified in dBV, because logarithmic amplifiers respond strictly to voltage, not power. 0 dBV corresponds to a sinusoidal single-frequency input of 1 V rms. A power level of 0 dBm (1 mW) in a 50 Ω termination corresponds to an input of 0.2236 V rms. Therefore, the relationship between dBV and dBm is a fixed offset of 13 dBm in the special case of a 50 Ω termination.

2 Guaranteed but not tested; limits are specified at six sigma levels.

Rev. D | Page 3 of 24

AD8310

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter

Value

 

 

Supply Voltage, VS

7.5 V

Input Power (re 50 Ω), Single-Ended

18 dBm

Differential Drive

22 dBm

Internal Power Dissipation

200 mW

θJA

200°C/W

Maximum Junction Temperature

125°C

Operating Temperature Range

−40°C to +85°C

Storage Temperature Range

–65°C to +150°C

Lead Temperature Range (Soldering 60 s)

300°C

 

 

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Rev. D | Page 4 of 24

AD8310

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

INLO

1

AD8310

COMM

2

OFLT

3

TOP VIEW

(Not to Scale)

VOUT

 

4

 

8 INHI

7 ENBL

6 BFIN

5 VPOS

01084-002

 

 

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

 

Pin No.

Mnemonic

Function

 

 

 

1

INLO

One of Two Balanced Inputs, Biased Roughly to VPOS/2.

2

COMM

Common Pin (Usually Grounded).

3

OFLT

Offset Filter Access, Nominally at about 1.75 V.

4

VOUT

Low Impedance Output Voltage, 25 mA Maximum Load.

5

VPOS

Positive Supply, 2.7 V to 5.5 V at 8 mA Quiescent Current.

6

BFIN

Buffer Input; Used to Lower Postdetection Bandwidth.

7

ENBL

CMOS Compatible Chip Enable (Active when High).

8

INHI

Second of Two Balanced Inputs.

Rev. D | Page 5 of 24

AD8310

TYPICAL PERFORMANCE CHARACTERISTICS

 

3.0

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

(V)

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSSI OUTPUT

1.5

 

 

 

 

 

 

 

1.0

TA = –40°C

 

 

 

 

 

 

 

TA = +25°C

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

01084-011

 

 

TA = +85°C

 

 

 

 

0

 

 

 

 

 

 

 

 

–80

–60

–40

–20

0

 

 

–120

–100

20

 

 

(–87dBm)

 

INPUT LEVEL (dBV)

 

(+13dBm)

 

 

 

 

 

 

 

 

Figure 3. RSSI Output vs. Input Level, 100 MHz Sine Input at TA = −40°C, +25°C, and +85°C, Single-Ended Input

 

3.0

 

 

 

 

10MHz

 

50MHz

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100MHz

 

(V)

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSSI OUTPUT

1.5

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

0

–100

–80

–60

–40

–20

0

20

01084-012

 

–120

 

 

(–87dBm)

 

INPUT LEVEL (dBV)

(+13dBm)

 

 

 

 

 

 

 

Figure 4. RSSI Output vs. Input Level at TA = 25°C for Frequencies of 10 MHz, 50 MHz, and 100 MHz

 

3.0

 

 

 

 

 

200MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

300MHz

 

 

2.5

 

 

 

 

 

 

 

(V)

2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUTRSSI

 

 

 

 

 

 

440MHz

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

–120

–100

–80

–60

–40

–20

0

20

 

 

(–87dBm)

 

INPUT LEVEL (dBV)

 

(+13dBm)

01084013-

Figure 5. RSSI Output vs. Input Level at TA = 25°C for Frequencies of 200 MHz, 300 MHz, and 440 MHz

 

2.4

 

 

 

 

 

 

 

 

 

 

4.0

 

 

2.1

 

 

 

 

 

 

 

 

 

 

3.0

 

 

1.8

 

 

 

+25°C

 

–40°C

 

 

 

2.0

 

 

 

 

 

 

 

 

 

 

 

 

(V)

1.5

 

 

 

 

 

 

 

 

 

 

1.0

(dB)

 

 

 

 

 

 

 

 

 

 

 

 

V

1.2

 

 

 

 

 

 

 

 

 

 

0

ERROR

OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.9

 

–40°C

+85°C

 

 

 

 

 

 

–1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

+85°C

 

 

 

 

 

 

 

 

–2.0

 

 

0.3

 

+25°C

 

 

 

 

 

 

 

–3.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

PIN (dBm)

 

 

 

–4.0

014-01084

 

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

10

 

Figure 6. Log Linearity of RSSI Output vs. Input Level, 100 MHz Sine Input at TA = −40°C, +25°C, and +85°C

 

5

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

(dB)

1

 

 

 

 

 

 

10MHz

 

 

 

 

 

 

 

 

 

ERROR

0

 

 

 

 

 

 

 

 

–1

 

 

 

 

 

 

 

 

 

–2

 

 

 

 

50MHz

 

 

 

 

–3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–4

 

 

 

 

100MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

–5

–100

–80

–60

–40

–20

0

20

01084-015

 

–120

 

 

(–87dBm)

 

INPUT LEVEL (dBV)

(+13dBm)

 

 

 

 

 

 

 

Figure 7. Log Linearity of RSSI Output vs. Input Level, at TA = 25°C, for Frequencies of 10 MHz, 50 MHz, and 100 MHz

 

5

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

(dB)

2

 

 

 

 

 

 

 

1

 

 

 

 

200MHz

 

ERROR

–1

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

–2

 

 

 

300MHz

 

 

 

–3

 

 

 

 

 

 

 

 

 

440MHz

 

 

 

 

 

 

 

 

 

 

–4

 

 

 

 

 

 

 

 

–5

–100

–80

–60

–40

–20

0

20

 

–120

 

 

(–87dBm)

 

INPUT LEVEL (dBV)

 

(+13dBm)

01084016-

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Log Linearity of RSSI Output vs. Input Level at TA = 25°C for Frequencies of 200 MHz, 300 MHz, and 440 MHz

Rev. D | Page 6 of 24

Analog Devices AD8310 d Datasheet

AD8310

100pF

 

500mV PER

VOUT

VERTICAL

 

DIVISION

3300pF

 

 

 

 

0.01µF

 

 

GROUND REFERENCE

50µs PER

 

 

HORIZONTAL

01084-009

DIVISION

 

 

 

Figure 9. Small-Signal AC Response of RSSI Output with External BFIN Capacitance of 100 pF, 3300 pF, and 0.01 µF

VOUT

 

200

 

 

500mV PER

100

154

 

 

VERTICAL

 

 

DIVISION

 

 

GND REFERENCE

 

 

INPUT

 

 

500mV PER

 

100ns PER

VERTICAL

 

HORIZONTAL

DIVISION

 

DIVISION

 

01084-005

Figure 10. Large-Signal RSSI Pulse Response with CL = 100 pF

and RL = 100 Ω, 154 Ω, and 200 Ω

VOUT

100ns PER

HORIZONTAL

500mV PER

DIVISION

 

VERTICAL

 

DIVISION

 

GND REFERENCE

 

INPUT

 

–3dBV INPUT

500mV PER

LEVEL SHOWN

VERTICAL

HERE

DIVISION

 

01084006-

Figure 11. RSSI Pulse Response with RL = 402 Ω and CL = 68 pF, for Inputs Stepped from 0 dBV to −33 dBV, −23 dBV, −13 dBV, and −3 dBV

500mV PER

VOUT

VERTICAL

 

DIVISION

25ns PER

 

 

HORIZONTAL

 

DIVISION

GROUND REFERENCE

10mV PER VERTICAL DIVISION

INPUT

01084-010

Figure 12. Small-Signal RSSI Pulse Response with RL = 402 Ω and CL = 68 pF

VOUT

CURVES

500mV PER

OVERLAP

VERTICAL

 

DIVISION

 

GND REFERENCE

INPUT

 

500mV PER

100ns PER

VERTICAL

HORIZONTAL

DIVISION

DIVISION

 

01084007-

Figure 13. Large-Signal RSSI Pulse Response with RL = 100 Ω

and CL = 33 pF, 68 pF, and 100 pF

VOUT

 

200mV PER

100ns PER

HORIZONTAL

VERTICAL

DIVISION

DIVISION

 

GND REFERENCE

 

INPUT

 

 

20mV PER

 

VERTICAL

 

DIVISION

 

01084008-

Figure 14. Small-Signal RSSI Pulse Response with RL = 50 Ω and Back Termination of 50 Ω (Total Load = 100 Ω)

Rev. D | Page 7 of 24

AD8310

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

(mA)

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

0.1

TA = +85°C

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

SUPPLY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = +25°C

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

 

 

TA = –40°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00001

 

 

 

 

 

 

 

 

 

 

01084-003

 

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

 

 

 

 

ENABLE VOLTAGE (V)

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Supply Current vs. Enable Voltage at TA = −40°C, +25°C, and +85°C

 

30

 

29

 

28

(mV/dB)

27

26

SLOPE

25

 

RSSI

24

23

 

22

21

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

017-01084

1

10

100

1000

FREQUENCY (MHz)

Figure 16. RSSI Slope vs. Frequency

 

40

 

NORMAL

 

 

 

 

 

 

 

 

 

 

 

 

35

 

(23.6584,

 

 

 

 

 

 

0.308728)

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

COUNT

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

0

22.0

22.5

23.0

23.5

24.0

24.5

01084-019

 

21.5

 

 

 

 

SLOPE (mV/dB)

 

 

Figure 17. Transfer Slope Distribution, VS = 5 V, Frequency = 100 MHz, 25°C

VOUT

–3dBV

 

500mV PER

–23dBV

 

VERTICAL

 

 

 

DIVISION

–43dBV

 

 

 

 

–63dBV

 

 

–83dBV

 

5V PER

ENABLE

 

VERTICAL

 

 

DIVISION

 

01084-004

200ns PER HORIZONTAL DIVISION

 

Figure 18. Power-On/Off Response Time with RF Input of −83 dBV to −3 dBV

 

–99

 

 

 

 

 

–101

 

 

 

 

(dBV)

–103

 

 

 

 

–105

 

 

 

 

 

 

 

 

 

INTERCEPT

–107

 

 

 

 

–111

 

 

 

 

 

–109

 

 

 

 

RSSI

–113

 

 

 

 

 

–115

 

 

 

 

 

–117

 

 

 

 

 

–119

 

 

 

01084-018

 

1

10

100

1000

 

 

FREQUENCY (MHz)

 

Figure 19. RSSI Intercept vs. Frequency

 

24

 

 

 

 

 

 

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

NORMAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

(–107.6338,

 

 

 

 

16

 

 

 

 

 

2.36064)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COUNT

14

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0

–113

–111

–109

–107

–105

–103

–101

–99

–97

01084-020

 

–115

 

 

 

 

INTERCEPT (dBV)

 

 

 

Figure 20. Intercept Distribution VS = 5 V, Frequency = 100 MHz, 25°C

Rev. D | Page 8 of 24

Loading...
+ 16 hidden pages