Analog Devices AD9223ARS, AD9223AR, AD9221SSOPEB, AD9221SIOCEB, AD9221ARS Datasheet

...
0 (0)

a

Complete 12-Bit 1.5/3.0/10.0 MSPS

Monolithic A/D Converters

 

 

AD9221/AD9223/AD9220

FEATURES

Monolithic 12-Bit A/D Converter Product Family

Family Members Are: AD9221, AD9223, and AD9220

Flexible Sampling Rates: 1.5 MSPS, 3.0 MSPS and

10.0 MSPS

Low Power Dissipation: 59 mW, 100 mW and 250 mW

Single +5 V Supply

Integral Nonlinearity Error: 0.5 LSB

Differential Nonlinearity Error: 0.3 LSB

Input Referred Noise: 0.09 LSB

Complete: On-Chip Sample-and-Hold Amplifier and

Voltage Reference

Signal-to-Noise and Distortion Ratio: 70 dB

Spurious-Free Dynamic Range: 86 dB

Out-of-Range Indicator

Straight Binary Output Data

28-Lead SOIC and 28-Lead SSOP

PRODUCT DESCRIPTION

The AD9221, AD9223, and AD9220 are a generation of high performance, single supply 12-bit analog-to-digital converters. Each device exhibits true 12-bit linearity and temperature drift performance1 as well as 11.5 bit or better ac performance.2 The AD9221/AD9223/AD9220 share the same interface options, package, and pinout. Thus, the product family provides an upward or downward component selection path based on performance, sample rate and power. The devices differ with respect to their specified sampling rate and power consumption which is reflected in their dynamic performance over frequency.

The AD9221/AD9223/AD9220 combine a low cost, high speed CMOS process and a novel architecture to achieve the resolution and speed of existing hybrid and monolithic implementations at a fraction of the power consumption and cost. Each device is a complete, monolithic ADC with an on-chip, high performance, low noise sample-and-hold amplifier and programmable voltage reference. An external reference can also be chosen to suit the dc accuracy and temperature drift requirements of the application.

The devices use a multistage differential pipelined architecture with digital output error correction logic to provide 12-bit accuracy at the specified data rates and to guarantee no missing codes over the full operating temperature range.

The input of the AD9221/AD9223/AD9220 is highly flexible, allowing for easy interfacing to imaging, communications, medical, and data-acquisition systems. A truly differential input structure allows for both single-ended and differential input interfaces of varying input spans. The sample-and-hold (SHA) amplifier is equally suited for both multiplexed systems that switch full-scale voltage levels in successive channels as well as sampling single-channel inputs at frequencies up to and beyond the Nyquist rate. Also, the AD9221/AD9223/AD9220 is well

FUNCTIONAL BLOCK DIAGRAM

 

CLK

AVDD

DVDD

 

 

SHA

 

 

 

 

 

VINA

MDAC1

MDAC2

MDAC3

 

 

VINB

GAIN = 16

GAIN = 8

GAIN = 4

 

 

 

 

 

 

 

 

5

4

3

 

A/D

 

A/D

A/D

A/D

 

CAPT

5

4

3

 

3

 

 

CAPB

DIGITAL CORRECTION LOGIC

 

 

VREF

 

 

12

 

 

 

OUTPUT BUFFERS

 

OTR

 

 

 

SENSE

 

 

 

 

BIT 1

MODE

1V

AD9221/AD9223/AD9220

(MSB)

SELECT

BIT 12

 

 

 

 

 

(LSB)

 

REFCOM

AVSS

DVSS

CML

 

suited for communication systems employing Direct-IF Down Conversion since the SHA in the differential input mode can achieve excellent dynamic performance far beyond its specified Nyquist frequency.2

A single clock input is used to control all internal conversion cycles. The digital output data is presented in straight binary output format. An out-of-range (OTR) signal indicates an overflow condition which can be used with the most significant bit to determine low or high overflow.

PRODUCT HIGHLIGHTS

The AD9221/AD9223/AD9220 family offers a complete singlechip sampling 12-bit, analog-to-digital conversion function in pin-compatible 28-lead SOIC and SSOP packages.

Flexible Sampling Rates—The AD9221, AD9223 and AD9220 offer sampling rates of 1.5 MSPS, 3.0 MSPS and 10.0 MSPS, respectively.

Low Power and Single Supply—The AD9221, AD9223 and AD9220 consume only 59 mW, 100 mW and 250 mW, respectively, on a single +5 V power supply.

Excellent DC Performance Over Temperature—The AD9221/ AD9223/AD9220 provide 12-bit linearity and temperature drift performance.1

Excellent AC Performance and Low Noise—The AD9221/ AD9223/AD9220 provides better than 11.3 ENOB performance and has an input referred noise of 0.09 LSB rms.2

Flexible Analog Input Range—The versatile onboard sample- and-hold (SHA) can be configured for either single ended or differential inputs of varying input spans.

NOTES

1Excluding internal voltage reference.

2Depends on the analog input configuration.

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1999

AD9221/AD9223/AD9220–SPECIFICATIONS

(AVDD = +5 V, DVDD = +5 V, fSAMPLE = Max Conversion Rate, VREF = 2.5 V, VINB = 2.5 V, TMIN to TMAX unless

DC SPECIFICATIONS otherwise noted)

 

 

 

 

Parameter

 

AD9221

AD9223

AD9220

Units

 

 

 

 

 

 

RESOLUTION

 

12

12

12

Bits min

 

 

 

 

 

 

MAX CONVERSION RATE

 

1.5

3

10

MHz min

 

 

 

 

 

 

INPUT REFERRED NOISE (TYP)

 

 

 

 

 

VREF = 1 V

 

0.23

0.23

0.23

LSB rms typ

VREF = 2.5 V

 

0.09

0.09

0.09

LSB rms typ

ACCURACY

 

± 0.4

± 0.5

± 0.5

 

Integral Nonlinearity (INL)

 

LSB typ

 

 

± 1.25

± 1.25

± 1.25

LSB max

Differential Nonlinearity (DNL)

 

± 0.3

± 0.3

± 0.3

LSB typ

 

 

± 0.75

± 0.75

± 0.75

LSB max

INL1

 

± 0.6

± 0.6

± 0.7

LSB typ

DNL1

 

± 0.3

± 0.3

± 0.35

LSB typ

No Missing Codes

 

12

12

12

Bits Guaranteed

Zero Error (@ +25°C)

 

± 0.3

± 0.3

± 0.3

% FSR max

Gain Error (@ +25°C)2

 

± 1.5

± 1.5

± 1.5

% FSR max

Gain Error (@ +25°C)3

 

± 0.75

± 0.75

± 0.75

% FSR max

TEMPERATURE DRIFT

 

± 2

± 2

± 2

ppm/°C typ

Zero Error

 

Gain Error2

 

± 26

± 26

± 26

ppm/°C typ

Gain Error3

 

± 0.4

± 0.4

± 0.4

ppm/°C typ

POWER SUPPLY REJECTION

 

 

 

 

 

AVDD, DVDD (+5 V ± 0.25 V)

 

± 0.06

± 0.06

± 0.06

% FSR max

ANALOG INPUT

 

 

 

 

 

Input Span (with VREF = 1.0 V)

 

2

2

2

V p-p min

(with VREF = 2.5 V)

 

5

5

5

V p-p max

Input (VINA or VINB) Range

 

0

0

0

V min

 

 

AVDD

AVDD

AVDD

V max

Input Capacitance

 

16

16

16

pF typ

 

 

 

 

 

 

INTERNAL VOLTAGE REFERENCE

 

 

 

 

 

Output Voltage (1 V Mode)

 

1

1

1

Volts typ

Output Voltage Tolerance (1 V Mode)

 

± 14

± 14

± 14

mV max

Output Voltage (2.5 V Mode)

 

2.5

2.5

2.5

Volts typ

Output Voltage Tolerance (2.5 V Mode)

 

± 35

± 35

± 35

mV max

Load Regulation4

 

2.0

2.0

1.5

mV max

REFERENCE INPUT RESISTANCE

 

5

5

5

kΩ typ

 

 

 

 

 

 

POWER SUPPLIES

 

 

 

 

 

Supply Voltages

 

 

 

 

V (± 5% AVDD Operating)

AVDD

 

+5

+5

+5

DVDD

 

+2.7 to +5.25

+2.7 to +5.25

+5 (± 5%)

V

Supply Current

 

 

 

 

 

IAVDD

 

14.0

26

58

mA max

 

 

11.8

20

48

mA typ

IDVDD

 

0.5

0.5

12

mA max

 

 

0.02

0.02

10

mA typ

 

 

 

 

 

 

POWER CONSUMPTION

 

59.0

100

250

mW typ

 

 

70.0

130

310

mW max

 

 

 

 

 

 

NOTES

1VREF =1 V.

2Including internal reference.

3Excluding internal reference.

4Load regulation with 1 mA load current (in addition to that required by the AD9220/AD9221/AD9223).

Specification subject to change without notice.

–2–

REV. C

AD9221/AD9223/AD9220

(AVDD = +5 V, DVDD= +5 V, fSAMPLE = Max Conversion Rate, VREF = 1.0 V, VINB = 2.5 V, DC Coupled/Single-

AC SPECIFICATIONS Ended Input TMIN to TMAX unless otherwise noted)

 

 

 

Parameters

AD9221

 

AD9223

AD9220

Units

 

 

 

 

 

 

MAX CONVERSION RATE

1.5

 

3.0

10.0

MHz min

 

 

 

 

 

 

DYNAMIC PERFORMANCE

 

 

 

 

 

Input Test Frequency 1 (VINA = –0.5 dBFS)

100

 

500

1000

kHz

Signal-to-Noise and Distortion (SINAD)

70.0

 

70.0

70

dB typ

 

69.0

 

68.5

68.5

dB min

Effective Number of Bits (ENOBs)

11.3

 

11.3

11.3

dB typ

 

11.2

 

11.1

11.1

dB min

Signal-to-Noise Ratio (SNR)

70.2

 

70.0

70.2

dB typ

 

69.0

 

68.5

69.0

dB min

Total Harmonic Distortion (THD)

–83.4

 

–83.4

–83.7

dB typ

 

–77.5

 

–76.0

–76.0

dB max

Spurious Free Dynamic Range (SFDR)

86.0

 

87.5

88.0

dB typ

 

79.0

 

77.5

77.5

dB max

Input Test Frequency 2 (VINA = –0.5 dBFS)

0.50

 

1.50

5.0

MHz

Signal-to-Noise and Distortion (SINAD)

69.9

 

69.4

67.0

dB typ

 

69.0

 

68.0

65.0

dB min

Effective Number of Bits (ENOBs)

11.3

 

11.2

10.8

dB typ

 

11.2

 

11.1

10.5

dB min

Signal-to-Noise Ratio (SNR)

70.1

 

69.7

68.8

dB typ

 

69.0

 

68.5

67.5

dB min

Total Harmonic Distortion (THD)

–83.4

 

–82.9

–72.0

dB typ

 

–77.5

 

–75.0

–68.0

dB max

Spurious Free Dynamic Range (SFDR)

86.0

 

85.7

75.0

dB typ

 

79.0

 

76.0

69.0

dB max

Full Power Bandwidth

25

 

40

60

MHz typ

Small Signal Bandwidth

25

 

40

60

MHz typ

Aperture Delay

1

 

1

1

ns typ

Aperture Jitter

4

 

4

4

ps rms typ

Acquisition to Full-Scale Step

125

 

43

30

ns typ

 

 

 

 

 

 

Specifications subject to change without notice.

DIGITAL SPECIFICATIONS (AVDD = +5 V, DVDD = +5 V, TMIN to TMAX unless otherwise noted)

Parameters

Symbol

 

Units

 

 

 

 

CLOCK INPUT

 

 

 

High Level Input Voltage

VIH

+3.5

V min

Low Level Input Voltage

VIL

+1.0

V max

High Level Input Current (VIN = DVDD)

IIH

±10

A max

Low Level Input Current (VIN = 0 V)

IIL

±10

A max

Input Capacitance

CIN

5

pF typ

LOGIC OUTPUTS

 

 

 

DVDD = 5 V

 

 

 

High Level Output Voltage (IOH = 50 A)

VOH

+4.5

V min

High Level Output Voltage (IOH = 0.5 mA)

VOH

+2.4

V min

Low Level Output Voltage (IOL = 1.6 mA)

VOL

+0.4

V max

Low Level Output Voltage (IOL = 50 A)

VOL

+0.1

V max

DVDD = 3 V

 

 

 

High Level Output Voltage (IOH = 50 A)

VOH

+2.95

V min

High Level Output Voltage (IOH = 0.5 mA)

VOH

+2.80

V min

Low Level Output Voltage (IOL = 1.6 mA)

VOL

+0.4

V max

Low Level Output Voltage (IOL = 50 A)

VOL

+0.05

V max

Output Capacitance

COUT

5

pF typ

Specifications subject to change without notice.

REV. C

–3–

AD9221/AD9223/AD9220

SWITCHING SPECIFICATIONS (TMIN to TMAX with AVDD = +5 V, DVDD = +5 V, CL = 20 pF)

Parameters

Symbol

AD9221

AD9223

AD9220

Units

 

 

 

 

 

 

Clock Period1

tC

667

333

100

ns min

CLOCK Pulsewidth High

tCH

300

150

45

ns min

CLOCK Pulsewidth Low

tCL

300

150

45

ns min

Output Delay

tOD

8

8

8

ns min

 

 

13

13

13

ns typ

 

 

19

19

19

ns max

Pipeline Delay (Latency)

 

3

3

3

Clock Cycles

 

 

 

 

 

 

NOTES

1The clock period may be extended to 1 ms without degradation in specified performance @ +25 °C.

Specifications subject to change without notice.

 

S1

 

S2

ANALOG

 

tC

S4

INPUT

tCH

S3

 

 

tCL

INPUT

 

 

 

CLOCK

 

 

 

 

 

 

tOD

DATA

 

 

DATA 1

OUTPUT

 

 

 

 

 

Figure 1. Timing Diagram

ABSOLUTE MAXIMUM RATINGS*

 

With

 

 

 

 

Respect

 

 

 

Parameter

to

Min

Max

Units

 

 

 

 

 

AVDD

AVSS

–0.3

+6.5

V

DVDD

DVSS

–0.3

+6.5

V

AVSS

DVSS

–0.3

+0.3

V

AVDD

DVDD

–6.5

+6.5

V

REFCOM

AVSS

–0.3

+0.3

V

CLK

AVSS

–0.3

AVDD + 0.3

V

Digital Outputs

DVSS

–0.3

DVDD + 0.3

V

VINA, VINB

AVSS

–0.3

AVDD + 0.3

V

VREF

AVSS

–0.3

AVDD + 0.3

V

SENSE

AVSS

–0.3

AVDD + 0.3

V

CAPB, CAPT

AVSS

–0.3

AVDD + 0.3

V

Junction Temperature

 

 

+150

°C

Storage Temperature

 

–65

+150

°C

Lead Temperature

 

 

 

°C

(10 sec)

 

 

+300

 

 

 

 

 

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

THERMAL CHARACTERISTICS

Thermal Resistance 28-Lead SOIC

θJA = 71.4°C/W

θJC = 23°C/W 28-Lead SSOP

θJA = 63.3°C/W

θJC = 23°C/W

ORDERING GUIDE

 

Temperature

Package

 

Package

Model

Range

Description

 

Options

 

 

 

 

 

AD9221AR

–40°C to +85°C

28-Lead SOIC

 

R-28

AD9223AR

–40°C to +85°C

28-Lead SOIC

 

R-28

AD9220AR

–40°C to +85°C

28-Lead SOIC

 

R-28

AD9221ARS

–40°C to +85°C

28-Lead SSOP

 

RS-28

AD9223ARS

–40°C to +85°C

28-Lead SSOP

 

RS-28

AD9220ARS

–40°C to +85°C

28-Lead SSOP

 

RS-28

AD9220/AD9221/AD9223SOICEB

Evaluation Board

 

AD9220/AD9221/AD9223SSOPEB

Evaluation Board

 

 

 

 

 

 

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–4–

REV. C

AD9221/AD9223/AD9220

PIN CONNECTIONS

CLK

 

 

 

DVDD

1

 

28

(LSB) BIT 12

 

 

 

DVSS

2

 

27

BIT 11

 

 

 

 

3

 

26

AVDD

BIT 10

 

 

 

AVSS

4

AD9221/

25

BIT 9

 

 

VINB

5

AD9223/

24

BIT 8

 

AD9220

 

 

6

23

VINA

BIT 7

 

 

 

 

7

TOP VIEW

22

CML

 

 

(Not to Scale)

 

 

BIT 6

8

21

CAPT

BIT 5

 

 

 

 

9

 

20

CAPB

 

 

 

 

 

BIT 4

10

 

19

REFCOM

 

 

 

 

 

BIT 3

11

 

18

VREF

 

 

 

 

 

BIT 2

12

 

17

SENSE

 

 

 

 

 

(MSB) BIT 1

13

 

16

AVSS

 

 

 

 

 

OTR

14

 

15

AVDD

 

 

 

 

 

PIN FUNCTION DESCRIPTIONS

Pin

 

 

Number

Name

Description

 

 

 

1

CLK

Clock Input Pin

2

BIT 12

Least Significant Data Bit (LSB)

3–12

BIT N

Data Output Bit

13

BIT 1

Most Significant Data Bit (MSB)

14

OTR

Out of Range

15, 26

AVDD

+5 V Analog Supply

16, 25

AVSS

Analog Ground

17

SENSE

Reference Select

18

VREF

Reference I/O

19

REFCOM

Reference Common

20

CAPB

Noise Reduction Pin

21

CAPT

Noise Reduction Pin

22

CML

Common-Mode Level (Midsupply)

23

VINA

Analog Input Pin (+)

24

VINB

Analog Input Pin (–)

27

DVSS

Digital Ground

28

DVDD

+3 V to +5 V Digital Supply

 

 

 

DEFINITIONS OF SPECIFICATION

INTEGRAL NONLINEARITY (INL)

INL refers to the deviation of each individual code from a line drawn from “negative full scale” through “positive full scale.” The point used as “negative full scale” occurs 1/2 LSB before the first code transition. “Positive full scale” is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.

DIFFERENTIAL NONLINEARITY (DNL, NO MISSING CODES)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 12-bit resolution indicates that all 4096 codes, respectively, must be present over all operating ranges.

REV. C

ZERO ERROR

The major carry transition should occur for an analog value 1/2 LSB below VINA = VINB. Zero error is defined as the deviation of the actual transition from that point.

GAIN ERROR

The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

TEMPERATURE DRIFT

The temperature drift for zero error and gain error specifies the maximum change from the initial (+25°C) value to the value at

TMIN or TMAX.

POWER SUPPLY REJECTION

The specification shows the maximum change in full scale from the value with the supply at the minimum limit to the value with the supply at its maximum limit.

APERTURE JITTER

Aperture jitter is the variation in aperture delay for successive samples and is manifested as noise on the input to the A/D.

APERTURE DELAY

Aperture delay is a measure of the sample-and-hold amplifier (SHA) performance and is measured from the rising edge of the clock input to when the input signal is held for conversion.

SIGNAL-TO-NOISE AND DISTORTION (S/N+D, SINAD) RATIO

S/N+D is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc.

The value for S/N+D is expressed in decibels.

EFFECTIVE NUMBER OF BITS (ENOB)

For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,

N = (SINAD – 1.76)/6.02

it is possible to get a measure of performance expressed as N, the effective number of bits.

Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.

TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

SIGNAL-TO-NOISE RATIO (SNR)

SNR is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.

SPURIOUS FREE DYNAMIC RANGE (SFDR)

SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.

–5–

AD9221/AD9223/AD9220

AD9221–Typical Characterization Curves

(AVDD = +5 V, DVDD = +5 V, fSAMPLE = 1.5 MSPS, TA = +258C)

 

1.0

 

 

0.8

 

 

0.6

 

 

0.4

 

LSBs

0.2

 

0.0

 

–0.2

 

DNL

 

–0.4

 

 

 

 

–0.6

 

 

–0.8

 

 

–1.0

 

 

0

4095

 

 

CODE

 

1.0

 

 

 

 

 

0.8

 

 

8,180,388

 

 

 

 

 

 

 

0.6

 

 

 

 

 

0.4

 

 

 

 

–INLLSBs

0.2

 

HITS

 

 

0.0

 

 

 

 

 

 

 

 

 

–0.2

 

 

 

 

 

–0.4

 

 

 

 

 

–0.6

 

121,764

 

 

 

 

 

 

 

 

–0.8

 

 

 

85,895

 

 

 

 

 

 

–1.0

 

N–1

N

N+1

 

0

4095

 

 

CODE

 

CODE

 

 

 

 

 

 

Figure 2. Typical DNL

Figure 3. Typical INL

Figure 4. “Grounded-Input”

 

 

Histogram (Input Span = 2 V p-p)

 

80

 

 

–50

 

 

75

 

 

–55

 

 

 

 

 

 

 

70

–0.5dB

 

–60

–20.0dB

 

 

 

–65

 

 

 

–6.0dB

 

 

– dB

65

 

–70

 

 

– dB

 

 

 

 

60

 

–75

–6.0dB

SINAD

 

THD

 

55

–20.0dB

–80

 

 

50

 

–85

–0.5dB

 

 

 

 

 

 

 

–90

 

 

 

 

 

 

 

45

 

 

–95

 

 

 

 

 

 

 

40

 

 

–100

 

 

0.1

1.0

 

0.1

1.0

 

 

FREQUENCY – MHz

 

 

FREQUENCY – MHz

Figure 5. SINAD vs. Input Frequency

Figure 6. THD vs. Input Frequency

(Input Span = 2.0 V p-p, VCM = 2.5 V)

(Input Span = 2.0 V p-p, VCM = 2.5 V)

 

80

 

 

 

75

–0.5dB

 

 

 

 

 

70

 

 

dB–

65

–6.0dB

 

 

 

SINAD

60

 

 

55

–20.0dB

 

 

50

 

 

 

45

 

 

 

40

0.1

1.0

 

 

 

 

FREQUENCY – MHz

 

Figure 7. SINAD vs. Input Frequency (Input Span = 5.0 V p-p, VCM = 2.5 V)

 

–50

 

 

–55

 

 

–60

–20.0dB

 

 

dB

–65

 

 

–0.5dB

THD–

–70

 

–75

 

 

–6.0dB

 

 

 

–80

 

 

–85

 

 

–90

 

 

0.1

1.0

FREQUENCY – MHz

Figure 8. THD vs. Input Frequency (Input Span = 5.0 V p-p, VCM = 2.5 V)

 

–60

 

 

 

 

 

 

 

 

–65

 

 

 

 

 

 

 

 

–70

 

 

 

 

 

 

 

– dB

–75

 

 

 

 

 

 

 

–80

 

 

 

 

 

 

 

THD

 

 

 

 

 

5V p-p

 

 

 

 

 

 

 

 

–85

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2V p-p

 

 

–90

 

 

 

 

 

 

 

 

–95

 

 

 

 

 

 

 

–100

 

 

 

 

 

 

 

 

0.2

0.3

0.4

0.6

0.8

1

2

3

SAMPLE RATE – MSPS

Figure 9. THD vs. Sample Rate

(AIN = –0.5 dB, fIN = 500 kHz, VCM = 2.5 V)

 

100

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

80

 

 

 

 

 

 

– dB

70

 

 

 

 

 

 

60

 

 

SFDR

 

 

 

SNR/SFDR

 

 

 

 

 

 

50

 

 

 

 

 

 

40

 

 

SNR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

10

–50

–40

–30

–20

–10

0

 

–60

 

 

 

 

AI N – dBFS

 

 

Figure 10. SNR/SFDR vs. AIN (Input Amplitude) (fIN = 500 kHz, Input Span = 2 V p-p, VCM = 2.5 V)

–6–

REV. C

Analog Devices AD9223ARS, AD9223AR, AD9221SSOPEB, AD9221SIOCEB, AD9221ARS Datasheet

AD9221/AD9223/AD9220

AD9223–Typical Characterization Curves (AVDD = +5 V, DVDD = +5 V, fSAMPLE = 3.0 MSPS, TA = +258C)

 

1.0

 

 

0.8

 

 

0.6

 

 

0.4

 

– LSBs

0.2

 

0.0

 

DNL

–0.2

 

 

 

 

–0.4

 

 

–0.6

 

 

–0.8

 

 

–1.0

 

 

0

4095

 

 

CODE

 

1.0

 

 

 

 

 

0.8

 

 

8,123,672

 

 

 

 

 

 

 

0.6

 

 

 

 

 

0.4

 

 

 

 

–INLLSBs

0.2

 

HITS

 

 

0.0

 

 

 

 

 

 

 

 

 

–0.2

 

 

 

 

 

–0.4

 

 

 

 

 

–0.6

 

 

 

130,323

 

 

 

96,830

 

 

–0.8

 

 

 

 

 

 

 

 

 

–1.0

 

 

 

 

 

0

4095

N–1

N

N+1

 

 

CODE

 

CODE

 

Figure 11. Typical DNL

Figure 12. Typical INL

Figure 13. “Grounded-Input”

 

 

Histogram (Input Span = 2 V p-p)

 

80

 

 

 

75

 

 

 

70

–0.5dB

 

 

 

 

 

65

–6.0dB

 

– dB

 

 

60

 

 

SINAD

 

 

55

–20.0dB

 

 

 

 

 

50

 

 

 

45

 

 

 

40

 

 

 

0.1

1.0

10.0

 

 

FREQUENCY – MHz

 

 

–50

 

 

 

–55

 

 

 

–60

–20.0dB

 

 

–65

 

 

 

 

– dB

–70

 

 

–75

–0.5dB

 

THD

 

–80

–6.0dB

 

 

–85

 

 

 

 

 

–90

 

 

 

–95

 

 

 

–100

 

 

 

0.1

1.0

10.0

 

 

FREQUENCY – MHz

 

Figure 14. SINAD vs. Input Frequency

Figure 15. THD vs. Input Frequency

(Input Span = 2.0 V p-p, VCM = 2.5 V)

(Input Span = 2.0 V p-p, VCM = 2.5 V)

 

80

 

 

 

75

–0.5dB

 

 

 

 

 

70

 

 

– dB

65

–6.0dB

 

60

 

 

SINAD

 

 

55

 

 

 

 

 

 

50

–20.0dB

 

 

 

 

 

45

 

 

 

40

 

 

 

0.1

1.0

10.0

 

 

FREQUENCY – MHz

 

Figure 16. SINAD vs. Input Frequency (Input Span = 5.0 V p-p, VCM = 2.5 V)

 

–50

 

 

 

–55

 

 

 

–60

 

 

 

–65

–20.0dB

 

 

 

 

– dB

–70

 

 

–75

–6.0dB

 

THD

 

 

 

–80

 

 

 

 

 

 

–85

–0.5dB

 

 

 

 

 

–90

 

 

 

–95

 

 

 

–100

 

 

 

0.1

1.0

10.0

FREQUENCY – MHz

Figure 17. THD vs. Input Frequency (Input Span = 5.0 V p-p, VCM = 2.5 V)

–60

–65

–70

dB

–75

 

 

5V p-p

–80

 

THD

 

–85

2V p-p

 

 

 

–90

–95

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

0.6

0.8

1

2

3

4

5

6

 

 

 

SAMPLE RATE – MSPS

 

 

 

 

Figure 18. THD vs. Sample Rate (AIN = –0.5 dB, fIN = 500 kHz, VCM = 2.5 V)

 

100

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

80

 

 

 

 

 

 

– dB

70

 

 

 

 

 

 

60

 

SFDR

 

 

 

SNR/SFDR

 

 

 

 

 

 

50

 

 

 

 

 

 

40

 

 

SNR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

–60

–50

–40

–30

–20

–10

0

AIN – dBFS

Figure 19. SNR/SFDR vs. AIN (Input Amplitude) (fIN = 1.5 MHz, Input Span = 2 V p-p, VCM = 2.5 V)

REV. C

–7–

AD9221/AD9223/AD9220

AD9220–Typical Characterization Curves

(AVDD = +5 V, DVDD = +5 V, fSAMPLE = 10 MSPS, TA = +258C)

 

1.0

 

 

0.8

 

 

0.6

 

 

0.4

 

LSBs

0.2

 

0.0

 

 

 

DNL

–0.2

 

–0.4

 

 

 

 

–0.6

 

 

–0.8

 

 

–1.0

 

 

1

4095

 

 

CODE

Figure 20. Typical DNL

 

1.0

 

 

 

 

 

0.8

 

 

8,123,672

 

 

 

 

 

 

 

0.6

 

 

 

 

LSBs–INL

0.4

 

HITS

 

 

–0.2

 

 

 

 

0.2

 

 

 

 

 

0.0

 

 

 

 

 

–0.4

 

 

 

 

 

–0.6

 

134,613

 

130,323

 

–0.8

 

 

 

 

 

–1.0

 

 

 

 

 

1

4095

N–1

N

N+1

 

 

CODE

 

CODE

 

 

 

 

 

 

Figure 21. Typical INL

Figure 22. “Grounded-Input”

 

Histogram (Input Span = 2 V p-p)

 

80

 

 

 

75

–0.5dB

 

 

 

 

 

70

 

 

 

 

–6dB

 

– dB

65

 

 

60

 

 

SINAD

 

 

55

–20dB

 

 

50

 

 

 

45

 

 

 

40

 

 

 

0.1

1.0

10.0

 

 

FREQUENCY – MHz

 

Figure 23. SINAD vs. Input Frequency (Input Span = 2.0 V p-p, VCM = 2.5 V)

 

–50

 

 

 

–55

 

 

 

–60

 

 

 

 

–20.0dB

 

– dB

–65

 

 

–70

–0.5dB

 

THD

 

 

 

–6.0dB

 

–75

 

 

 

 

 

 

–80

 

 

 

–85

 

 

 

–90

 

 

 

0.1

1.0

10.0

 

 

FREQUENCY – MHz

 

Figure 26. THD vs. Input Frequency (Input Span = 5.0 V p-p, VCM = 2.5 V)

 

–50

 

 

 

80

 

 

 

–55

 

 

 

75

 

 

 

 

 

 

 

–0.5dB

 

 

–60

 

 

 

 

 

 

 

 

 

 

 

 

 

–65

 

 

 

70

–6.0dB

 

 

 

 

 

 

 

dB

–70

 

–20dB

dB–

65

 

 

THD–

 

 

SINAD

 

 

 

–80

 

 

60

 

 

 

–75

 

–6dB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55

–20.0dB

 

 

–85

 

–0.5dB

 

50

 

 

 

–90

 

 

 

 

 

 

 

 

 

 

 

 

 

–95

 

 

 

45

 

 

 

 

 

 

 

 

 

 

–100

 

 

 

40

 

 

 

0.5

1.0

10.0

 

0.1

1.0

10.0

 

 

 

FREQUENCY – MHz

 

 

FREQUENCY – MHz

 

Figure 24. THD vs. Input Frequency

Figure 25. SINAD vs. Input Fre-

(Input Span = 2.0 V p-p, VCM = 2.5 V)

quency (Input Span = 5.0 V p-p,

 

VCM = 2.5 V)

 

–60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–70

 

 

 

 

 

 

 

5V p-p

 

 

 

 

 

 

 

 

 

 

 

 

–75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– dB

 

 

 

 

 

 

 

2V p-p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–85

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–95

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

10

 

 

15

 

 

 

 

 

 

 

SAMPLE RATE – MSPS

 

 

 

Figure 27. THD vs. Clock Frequency

(AIN = –0.5 dB, fIN = 1.0 MHz, VCM = 2.5 V)

 

90

 

 

 

 

 

 

 

80

 

 

 

SFDR

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

dB

60

 

 

 

 

 

 

 

 

 

 

SNR

 

 

 

 

 

 

 

SNR/SFDR

 

 

 

 

 

 

50

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

10

–50

–40

–30

–20

–10

0

 

–60

AIN – dBFS

Figure 28. SNR/SFDR vs. AIN (Input Amplitude) (fIN = 5.0 MHz, Input Span = 2 V p-p, VCM = 2.5 V)

–8–

REV. C

INTRODUCTION

The AD9221/AD9223/AD9220 are members of a high performance, complete single-supply 12-bit ADC product family based on the same CMOS pipelined architecture. The product family allows the system designer an upward or downward component selection path based on dynamic performance, sample rate, and power. The analog input range of the AD9221/AD9223/AD9220 is highly flexible allowing for both single-ended or differential inputs of varying amplitudes which can be ac or dc coupled. Each device shares the same interface options, pinout and package offering.

The AD9221/AD9223/AD9220 utilize a four-stage pipeline architecture with a wideband input sample-and-hold amplifier (SHA) implemented on a cost-effective CMOS process. Each stage of the pipeline, excluding the last stage, consists of a low resolution flash A/D connected to a switched capacitor DAC and interstage residue amplifier (MDAC). The residue amplifier amplifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each of the stages to facilitate digital correction of flash errors. The last stage simply consists of a flash A/D.

The pipeline architecture allows a greater throughput rate at the expense of pipeline delay or latency. This means that while the converter is capable of capturing a new input sample every clock cycle, it actually takes three clock cycles for the conversion to be fully processed and appear at the output. This latency is not a concern in most applications. The digital output, together with the out-of-range indicator (OTR), is latched into an output buffer to drive the output pins. The output drivers of the AD9220ARS, AD9221 and AD9223 can be configured to interface with +5 V or +3.3 V logic families, while the AD9220AR can only be configured for +5 V logic.

The AD9221/AD9223/AD9220 use both edges of the clock in their internal timing circuitry (see Figure 1 and specification page for exact timing requirements). The A/D samples the analog input on the rising edge of the clock input. During the clock low time (between the falling edge and rising edge of the clock), the input SHA is in the sample mode; during the clock high time it is in hold. System disturbances just prior to the rising edge of the clock and/or excessive clock jitter may cause the input SHA to acquire the wrong value, and should be minimized.

The internal circuitry of both the input SHA and individual pipeline stages of each member of the product family are optimized for both power dissipation and performance. An inherent tradeoff exists between the input SHA’s dynamic performance and its power dissipation. Figures 29 and 30 shows this tradeoff by comparing the full-power bandwidth and settling time of the AD9221/AD9223/AD9220. Both figures reveal that higher full-power bandwidths and faster settling times are achieved at the expense of an increase in power dissipation. Similarly, a tradeoff exists between the sampling rate and the power dissipated in each stage.

As previously stated, the AD9220, AD9221 and AD9223 are similar in most aspects except for the specified sampling rate, power consumption, and dynamic performance. The product family is highly flexible providing several different input ranges

AD9221/AD9223/AD9220

and interface options. As a result, many of the application issues and tradeoffs associated with these resulting configurations are also similar. The data sheet is structured such that the designer can make an informed decision in selecting the proper A/D and optimizing its performance to fit the specific application.

 

0

 

 

 

 

 

AD9220

 

–3

 

AD9223

– dB

 

 

 

AMPLITUDE

–6

 

 

 

 

AD9221

 

 

 

 

–9

 

 

–12

 

 

 

1

10

100

FREQUENCY – MHz

Figure 29. Full-Power Bandwidth

 

4000

 

 

 

 

 

 

 

 

AD9220

 

 

 

 

 

 

 

 

 

AD9223

AD9221

 

 

 

3000

 

 

 

 

 

 

 

 

 

 

 

 

CODE

2000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

10

20

30

40

50

60

SETTLING TIME – ns

Figure 30. Settling Time

ANALOG INPUT AND REFERENCE OVERVIEW

Figure 31, a simplified model of the AD9221/AD9223/AD9220, highlights the relationship between the analog inputs, VINA, VINB, and the reference voltage, VREF. Like the voltage applied to the top of the resistor ladder in a flash A/D converter, the value VREF defines the maximum input voltage to the A/D core. The minimum input voltage to the A/D core is automatically defined to be –VREF.

AD9221/AD9223/AD9220

 

VINA

+VREF

 

VCORE

A/D

12

 

CORE

 

VINB

–V

 

REF

 

Figure 31. AD9221/AD9223/AD9220 Equivalent Functional

Input Circuit

REV. C

–9–

Loading...
+ 19 hidden pages