Analog Devices AD8403ARU50-REEL, AD8403ARU50, AD8400AN1, AD8400ARU100-REEL, AD8400ARU100 Datasheet

...
0 (0)

a

1-/2-/4-Channel

Digital Potentiometers

 

 

AD8400/AD8402/AD8403

FEATURES 256-Position

Replaces 1, 2, or 4 Potentiometers 1 k , 10 k , 50 k , 100 k Power Shutdown—Less than 5 A

3-Wire SPI-Compatible Serial Data Input

10 MHz Update Data Loading Rate

2.7 V to 5.5 V Single-Supply Operation Midscale Preset

APPLICATIONS

Mechanical Potentiometer Replacement

Programmable Filters, Delays, Time Constants

Volume Control, Panning

Line Impedance Matching

Power Supply Adjustment

FUNCTIONAL BLOCK DIAGRAM

 

AD8403

 

8-BIT

RDAC1

A1

VDD

 

8

DAC

 

LATCH

 

W1

 

 

CK RS

 

B1

DGND

SELECT

1

SHDN

AGND1

 

 

 

 

 

 

 

 

 

2

 

RDAC2

A2

 

 

3

8-BIT

8

 

 

4

LATCH

 

W2

 

A1, A0

 

B2

 

CK RS

 

 

2

 

SHDN

AGND2

 

 

 

 

10-BIT

8

 

RDAC3

A3

 

SERIAL

8-BIT

8

 

W3

 

LATCH

 

LATCH

 

SDI

D

 

CK RS

 

B3

 

SHDN

AGND3

 

 

 

 

CK Q RS

 

CLK

 

 

 

 

 

 

RDAC4

A4

 

 

 

8-BIT

8

CS

 

 

W4

 

 

LATCH

 

 

 

 

 

B4

 

 

 

CK RS

 

 

 

 

SHDN

AGND4

 

 

 

 

 

SDO

 

RS

SHDN

 

GENERAL DESCRIPTION

The AD8400/AD8402/AD8403 provide a single, dual or quad channel, 256 position digitally controlled variable resistor (VR) device. These devices perform the same electronic adjustment function as a potentiometer or variable resistor. The AD8400 contains a single variable resistor in the compact SO-8 package. The AD8402 contains two independent variable resistors in space-saving SO-14 surfacemount packages. The AD8403 contains four independent variable resistors in 24-lead PDIP, SOIC, and TSSOP packages. Each part contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the controlling serial input register. The resistance between the wiper and either endpoint of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. Each variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper or the B terminal and the wiper. The fixed A to B terminal resistance of 1 k, 10 k, 50 k, or 100 khas a ±1% channel-to-channel matching tolerance with a nominal temperature coefficient of 500 ppm/°C. A unique switching circuit minimizes the high glitch inherent in traditional switched resistor designs avoiding any make-before-break or break-before-make operation.

Each VR has its own VR latch that holds its programmed resistance value. These VR latches are updated from an SPI compatible serial- to-parallel shift register that is loaded from a standard 3-wire serial-input digital interface. Ten data bits make up the data word clocked into the serial input register. The data word is decoded where the first two bits determine the address of the VR latch to be loaded, the last eight bits are data. A serial data output pin at the opposite end of the serial register allows simple daisy-chaining in multiple VR applications without additional external decoding logic.

The reset (RS) pin forces the wiper to the midscale position by loading 80H into the VR latch. The SHDN pin forces the resistor

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

to an end-to-end open circuit condition on the A terminal and shorts the wiper to the B terminal, achieving a microwatt power shutdown state. When SHDN is returned to logic high, the previous latch settings put the wiper in the same resistance setting prior to shutdown. The digital interface is still active in shutdown so that code changes can be made that will produce new wiper positions when the device is taken out of shutdown.

The AD8400 is available in both the SO-8 surface-mount and the 8-lead plastic DIP package.

The AD8402 is available in both surface mount (SO-14) and 14-lead plastic DIP packages, while the AD8403 is available in a narrow body 24-lead plastic DIP and a 24-lead surface-mount package. The AD8402/AD8403 are also offered in the 1.1 mm thin TSSOP-14/TSSOP-24 packages for PCMCIA applications. All parts are guaranteed to operate over the extended industrial temperature range of –40°C to +125°C.

 

100

 

 

 

 

 

 

 

 

 

AB

 

RWA

 

 

 

 

RWB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

50

 

 

 

 

 

 

 

 

 

Nominalof%–

 

 

 

 

 

 

 

 

 

(D)

75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WB

 

 

 

 

 

 

 

 

 

 

(D), R

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WA

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

64

128

192

255

 

 

 

 

 

CODE – Decimal

 

 

 

 

Figure 1. RWA and RWB vs. Code

 

 

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

 

 

 

 

 

www.analog.com

Fax: 781/326-8703

 

 

 

 

© Analog Devices, Inc., 2002

 

 

 

 

 

(VDD = 3 V 10% or 5 V 10%, VA = VDD, VB = 0 V,

 

AD8400/AD8402/AD8403–SPECIFICATIONS –40 C TA +125 C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS–10 k VERSION

 

 

 

 

 

 

Parameter

Symbol

 

Conditions

Min

Typ1

Max

Unit

 

 

DC CHARACTERISTICS RHEOSTAT MODE (Specifications Apply to All VRs)

 

± 1/4

 

 

 

 

Resistor Differential NL2

 

R-DNL

 

RWB, VA = No Connect

–1

+1

LSB

 

 

 

 

Resistor Nonlinearity2

 

R-INL

 

RWB, VA = No Connect

–2

± 1/2

+2

LSB

 

Nominal Resistance3

 

RAB

 

TA = 25°C, Model: AD840XYY10

8

10

12

k

 

Resistance Tempco

 

RAB/T

 

VAB = VDD, Wiper = No Connect

 

500

 

ppm/°C

 

Wiper Resistance

 

RW

 

IW = 1 V/R

 

50

100

 

Nominal Resistance Match

 

R/RAB

 

CH 1 to 2, 3, or 4, VAB = VDD, TA = 25°C

 

0.2

1

%

 

 

DC CHARACTERISTICS POTENTIOMETER DIVIDER Specifications Apply to All VRs

 

 

 

 

 

 

Resolution

 

N

 

 

8

± 1/2

 

Bits

 

 

 

 

 

 

Integral Nonlinearity4

 

INL

 

 

–2

+2

LSB

 

Differential Nonlinearity4

 

DNL

 

VDD = 5 V

–1

± 1/4

+1

LSB

 

 

 

DNL

 

VDD = 3 V TA = 25°C

–1

± 1/4

+1

LSB

 

 

 

DNL

 

VDD = 3 V TA = –40°C, +85°C

–1.5

± 1/2

+1.5

LSB

 

Voltage Divider Tempco

 

VW/T

 

Code = 80H

 

15

 

ppm/°C

 

Full-Scale Error

 

VWFSE

 

Code = FFH

–4

–2.8

0

LSB

 

Zero-Scale Error

 

VWZSE

 

Code = 00H

0

1.3

2

LSB

 

RESISTOR TERMINALS

 

 

 

 

 

 

 

 

 

 

Voltage Range5

 

VA, B, W

 

 

0

 

VDD

V

 

Capacitance6 Ax, Bx

 

CA, B

 

f = 1 MHz, Measured to GND, Code = 80H

 

75

 

pF

 

Capacitance6 Wx

 

CW

 

f = 1 MHz, Measured to GND, Code = 80H

 

120

 

pF

 

Shutdown Current7

 

IA_SD

 

VA = VDD, VB = 0 V, SHDN = 0

 

0.01

5

µA

 

Shutdown Wiper Resistance

 

RW_SD

 

VA = VDD, VB = 0 V, SHDN = 0, VDD = 5 V

 

100

200

 

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

 

 

Input Logic High

 

VIH

 

VDD = 5 V

2.4

 

 

V

 

Input Logic Low

 

VIL

 

VDD = 5 V

 

 

0.8

V

 

Input Logic High

 

VIH

 

VDD = 3 V

2.1

 

 

V

 

Input Logic Low

 

VIL

 

VDD = 3 V

 

 

0.6

V

 

Output Logic High

 

VOH

 

RL = 2.2 kto VDD

VDD – 0.1

 

 

V

 

Output Logic Low

 

VOL

 

IOL = 1.6 mA, VDD = 5 V

 

 

0.4

V

 

Input Current

 

IIL

 

VIN = 0 V or +5 V, VDD = 5 V

 

 

± 1

µA

 

Input Capacitance6

 

CIL

 

 

 

5

 

pF

 

POWER SUPPLIES

 

 

 

 

 

 

 

 

 

 

Power Supply Range

 

VDD Range

 

 

2.7

 

5.5

V

 

Supply Current (CMOS)

 

IDD

 

VIH = VDD or VIL = 0 V

 

0.01

5

µA

 

Supply Current (TTL)8

 

IDD

 

VIH = 2.4 V or 0.8 V, VDD = 5.5 V

 

0.9

4

mA

 

Power Dissipation (CMOS)9

 

PDISS

 

VIH = VDD or VIL = 0 V, VDD = 5.5 V

 

 

27.5

µW

 

Power Supply Sensitivity

 

PSS

 

VDD = 5 V ± 10%

 

0.0002

0.001

%/%

 

 

 

 

PSS

 

VDD = 3 V ± 10%

 

0.006

0.03

%/%

 

 

DYNAMIC CHARACTERISTICS6, 10

 

 

 

R = 10 k

 

 

 

 

 

 

Bandwidth –3 dB

 

BW_10K

 

 

600

 

kHz

 

Total Harmonic Distortion

 

THDW

 

VA = 1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz

 

0.003

 

%

 

 

VW Settling Time

 

tS

 

VA = VDD, VB = 0 V, ±1% Error Band

 

2

 

µs

 

Resistor Noise Voltage

 

eNWB

 

RWB = 5 k, f = 1 kHz, RS = 0

 

9

 

nV/Hz

 

Crosstalk11

 

CT

 

VA = VDD, VB = 0 V

 

–65

 

dB

 

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See TPC 29 test circuit.

IW = 50 µA for VDD = 3 V and IW = 400 µA for VDD = 5 V for the 10 kversions. 3VAB = VDD, Wiper (VW) = No Connect.

4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL Specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See TPC 28 test circuit.

5Resistor terminals A, B, W have no limitations on polarity with respect to each other.

6Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.

7Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.

8Worst-case supply current consumed when input logic level at 2.4 V, standard characteristic of CMOS logic. See TPC 20 for a plot of IDD versus logic voltage. 9PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.

10All Dynamic Characteristics use VDD = 5 V.

11Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change. Specifications subject to change without notice.

–2–

REV. C

AD8400/AD8402/AD8403

SPECIFICATIONS (VDD = 3 V 10% or 5 V 10%, VA = VDD, VB = 0 V, –40 C TA +125 C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS–50 k and 100 k VERSIONS

Parameter

 

Symbol

 

Conditions

Min

Typ1

Max

Unit

DC CHARACTERISTICS RHEOSTAT MODE (Specifications Apply to All VRs)

 

± 1/4

 

 

Resistor Differential NL2

 

R-DNL

 

RWB, VA = No Connect

–1

+1

LSB

 

 

Resistor Nonlinearity2

 

R-INL

 

RWB, VA = No Connect

–2

± 1/2

+2

LSB

Nominal Resistance3

 

RAB

 

TA = 25°C, Model: AD840XYY50

35

50

65

k

 

 

RAB

 

TA = 25°C, Model: AD840XYY100

70

100

130

k

Resistance Tempco

 

RAB/T

 

VAB = VDD, Wiper = No Connect

 

500

 

ppm/°C

Wiper Resistance

 

RW

 

IW = 1 V/R

 

53

100

Nominal Resistance Match

 

R/RAB

 

CH 1 to 2, 3, or 4, VAB = VDD, TA = 25°C

 

0.2

1

%

DC CHARACTERISTICS POTENTIOMETER DIVIDER (Specifications Apply to All VRs)

 

 

 

 

Resolution

 

N

 

 

 

8

± 1

 

Bits

 

 

 

 

 

Integral Nonlinearity4

 

INL

 

 

 

–4

+4

LSB

Differential Nonlinearity4

 

DNL

 

 

VDD = 5 V

–1

± 1/4

+1

LSB

 

 

DNL

 

 

VDD = 3 V TA = 25°C

–1

± 1/4

+1

LSB

 

 

DNL

 

 

VDD = 3 V TA = –40°C, +85°C

–1.5

± 1/2

+1.5

LSB

Voltage Divider Tempco

 

VW/T

 

 

Code = 80H

 

15

 

ppm/°C

Full-Scale Error

 

VWFSE

 

 

Code = FFH

–1

–0.25

0

LSB

Zero-Scale Error

 

VWZSE

 

 

Code = 00H

0

+0.1

+1

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

 

 

 

Voltage Range5

 

VA, B, W

 

 

 

0

 

VDD

V

Capacitance6 Ax, Bx

 

CA, B

 

 

f = 1 MHz, Measured to GND, Code = 80H

 

15

 

pF

Capacitance6 Wx

 

CW

 

 

f = 1 MHz, Measured to GND, Code = 80H

 

80

 

pF

Shutdown Current7

 

IA_SD

 

 

VA = VDD, VB = 0 V, SHDN = 0

 

0.01

5

µA

Shutdown Wiper Resistance

 

RW_SD

 

 

VA = VDD, VB = 0 V, SHDN = 0, VDD = 5 V

 

100

200

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

 

Input Logic High

 

VIH

 

 

VDD = 5 V

2.4

 

 

V

Input Logic Low

 

VIL

 

 

VDD = 5 V

 

 

0.8

V

Input Logic High

 

VIH

 

 

VDD = 3 V

2.1

 

 

V

Input Logic Low

 

VIL

 

 

VDD = 3 V

 

 

0.6

V

Output Logic High

 

VOH

 

 

RL = 2.2 kto VDD

VDD – 0.1

 

 

V

Output Logic Low

 

VOL

 

 

IOL = 1.6 mA, VDD = 5 V

 

 

0.4

V

Input Current

 

IIL

 

 

VIN = 0 V or 5 V, VDD = 5 V

 

 

± 1

µA

Input Capacitance6

 

CIL

 

 

 

 

5

 

pF

POWER SUPPLIES

 

 

 

 

 

 

 

 

 

Power Supply Range

 

VDD Range

 

 

 

2.7

 

5.5

V

Supply Current (CMOS)

 

IDD

 

 

VIH = VDD or VIL = 0 V

 

0.01

5

µA

Supply Current (TTL)8

 

IDD

 

 

VIH = 2.4 V or 0.8 V, VDD = 5.5 V

 

0.9

4

mA

Power Dissipation (CMOS)9

 

PDISS

 

 

VIH = VDD or VIL = 0 V, VDD = 5.5 V

 

 

27.5

µW

Power Supply Sensitivity

 

PSS

 

 

VDD = 5 V ± 10%

 

0.0002

0.001

%/%

 

 

PSS

 

 

VDD = 3 V ± 10%

 

0.006

0.03

%/%

DYNAMIC CHARACTERISTICS6, 10

 

 

 

 

R = 50 k

 

 

 

 

Bandwidth –3 dB

 

BW_50K

 

 

 

125

 

kHz

 

 

BW_100K

 

 

R = 100 k

 

71

 

kHz

Total Harmonic Distortion

 

THDW

 

 

VA = 1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz

 

0.003

 

%

VW Settling Time

 

tS_50K

 

 

VA = VDD, VB = 0 V, ±1% Error Band

 

9

 

µs

 

 

tS_100K

 

 

VA = VDD, VB = 0 V, ±1% Error Band

 

18

 

µs

Resistor Noise Voltage

 

eNWB_50K

 

 

RWB = 25 k, f = 1 kHz, RS = 0

 

20

 

nV/Hz

Crosstalk11

 

eNWB_100K

 

 

RWB = 50 k, f = 1 kHz, RS = 0

 

29

 

nV/Hz

 

CT

 

 

VA = VDD, VB = 0 V

 

–65

 

dB

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See TPC 29 test circuit.

IW = VDD/R for VDD = 3 V or 5 V for the 50 kand 100 kversions. 3VAB = VDD, Wiper (VW) = No Connect.

4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL Specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See TPC 28 test circuit.

5Resistor terminals A, B, W have no limitations on polarity with respect to each other.

6Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.

7Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.

8Worst-case supply current consumed when input logic level at 2.4 V, standard characteristic of CMOS logic. See TPC 20 for a plot of IDD versus logic voltage. 9PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.

10All Dynamic Characteristics use VDD = 5 V.

11Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change. Specifications subject to change without notice.

REV. C

–3–

 

 

 

(VDD = 3 V 10% or 5 V 10%, VA = VDD, VB = 0 V,

AD8400/AD8402/AD8403–SPECIFICATIONS –40 C TA +125 C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS–1 k VERSION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

Symbol

Conditions

Min

Typ1

Max

Unit

DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs

 

 

 

 

 

Resistor Differential NL2

 

R-DNL

RWB, VA = No Connect

–5

–1

+3

LSB

 

Resistor Nonlinearity2

 

R-INL

RWB, VA = No Connect

–4

± 1.5

+4

LSB

Nominal Resistance3

 

RAB

TA = 25°C, Model: AD840XYY1

0.8

1.2

1.6

k

Resistance Tempco

 

RAB/T

VAB = VDD, Wiper = No Connect

 

700

 

ppm/°C

Wiper Resistance

 

RW

IW = 1 V/RAB

 

53

100

Nominal Resistance Match

 

R/RAB

CH 1 to 2, VAB = VDD, TA = 25°C

 

0.75

2

%

 

DC CHARACTERISTICS POTENTIOMETER DIVIDER Specifications Apply to All VRs

 

 

 

 

 

Resolution

 

N

 

8

± 2

 

Bits

Integral Nonlinearity4

 

INL

 

–6

+6

LSB

Differential Nonlinearity4

 

DNL

VDD = 5 V

–4

–1.5

+2

LSB

 

 

DNL

VDD = 3 V, TA = 25°C

–5

–2

+5

LSB

Voltage Divider Temperature Coefficent

 

VW/T

Code = 80H

 

25

 

ppm/°C

Full-Scale Error

 

VWFSE

Code = FFH

–20

–12

0

LSB

Zero-Scale Error

 

VWZSE

Code = 00H

0

6

10

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

 

 

Voltage Range5

 

VA, B, W

 

0

 

VDD

V

Capacitance6 Ax, Bx

 

CA, B

f = 1 MHz, Measured to GND, Code = 80H

 

75

 

pF

Capacitance6 Wx

 

CW

f = 1 MHz, Measured to GND, Code = 80H

 

120

 

pF

Shutdown Supply Current7

 

IA_SD

VA = VDD, VB = 0 V, SHDN = 0

 

0.01

5

µA

Shutdown Wiper Resistance

 

RW_SD

VA = VDD, VB = 0 V, SHDN = 0, VDD = 5 V

 

50

100

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

Input Logic High

 

VIH

VDD = 5 V

2.4

 

 

V

Input Logic Low

 

VIL

VDD = 5 V

 

 

0.8

V

Input Logic High

 

VIH

VDD = 3 V

2.1

 

 

V

Input Logic Low

 

VIL

VDD = 3 V

 

 

0.6

V

Output Logic High

 

VOH

RL = 2.2 kto VDD

VDD – 0.1

 

 

V

Output Logic Low

 

VOL

IOL = 1.6 mA, VDD = 5 V

 

 

0.4

V

Input Current

 

IIL

VIN = 0 V or 5 V, VDD = 5 V

 

 

± 1

µA

Input Capacitance6

 

CIL

 

 

5

 

pF

POWER SUPPLIES

 

 

 

 

 

 

 

 

Power Supply Range

 

VDD Range

 

2.7

 

5.5

V

Supply Current (CMOS)

 

IDD

VIH = VDD or VIL = 0 V

 

0.01

5

µA

Supply Current (TTL)8

 

IDD

VIH = 2.4 V or 0.8 V, VDD = 5.5 V

 

0.9

4

mA

Power Dissipation (CMOS)9

 

PDISS

VIH = VDD or VIL = 0 V, VDD = 5.5 V

 

 

27.5

µW

Power Supply Sensitivity

 

PSS

VDD = 5 V ± 10%

 

0.0035

0.008

%/%

 

 

 

PSS

VDD = 3 V ± 10%

 

0.05

0.13

%/%

 

DYNAMIC CHARACTERISTICS6, 10

 

 

R = 1 k

 

 

 

 

 

Bandwidth –3 dB

 

BW_1K

 

5,000

 

kHz

Total Harmonic Distortion

 

THDW

VA = 1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz

 

0.015

 

%

 

VW Settling Time

 

tS

VA = VDD, VB = 0 V, ± 1% Error Band

 

0.5

 

µs

Resistor Noise Voltage

 

eNWB

RWB = 500 , f = 1 kHz, RS = 0

 

3

 

nV/Hz

Crosstalk11

 

CT

VA = VDD, VB = 0 V

 

–65

 

dB

 

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. See TPC 29 test circuit.

IW = 500 µA for VDD = 3 V and IW = 2.5 mA for VDD = 5 V for 1 kversion. 3VAB = VDD, Wiper (VW) = No Connect.

4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL Specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See TPC 28 test circuit.

5Resistor terminals A, B, W have no limitations on polarity with respect to each other.

6Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.

7Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.

8Worst-case supply current consumed when input logic level at 2.4 V, standard characteristic of CMOS logic. See TPC 20 for a plot of IDD versus logic voltage. 9PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.

10All Dynamic Characteristics use VDD = 5 V.

11Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change. Specifications subject to change without notice.

–4–

REV. C

Analog Devices AD8403ARU50-REEL, AD8403ARU50, AD8400AN1, AD8400ARU100-REEL, AD8400ARU100 Datasheet

AD8400/AD8402/AD8403

SPECIFICATIONS (VDD = 3 V 10% or 5 V 10%, VA = VDD, VB = 0 V, –40 C TA +125 C unless otherwise noted.)

ELECTRICAL CHARACTERISTICS–ALL VERSIONS

Parameter

Symbol

Conditions

Min

Typ1

Max

Unit

SWITCHING CHARACTERISTICS2, 3

 

 

 

 

 

 

Input Clock Pulsewidth

tCH, tCL

Clock Level High or Low

10

 

 

ns

Data Setup Time

tDS

 

5

 

 

ns

Data Hold Time

tDH

RL = 1 kto 5 V, CL 20 pF

5

 

 

ns

CLK to SDO Propagation Delay4

tPD

1

 

25

ns

CS Setup Time

tCSS

 

10

 

 

ns

CS High Pulsewidth

tCSW

 

10

 

 

ns

Reset Pulsewidth

tRS

 

50

 

 

ns

CLK Fall to CS Rise Hold Time

tCSH

 

0

 

 

ns

CS Rise to Clock Rise Setup

tCS1

 

10

 

 

ns

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V.

2Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.

3See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V. Switching characteristics are measured using VDD = 3 V or 5 V. To avoid false clocking, a minimum input logic slew rate of 1 V/ s should be maintained. 4Propagation Delay depends on value of VDD, RL, and CL—see Applications section.

Specifications subject to change without notice.

 

1

 

 

 

 

 

 

 

 

 

SDI

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

0

1

CLK

0

DAC REGISTER LOAD 1

CS

0

VDD

VOUT

0V

1

SDI

(DATA IN)

0

SDO 1

(DATA OUT)

0

1

CLK

0

1

CS

0

VDD

VOUT0V

Ax OR Dx

 

 

 

Ax OR Dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDS

 

 

 

 

tDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A'x OR D'x

A'x OR D'x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPD_MIN

 

 

 

 

 

 

 

 

 

 

 

 

tPD_MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSS

 

 

 

 

 

 

 

 

 

t

CSH

tCSW

tS

1 %

1% ERROR BAND

Figure 2a. Timing Diagram

Figure 2b. Detail Timing Diagram

1

RS

0

VDD

VOUT

VDD/2

tRS

tS

1%

1% ERROR BAND

Figure 2c. Reset Timing Diagram

REV. C

–5–

AD8400/AD8402/AD8403

ABSOLUTE MAXIMUM RATINGS*

(TA = 25°C, unless otherwise noted.)

 

VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . .

. . . –0.3 V, +8 V

VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . .

. . . . . . 0 V, VDD

AX – BX, AX – WX, BX – WX . . . . . . . . . . . . . .

. . . . . . . ± 20 mA

Digital Input and Output Voltage to GND . .

. . . . . . 0 V, 7 V

Operating Temperature Range . . . . . . . . . .

–40°C to +125°C

Maximum Junction Temperature (TJ max) . .

. . . . . . . . 150°C

Storage Temperature . . . . . . . . . . . . . . . . . .

–65°C to +150°C

Lead Temperature (Soldering, 10 sec) . . . . .

. . . . . . . . 300°C

Package Power Dissipation . . . . . . . . . . . . .

(TJ max – TA)/θJA

Thermal Resistance JA)

103°C/W

P-DIP (N-8) . . . . . . . . . . . . . . . . . . . . . . .

SOIC (SO-8) . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 158°C/W

P-DIP (N-14) . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 83°C/W

P-DIP (N-24) . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 63°C/W

SOIC (SO-14) . . . . . . . . . . . . . . . . . . . . . .

. . . . . 120°C/W

SOIC (SOL-24) . . . . . . . . . . . . . . . . . . . . .

. . . . . . 70°C/W

TSSOP-14 (RU-14) . . . . . . . . . . . . . . . . . .

. . . . . 180°C/W

TSSOP-24 (RU-24) . . . . . . . . . . . . . . . . . .

. . . . . 143°C/W

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table I. Serial Data Word Format

ADDR

 

 

 

 

DATA

 

 

 

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

 

 

 

 

 

 

 

 

 

 

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

MSB

LSB

MSB

 

 

 

 

 

 

LSB

29

28

27

 

 

 

 

 

 

20

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8400/AD8402/AD8403 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–6–

REV. C

Loading...
+ 14 hidden pages