Analog Devices AD844SQ-883B, AD844SQ, AD844SCHIPS, AD844JR-16-REEL7, AD844JR-16-REEL Datasheet

...
0 (0)

a

60 MHz, 2000 V/ s

Monolithic Op Amp

 

 

 

 

 

AD844

 

 

 

FEATURES

Wide Bandwidth: 60 MHz at Gain of –1 Wide Bandwidth: 33 MHz at Gain of –10

Very High Output Slew Rate: Up to 2000 V/ s

20 MHz Full Power Bandwidth, 20 V p-p, RL = 500

Fast Settling: 100 ns to 0.1% (10 V Step) Differential Gain Error: 0.03% at 4.4 MHz Differential Phase Error: 0.158 at 4.4 MHz High Output Drive: 650 mA into 50 Load

Low Offset Voltage: 150 mV Max (B Grade) Low Quiescent Current: 6.5 mA

Available in Tape and Reel in Accordance with EIA-481A Standard

APPLICATIONS

Flash ADC Input Amplifiers

High-Speed Current DAC Interfaces

Video Buffers and Cable Drivers

Pulse Amplifiers

CONNECTION DIAGRAMS

8-Lead Plastic (N),

16-Lead SOIC

and Cerdip (Q) Packages

(R) Package

NULL

1

AD844

–IN

2

 

+IN

3

 

–VS

4

TOP VIEW

(Not to Scale)

8

NC

1

AD844

16

NC

NULL

 

 

 

 

 

OFFSETNULL

2

 

15

OFFSETNULL

7

+VS

 

 

 

V+

 

–IN

3

 

14

6

OUTPUT

 

 

 

 

 

NC

4

 

13

NC

5

TZ

 

 

 

 

 

+IN

5

 

12

OUTPUT

 

NC

6

 

11

TZ

 

V–

7

 

10

NC

 

NC

8

TOP VIEW

9

NC

 

(Not to Scale)

NC = NO CONNECT

PRODUCT DESCRIPTION

The AD844 is a high-speed monolithic operational amplifier fabricated using Analog Devices’ junction isolated complementary bipolar (CB) process. It combines high bandwidth and very fast large signal response with excellent dc performance. Although optimized for use in current to voltage applications and as an inverting mode amplifier, it is also suitable for use in many noninverting applications.

The AD844 can be used in place of traditional op amps, but its current feedback architecture results in much better ac performance, high linearity and an exceptionally clean pulse response.

This type of op amp provides a closed-loop bandwidth which is determined primarily by the feedback resistor and is almost independent of the closed-loop gain. The AD844 is free from the slew rate limitations inherent in traditional op amps and other current-feedback op amps. Peak output rate of change can be over 2000 V/µs for a full 20 V output step. Settling time is typically 100 ns to 0.1%, and essentially independent of gain. The AD844 can drive 50 loads to ±2.5 V with low distortion and is short circuit protected to 80 mA.

The AD844 is available in four performance grades and three package options. In the 16-lead SOIC (R) package, the AD844J is specified for the commercial temperature range of 0°C to 70°C. The AD844A and AD844B are specified for the industrial temperature range of –40°C to +85°C and are available in the cerdip (Q)

REV. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

package. The AD844A is also available in an 8-lead plastic mini-DIP (N). The AD844S is specified over the military temperature range of –55°C to +125°C. It is available in the 8-lead cerdip (Q) package. “A” and “S” grade chips and devices processed to MIL-STD-883B, REV. C are also available.

PRODUCT HIGHLIGHTS

1.The AD844 is a versatile, low cost component providing an excellent combination of ac and dc performance.

2.It is essentially free from slew rate limitations. Rise and fall times are essentially independent of output level.

3.The AD844 can be operated from ± 4.5 V to ± 18 V power supplies and is capable of driving loads down to 50 , as well as driving very large capacitive loads using an external network.

4.The offset voltage and input bias currents of the AD844 are

laser trimmed to minimize dc errors; VOS drift is typically 1 µV/°C and bias current drift is typically 9 nA/°C.

5.The AD844 exhibits excellent differential gain and differential phase characteristics, making it suitable for a variety of video applications with bandwidths up to 60 MHz.

6.The AD844 combines low distortion, low noise and low drift with wide bandwidth, making it outstanding as an input amplifier for flash A/D converters.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD844–SPECIFICATIONS (@ TA = 25 C and VS = 15 V dc, unless otherwise noted)

 

 

 

AD844J/A

 

 

AD844B

 

AD844S

 

 

Model

Conditions

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Unit

INPUT OFFSET VOLTAGE1

 

 

50

300

 

50

150

 

50

300

µV

TMIN–TMAX

 

 

75

500

 

75

200

 

125

500

µV

vs. Temperature

 

 

1

 

 

1

5

 

1

5

µV/°C

vs. Supply

5 V–18 V

 

 

 

 

 

 

 

 

 

µV/V

Initial

 

 

4

20

 

4

10

 

4

20

TMIN–TMAX

VCM = ± 10 V

 

4

 

 

4

10

 

4

20

µV/V

vs. Common Mode

 

 

 

 

 

 

 

 

 

µV/V

Initial

 

 

10

35

 

10

20

 

10

35

TMIN–TMAX

 

 

10

 

 

10

20

 

10

35

µV/V

INPUT BIAS CURRENT

 

 

 

 

 

 

 

 

 

 

 

–Input Bias Current1

 

 

200

450

 

150

250

 

200

450

nA

TMIN–TMAX

 

 

800

1500

 

750

1100

 

1900

2500

nA

vs. Temperature

 

 

9

 

 

9

15

 

20

30

nA/°C

vs. Supply

5 V–18 V

 

 

 

 

 

 

 

 

 

 

Initial

 

 

175

250

 

175

200

 

175

250

nA/V

TMIN–TMAX

VCM = ± 10 V

 

220

 

 

220

240

 

220

300

nA/V

vs. Common Mode

 

 

 

 

 

 

 

 

 

 

Initial

 

 

90

160

 

90

110

 

90

160

nA/V

TMIN–TMAX

 

 

110

 

 

110

150

 

120

200

nA/V

+Input Bias Current1

 

 

150

400

 

100

200

 

100

400

nA

TMIN–TMAX

 

 

350

700

 

300

500

 

800

1300

nA

vs. Temperature

 

 

3

 

 

3

7

 

7

15

nA/°C

vs. Supply

5 V–18 V

 

 

 

 

 

 

 

 

 

 

Initial

 

 

80

150

 

80

100

 

80

150

nA/V

TMIN–TMAX

VCM = ± 10 V

 

100

 

 

100

120

 

120

200

nA/V

vs. Common Mode

 

 

 

 

 

 

 

 

 

 

Initial

 

 

90

150

 

90

120

 

90

150

nA/V

TMIN–TMAX

 

 

130

 

 

130

190

 

140

200

nA/V

INPUT CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

Input Resistance

 

 

 

 

 

 

 

 

 

 

–Input

 

 

50

65

 

50

65

 

50

65

+Input

 

7

10

 

7

10

 

7

10

 

M

Input Capacitance

 

 

 

 

 

 

 

 

 

 

 

–Input

 

 

2

 

 

2

 

 

2

 

pF

+Input

 

 

2

 

 

2

 

 

2

 

pF

Input Voltage Range

 

± 10

 

 

± 10

 

 

± 10

 

 

 

Common Mode

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

INPUT VOLTAGE NOISE

f 1 kHz

 

2

 

 

2

 

 

2

 

nV/Hz

 

 

 

 

 

 

 

 

 

 

 

 

INPUT CURRENT NOISE

f 1 kHz

 

 

 

 

 

 

 

 

 

pA/Hz

–Input

 

10

 

 

10

 

 

10

 

+Input

f 1 kHz

 

12

 

 

12

 

 

12

 

pA/Hz

 

 

 

 

 

 

 

 

 

 

 

 

OPEN LOOP TRANSRESISTANCE

VOUT = ± 10 V

 

 

 

 

 

 

 

 

 

 

 

RLOAD = 500

2.2

3.0

 

2.8

3.0

 

2.2

3.0

 

M

TMIN–TMAX

 

1.3

2.0

 

1.6

2.0

 

1.3

1.6

 

M

Transcapacitance

 

 

4.5

 

 

4.5

 

 

4.5

 

pF

 

 

 

 

 

 

 

 

 

 

 

 

DIFFERENTIAL GAIN ERROR2

f = 4.4 MHz

 

0.03

 

 

0.03

 

 

0.03

 

%

DIFFERENTIAL PHASE ERROR2

f = 4.4 MHz

 

0.15

 

 

0.15

 

 

0.15

 

Degree

FREQUENCY RESPONSE

 

 

 

 

 

 

 

 

 

 

 

Small Signal Bandwidth

 

 

 

 

 

 

 

 

 

 

 

Gain = –13

 

 

60

 

 

60

 

 

60

 

MHz

Gain = –104

 

 

33

 

 

33

 

 

33

 

MHz

TOTAL HARMOMIC DISTORTION

f = 100 kHz,

 

 

 

 

 

 

 

 

 

 

 

2 V rms5

 

0.005

 

 

0.005

 

 

0.005

 

%

SETTLING TIME

± 15 V Supplies

 

 

 

 

 

 

 

 

 

 

10 V Output Step

 

 

 

 

 

 

 

 

 

 

Gain = –1, to 0.1%5

 

 

100

 

 

100

 

 

100

 

ns

Gain = –10, to 0.1%6

± 5 V Supplies

 

100

 

 

100

 

 

100

 

ns

2 V Output Step

 

 

 

 

 

 

 

 

 

 

Gain = –1, to 0.1%5

 

 

110

 

 

110

 

 

110

 

ns

Gain = –10, to 0.1%6

 

 

100

 

 

100

 

 

100

 

ns

–2–

REV. D

θJA = 90°C/W θJA = 110°C/W θJA = 100°C/W

 

 

 

 

 

 

 

 

 

 

 

AD844

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD844J/A

 

 

AD844B

 

 

AD844S

 

 

 

Model

Conditions

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

 

Unit

OUTPUT SLEW RATE

Overdriven

 

 

 

 

 

 

 

 

 

 

V/µs

 

Input

1200

2000

 

1200

2000

 

1200

2000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FULL POWER BANDWIDTH

VS = ± 15 V

 

 

 

 

 

 

 

 

 

 

 

VOUT = 20 V p-p5

 

20

 

 

20

 

 

20

 

 

MHz

VOUT = 2 V p-p5

VS = ± 5 V

 

20

 

 

20

 

 

20

 

 

MHz

 

THD = 3%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT CHARACTERISTICS

RLOAD = 500

 

 

 

 

 

 

 

 

 

 

± V

Voltage

10

11

 

10

11

 

10

11

 

 

Short Circuit Current

 

 

80

 

 

80

 

 

80

 

 

mA

TMIN–TMAX

 

 

60

 

 

60

 

 

60

 

 

mA

Output Resistance

Open Loop

 

15

 

 

15

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER SUPPLY

 

 

 

 

 

 

 

 

 

 

 

 

Operating Range

 

± 4.5

 

± 18

± 4.5

 

± 18

+4.5

 

± 18

 

V

Quiescent Current

 

 

6.5

7.5

 

6.5

7.5

 

6.5

7.5

 

mA

TMIN–TMAX

 

 

7.5

8.5

 

7.5

8.5

 

8.5

9.5

 

mA

NOTES

1Rated performance after a 5 minute warmup at TA = 25°C.

2Input signal 285 mV p-p carrier (40 IRE) riding on 0 mV to 642 mV (90 IRE) ramp. R L= 100 ; R1, R2 = 300 . 3Input signal 0 dBm, CL = 10 pF, RL = 500 , R1 = 500 , R2 = 500 in Figure 2.

4Input signal 0 dBm, CL =10 pF, RL = 500 , R1 = 500 , R2 = 50 in Figure 2. 5CL = 10 pF, RL = 500 , R1 = 1 k, R2 = 1 kin Figure 2.

6CL = 10 pF, RL = 500 , R1 = 500 , R2 = 50 in Figure 2.

Specifications subject to change without notice. All min and max specifications are guaranteed.

ABSOLUTE MAXIMUM RATINGS1

± 18 V

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .

Power Dissipation2 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 1.1 W

Output Short Circuit Duration . . . . . . . . . . .

. . . . . . Indefinite

Common-Mode Input Voltage . . . . . . . . . . .

. . . . . . . . . . ± VS

Differential Input Voltage . . . . . . . . . . . . . . .

. . . . . . . . . . 6 V

Inverting Input Current

 

Continuous . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 5 mA

Transient . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . 10 mA

Storage Temperature Range (Q) . . . . . . . . .

–65°C to +150°C

(N, R) . . . . . . .

–65°C to +125°C

Lead Temperature Range (Soldering 60 sec) .

. . . . . . . . 300°C

ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 1000 V

ORDERING GUIDE

 

Temperature

Package

Model

Range

Option*

 

 

 

AD844AN

–40°C to +85°C

N-8

AD844ACHIPS

–40°C to +85°C

Die

AD844AQ

–40°C to +85°C

Q-8

AD844BQ

–40°C to +85°C

Q-8

AD844JR-16

0°C to 70°C

R-16

AD844JR-16-REEL

0°C to 70°C

13" Tape

 

0°C to 70°C

and Reel

AD844JR-16-REEL7

7" Tape

 

–55°C to +125°C

and Reel

AD844SCHIPS

Die

AD844SQ

–55°C to +125°C

Q-8

AD844SQ/883B

–55°C to +125°C

Q-8

5962-8964401PA

–55°C to +125°C

Q-8

*N = Plastic DIP; Q = Cerdip; R = Small Outline IC (SOIC).

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

28-Lead Plastic Package:

8-Lead Cerdip Package:

16-Lead SOIC Package:

METALIZATION PHOTOGRAPH

Contact factory for latest dimensions.

Dimension shown in inches and (mm).

REV. D

–3–

AD844–Typical Characteristics (TA = 25 C and VS = 15 V, unless otherwise noted)

MHz–

70

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

BANDWIDTH3dB–

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

10

15

 

20

 

0

 

 

 

 

SUPPLY VOLTAGE – V

 

 

 

TPC 1. –3 dB Bandwidth vs.

 

 

 

Supply Voltage R1 = R2 = 500

– V

20

 

 

 

 

 

 

 

 

 

 

TA = 25 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGEOUTPUT

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OF THE

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAGNITUDE

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

5

10

15

 

20

 

0

 

SUPPLY VOLTAGE – V

TPC 4. Noninverting Input Voltage Swing vs. Supply Voltage

 

 

–60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– dB

 

–70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISTORTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1V rms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HARMONIC

–100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2ND HARMONIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3RD HARMONIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

 

 

 

 

 

100

 

 

 

 

 

 

1k

 

 

 

100k

 

 

 

 

 

 

 

 

 

INPUT FREQUENCY – Hz

 

 

 

 

 

 

 

TPC 2. Harmonic Distortion vs.

 

 

Frequency, R1 = R2 = 1 k

 

 

 

 

 

 

– V

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGEOUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA

= 25 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OF THE

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAGNITUDE

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

10

15

20

 

 

0

 

 

 

SUPPLY VOLTAGE – V

TPC 5. Output Voltage Swing vs. Supply Voltage

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 500

 

 

 

 

TRANSRESISTANCE

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 50

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

50

 

 

100

 

 

150

 

–50

 

 

 

 

 

 

 

 

 

 

 

 

 

TEMPERATURE – C

 

 

 

 

 

TPC 3. Transresistance vs.

 

 

 

 

 

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– mA

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

VS = 15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPPLY

6

 

 

 

 

 

 

 

 

VS

=

5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

–60 –40 –20 0 20 40 60 80 100 120 140 TEMPERATURE – C

TPC 6. Quiescent Supply Current vs. Temperature and Supply Voltage

 

2

 

 

 

 

 

100

 

 

 

 

A

1

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENTBIASINPUT

 

 

 

IBN

 

IMPEDANCEOUTPUT

 

5V SUPPLIES

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

IBP

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–1

 

 

 

 

 

0.1

 

 

 

 

 

–2

 

 

 

 

 

0.01

 

1M

10M

 

 

0

50

100

 

 

10k

100k

100M

 

–50

150

 

 

 

 

TEMPERATURE – C

 

 

 

 

FREQUENCY – Hz

 

TPC 7. Inverting Input Bias Cur-

TPC 8. Output Impedance vs.

rent (IBN) and Noninverting Input

Frequency, Gain = –1, R1 = R2 = 1 k

Bias Current (IBP) vs. Temperature

 

 

40

 

 

 

 

 

 

 

35

 

 

 

 

VS = 15V

 

– MHz

30

 

 

 

 

 

 

BANDWIDTH

25

 

 

 

VS = 5V

 

20

 

 

 

 

 

 

–3dB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

–60 –40 –20

0

20 40

60

80

100 120

140

 

 

TEMPERATURE – C

 

 

TPC 9. –3 dB Bandwidth vs. Temperature, Gain = –1, R1 = R2 = 1 k

–4–

REV. 0

Analog Devices AD844SQ-883B, AD844SQ, AD844SCHIPS, AD844JR-16-REEL7, AD844JR-16-REEL Datasheet

Inverting Gain-of-1 AC Characteristics

 

 

 

 

+VS

 

 

6

 

R1 = R2 = 500

 

 

4.7

 

 

 

 

 

0.22 F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dB

–6

 

R1 = R2 = 1k

 

 

R2

 

 

 

 

 

VIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAIN

 

 

 

 

 

AD844

VOUT

–12

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL

CL

 

–18

 

 

 

 

0.22 F

4.7

 

 

 

 

 

 

 

 

 

 

–24

 

 

 

 

–VS

 

 

 

100k

1M

10M

100M

 

 

 

 

 

FREQUENCY – Hz

 

 

 

 

 

 

 

 

TPC 10. Inverting Amplifier,

TPC 11. Gain vs. Frequency for

Gain of –1 (R1 = R2)

Gain = –1, RL = 500 , CL = 0 pF

AD844

 

–180

 

 

 

 

 

 

 

 

 

 

 

 

 

Degrees–

–210

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–240

 

 

 

 

 

 

 

R1 = R2 = 500

 

 

 

 

 

 

 

 

 

 

 

 

PHASE

 

 

 

 

 

 

 

 

 

 

 

 

 

–270

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 = R2 = 1k

 

 

 

 

 

 

 

 

–300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–330

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

25

 

 

 

 

 

50

 

 

 

 

FREQUENCY – MHz

 

 

TPC 12. Phase vs. Frequency Gain = –1, RL = 500 , CL = 0 pF

TPC 13. Large Signal Pulse

TPC 14. Small Signal Pulse

Response, Gain = –1, R1 = R2 = 1 k

Response, Gain = –1, R1 = R2 = 1 k

 

 

Inverting Gain-of-10 AC Characteristics

 

 

 

 

26

 

 

 

 

 

+VS

 

 

 

RL = 500

 

 

0.22 F

4.7

 

20

 

 

 

 

 

 

 

 

 

 

 

 

500

dB–

14

 

RL = 50

 

 

 

 

 

 

 

 

 

 

GAIN

 

 

 

VIN

 

8

 

 

 

 

50

 

 

 

 

 

 

 

AD844

VOUT

 

 

 

 

 

+

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

RL

CL

 

 

 

 

 

0.22 F

 

 

–4

 

 

 

 

4.7

 

100k

1M

10M

100M

 

 

 

 

FREQUENCY – Hz

 

 

 

 

 

 

 

 

–VS

 

 

 

 

 

 

TPC 15. Gain of –10 Amplifier

TPC 16. Gain vs. Frequency,

 

 

 

 

 

Gain = –10

 

 

 

 

–180

 

 

 

 

 

 

 

 

 

 

 

 

 

Degrees

–210

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–240

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL

= 500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHASE

–270

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL = 50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–330

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

0

 

 

 

50

 

 

 

 

FREQUENCY – MHz

 

 

 

TPC 17. Phase vs. Frequency, Gain = –10

REV. D

–5–

Loading...
+ 11 hidden pages