ANALOG DEVICES ADSP-21000 Service Manual

0 (0)

ADSP-21000 Family

Application Handbook Volume

1

a

ADSP-21000 Family Application Handbook Volume 1

1994 Analog Devices, Inc.

ALL RIGHTS RESERVED

PRODUCT AND DOCUMENTATION NOTICE: Analog Devices reserves the right to change this product and its documentation without prior notice.

Information furnished by Analog Devices is believed to be accurate and reliable.

However, no responsibility is assumed by Analog Devices for its use, nor for any infringement of patents, or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices.

SHARC, EZ-ICE and EZ-LAB are trademarks of Analog Devices, Inc. MS-DOS and Windows are trademarks of Microsoft, Inc.

PRINTED IN U.S.A.

 

Printing History

 

FIRST EDITION

5/94

For marketing information or Applications Engineering assistance, contact your local Analog Devices sales office or authorized distributor.

If you have suggestions for how the ADSP-2100 Family development tools or documentation can better serve your needs, or you need Applications Engineering assistance from Analog Devices, please contact:

Analog Devices, Inc.

DSP Applications Engineering

One Technology Way

Norwood, MA 02062-9106

Tel: (617) 461-3672

Fax: (617) 461-3010

e-mail: dsp_applications@analog.com

The System IC Products Division runs a Bulletin Board Service that can be reached at speeds up to 14,400 baud, no parity, 8 bits data, 1 stop bit, dialing (617) 461-4258. This BBS supports: V.32bis, error correction (V.42 and MNP classes 2, 3, and 4), and data compression (V.42bis and MNP class 5)

The System IC Products Division Applications Group maintains an Internet FTP site. Login as anonymous using your email address for your password. Type (from your UNIX prompt):

ftp ftp.analog.com (or type: ftp 137.71.23.11)

For additional marketing information, call (617) 461-3881 in Norwood MA, USA.

Literature

ADSP-21000 FAMILY MANUALS

ADSP-21020 User’s Manual

ADSP-21000 SHARC Preliminary Users Manual

Complete description of processor architectures and system interfaces.

ADSP-21000 Family Assembler Tools & Simulator Manual ADSP-21000 Family C Tools Manual

ADSP-21000 Family C Runtime Library Manual

Programmer’s references.

ADSP-21020 EZ-ICE Manual

ADSP-21020 EZ-LAB Manual

User’s manuals for in-circuit emulators and demonstration boards.

SPECIFICATIONINFORMATION

ADSP-21020 Data Sheet

ADSP-2106 SHARC Preliminary Data Sheet

ADSP-21000 Family Development Tools Data Sheet

Contents

CHAPTER 1

INTRODUCTION

 

1.1

USAGE CONVENTIONS ...................................................................

1

1.2

DEVELOPMENT RESOURCES .........................................................

1

1.2.1

 

Software Development Tools .....................................................

1

1.2.2

 

Hardware Development Tools ..................................................

2

1.2.2.1

 

EZ-LAB ..................................................................................

2

1.2.2.2

 

EZ-ICE ...................................................................................

2

1.2.3

 

Third Party Support ....................................................................

2

1.2.4

 

DSPatch .........................................................................................

3

1.2.5

 

Applications Engineering Support ...........................................

3

1.2.6

 

ADSP-21000 Family Classes .......................................................

4

1.3ADSP-21000 FAMILY: THE SIGNAL PROCESSING

 

SOLUTION ...........................................................................................

4

1.3.1

Why DSP? .....................................................................................

4

1.3.2

Why Floating-Point?....................................................................

4

1.3.2.1

Precision ................................................................................

4

1.3.2.2

Dynamic Range ....................................................................

5

1.3.2.3

Signal-To-Noise Ratio .........................................................

5

1.3.2.4

Ease-Of-Use ..........................................................................

5

1.3.3

Why ADSP-21000 Family? .........................................................

5

1.3.3.1

Fast & Flexible Arithmetic ..................................................

6

1.3.3.2

Unconstrained Data Flow ...................................................

6

1.3.3.3

Extended IEEE-Floating-Point Support............................

6

1.3.3.4

Dual Address Generators ...................................................

6

1.3.3.5

Efficient Program Sequencing ...........................................

6

1.4

ADSP-21000 FAMILY ARCHITECTURE OVERVIEW ..................

7

1.4.1

ADSP-21000 Family Base Architecture.....................................

7

1.4.2

ADSP-21020 DSP..........................................................................

8

1.4.3

ADSP-21060 SHARC .................................................................

10

v

Contents

CHAPTER 2

TRIGONOMETRIC, MATHEMATICAL &

 

 

 

TRANSCENDENTAL FUNCTIONS

 

2.1

SINE/COSINE APPROXIMATION ...............................................

15

2.1.1

 

Implementation ..........................................................................

16

2.1.2

 

Code Listings ..............................................................................

18

2.1.2.1

 

Sine/Cosine Approximation Subroutine .......................

18

2.1.2.2

 

Example Calling Routine ..................................................

21

2.2

TANGENT APPROXIMATION ......................................................

22

2.2.1

 

Implementation ..........................................................................

22

2.2.2

 

Code Listing-Tangent Subroutine ...........................................

24

2.3

ARCTANGENT APPROXIMATION .............................................

27

2.3.1

 

Implementation ..........................................................................

27

2.3.2

 

Listing-Arctangent Subroutine ................................................

29

2.4SQUARE ROOT & INVERSE SQUARE ROOT

 

APPROXIMATIONS .........................................................................

33

2.4.1

Implementation ..........................................................................

34

2.4.2

Code Listings ..............................................................................

35

2.4.2.1

SQRT Approximation Subroutine ...................................

36

2.4.2.2

ISQRT Approximation Subroutine .................................

38

2.4.2.3

SQRTSGL Approximation Subroutine ...........................

40

2.4.2.4

ISQRTSGL Approximation Subroutine ..........................

42

2.5

DIVISION............................................................................................

44

2.5.1

Implementation ..........................................................................

44

2.5.2

Code Listing-Division Subroutine ..........................................

44

2.6

LOGARITHM APPROXIMATIONS ...............................................

46

2.6.1

Implementation ..........................................................................

47

2.6.2

Code Listing ...............................................................................

49

2.6.2.1

Logarithm Approximation Subroutine ..........................

49

2.7

EXPONENTIAL APPROXIMATION .............................................

52

2.7.1

Implementation ..........................................................................

53

2.7.2

Code Listings-Exponential Subroutine...................................

55

2.8

POWER APPROXIMATION............................................................

57

2.8.1

Implementation ..........................................................................

59

2.8.2

Code Listings ..............................................................................

62

2.8.2.1

Power Subroutine ..............................................................

62

2.8.2.2

Global Header File .............................................................

68

2.8.2.3

Header File..........................................................................

69

2.9

REFERENCES.....................................................................................

69

vi 2222

Contents

CHAPTER 3 MATRIX FUNCTIONS

3.1

STORING A MATRIX .......................................................................

72

3.2MULTIPLICATION OF A M×N MATRIX

 

BY AN N×1 VECTOR ........................................................................

73

3.2.1

Implementation ..........................................................................

73

3.2.2

Code Listing—M×N By N×1 Multiplication ..........................

75

3.3MULTIPLICATION OF A M×N MATRIX

 

BY A N×O MATRIX ..........................................................................

77

3.3.1

 

Implementation ..........................................................................

77

3.3.2

 

Code Listing—M×N By N×O Multiplication.........................

79

3.4

MATRIX INVERSION.......................................................................

81

3.4.1

 

Implementation ..........................................................................

82

3.4.2

 

Code Listing—Matrix Inversion ..............................................

84

3.5

REFERENCES.....................................................................................

88

CHAPTER 4

FIR & IIR FILTERS

 

4.1

FIR FILTERS .......................................................................................

90

4.1.1

 

Implementation ..........................................................................

91

4.1.2

 

Code Listings ..............................................................................

96

4.1.2.1

 

Example Calling Routine ..................................................

96

4.1.2.2

 

Filter Code ..........................................................................

98

4.2

IIR FILTERS ......................................................................................

100

4.2.1

 

Implementation ........................................................................

101

4.2.1.1

 

Implementation Overview .............................................

101

4.2.1.2

 

Implementation Details ..................................................

102

4.2.2

 

Code Listings ............................................................................

106

4.2.2.1

 

iirmem.asm .......................................................................

106

4.2.2.2

 

cascade.asm ......................................................................

108

4.3

SUMMARY .......................................................................................

111

4.4

REFERENCES...................................................................................

111

CHAPTER 5

MULTIRATE FILTERS

 

5.1

SINGLE-STAGE DECIMATION FILTER.....................................

114

5.1.1

 

Implementation ........................................................................

114

5.1.2

 

Code Listings—decimate.asm ...............................................

117

5.2

SINGLE-STAGE INTERPOLATION FILTER ..............................

122

5.2.1

 

Implementation ........................................................................

122

2233 vii

Contents

5.2.2

Code Listing—interpol.asm ...................................................

124

5.3

RATIONAL RATE CHANGER (TIMER-BASED) ......................

129

5.3.1

Implementation ........................................................................

129

5.3.2

Code Listings—ratiobuf.asm .................................................

133

5.4RATIONAL RATE CHANGER

 

(EXTERNAL INTERRUPT-BASED)..............................................

138

5.4.1

 

Implementation ........................................................................

138

5.4.2

 

Code Listing—rat_2_int.asm..................................................

139

5.5

TWO-STAGE DECIMATION FILTER..........................................

143

5.5.1

 

Implementation ........................................................................

143

5.5.2

 

Code Listing—dec2stg.asm ....................................................

145

5.6

TWO-STAGE INTERPOLATION FILTER ...................................

150

5.6.1

 

Implementation ........................................................................

150

5.6.2

 

Code Listing—int2stg.asm .....................................................

151

5.7

REFERENCES...................................................................................

156

CHAPTER 6

ADAPTIVE FILTERS

 

6.1

INTRODUCTION ............................................................................

157

6.1.1

 

Applications Of Adaptive Filters ..........................................

157

6.1.1.1

 

System Identification.......................................................

158

6.1.1.2

 

Adaptive Equalization For Data Transmission ...........

159

6.1.1.3Echo Cancellation For Speech-Band

 

Data Transmission ...........................................................

159

6.1.1.4

Linear Predictive Coding of Speech Signals ................

160

6.1.1.5

Array Processing ..............................................................

160

6.1.2

FIR Filter Structures ................................................................

160

6.1.2.1

Transversal Structure ......................................................

161

6.1.2.2

Symmetric Transversal Structure ..................................

162

6.1.2.3

Lattice Structure ...............................................................

163

6.1.3

Adaptive Filter Algorithms ....................................................

164

6.1.3.1

The LMS Algorithm.........................................................

164

6.1.3.2

The RLS Algorithm ..........................................................

165

6.2

IMPLEMENTATIONS ....................................................................

167

6.2.1

Transversal Filter Implementation ........................................

168

6.2.2

LMS (Transversal FIR Filter Structure).................................

168

6.2.2.1

Code Listing—lms.asm ...................................................

169

6.2.3

llms.asm—Leaky LMS Algorithm (Transversal) ................

171

6.2.3.1

Code Listing .....................................................................

171

6.2.4

Normalized LMS Algorithm (Transversal)..........................

173

6.2.4.1

Code Listing—nlms.asm.................................................

174

6.2.5

Sign-Error LMS (Transversal) ................................................

176

viii 2244

Contents

6.2.5.1

 

Code Listing—selms.asm ...............................................

177

6.2.6

 

Sign-Data LMS (Transversal) .................................................

179

6.2.6.1

 

Code Listing—sdlms.asm ...............................................

180

6.2.7

 

Sign-Sign LMS (Transversal)..................................................

183

6.2.7.1

 

Code Listing—sslms.asm ...............................................

183

6.2.8

 

Symmetric Transversal Filter Implementation LMS ..........

185

6.2.8.1

 

Code Listing—sylms.asm ...............................................

186

6.2.9

 

Lattice Filter LMS With Joint Process Estimation ...............

189

6.2.9.1

 

Code Listing—latlms.asm ..............................................

191

6.2.10

 

RLS (Transversal Filter) ..........................................................

194

6.2.10.1

 

Code Listing—rls.asm .....................................................

195

6.2.11

 

Testing Shell For Adaptive Filters .........................................

199

6.2.11.1

 

Code Listing—testafa.asm ..............................................

199

6.3

CONCLUSION.................................................................................

202

6.4

REFERENCES...................................................................................

203

CHAPTER 7

FOURIER TRANSFORMS

 

7.1

COMPUTATION OF THE DFT .....................................................

206

7.1.1

 

Derivation Of The Fast Fourier Transform ..........................

207

7.1.2

 

Butterfly Calculations .............................................................

208

7.2

ARCHITECTURAL FEATURES FOR FFTS .................................

210

7.3

COMPLEX FFTS ..............................................................................

211

7.3.1

 

Architecture File Requirements .............................................

211

7.3.2

 

The Radix-2 DIT FFT Program ..............................................

212

7.3.3

 

The Radix-4 DIF FFT Program ...............................................

213

7.3.4

 

FFTs On The ADSP-21060 ......................................................

214

7.3.5

 

FFT Twiddle Factor Generation.............................................

214

7.4

INVERSE COMPLEX FFTs.............................................................

215

7.5

BENCHMARKS ...............................................................................

216

7.6

CODE LISTINGS .............................................................................

217

7.6.1

 

FFT.ACH—Architecture File .................................................

217

7.6.2

 

FFTRAD2.ASM—Complex Radix2 FFT ...............................

218

7.6.3

 

FFTRAD4.ASM—Complex Radix-4 FFT ..............................

225

7.6.4

 

TWIDRAD2.C—Radix2 Coefficient Generator ...................

232

7.6.5

 

TWIDRAD4.C—Radix4 Coefficient Generator ...................

234

7.7

REFERENCES...................................................................................

236

2255 ix

Contents

CHAPTER 8

GRAPHICS

 

8.1

3-D GRAPHICS LINE ACCEPT/REJECT....................................

237

8.1.1

 

Implementation ........................................................................

239

8.1.2

 

Code Listing .............................................................................

240

8.2

CUBIC BEZIER POLYNOMIAL EVALUATION .......................

244

8.2.1

 

Implementation ........................................................................

245

8.2.2

 

Code Listing .............................................................................

246

8.3

CUBIC B-SPLINE POLYNOMIAL EVALUATION...................

248

8.3.1

 

Implementation ........................................................................

248

8.3.2

 

Code Listing .............................................................................

250

8.4

BIT BLOCK TRANSFER .................................................................

253

8.4.1

 

Implementation ........................................................................

253

8.4.2

 

Code Listing .............................................................................

255

8.5

BRESENHAM LINE DRAWING ..................................................

257

8.5.1

 

Implementation ........................................................................

257

8.5.2

 

Code Listing .............................................................................

259

8.63-D GRAPHICS TRANSLATION, ROTATION, & SCALING . 262

8.6.1

 

Implementation ........................................................................

262

8.6.2

 

Code Listing .............................................................................

265

8.7

MULTIPLY 4×4 BY 4×1 MATRICES (3D GRAPHICS .....................

 

 

TRANSFORMATION) ....................................................................

267

8.7.1

 

Implementation ........................................................................

267

8.7.2

 

Code Listing .............................................................................

268

8.8

TABLE LOOKUP WITH INTERPOLATION ..............................

270

8.8.1

 

Implementation ........................................................................

270

8.8.2

 

Code Listing .............................................................................

272

8.9

VECTOR CROSS PRODUCT .........................................................

274

8.9.1

 

Implementation ........................................................................

274

8.9.2

 

Code Listing .............................................................................

275

8.10

REFERENCES...................................................................................

277

CHAPTER 9

IMAGE PROCESSING

 

9.1

TWO-DIMENSIONAL CONVOLUTION....................................

279

9.1.1

 

Implementation ........................................................................

280

9.1.2

 

Code Listing .............................................................................

283

9.2

MEDIAN FILTERING (3×3) ...........................................................

285

9.2.1

 

Implementation ........................................................................

285

9.2.2

 

Code Listing .............................................................................

286

9.3

HISTOGRAM EQUALIZATION...................................................

288

x 2266

Contents

9.3.1

Implementation ........................................................................

289

9.3.2

Code Listing .............................................................................

290

9.4

ONE-DIMENSIONAL MEDIAN FILTERING ............................

292

9.4.1

Implementation ........................................................................

292

9.4.2

Code Listings ............................................................................

294

9.5

REFERENCES...................................................................................

298

CHAPTER 10

JTAG DOWNLOADER

 

10.1

HARDWARE ....................................................................................

300

10.1.1

Details ........................................................................................

301

10.1.2

Test Access Port Operations...................................................

305

10.1.3

Timing Considerations ...........................................................

308

10.2

SOFTWARE ......................................................................................

310

10.2.1

TMS & TDI Bit Generation .....................................................

311

10.2.2

Software Example ....................................................................

313

10.2.3

Summary: How To Make The EPROM ................................

316

10.3

DETAILED TMS & TDI BEHAVIOR ............................................

316

10.3.1

Code Listings ............................................................................

320

10.3.2

pub21k.h....................................................................................

320

10.3.3

pub21k.c ....................................................................................

322

10.3.4

s2c.c ............................................................................................

 

324

10.3.5

c2b.c ...........................................................................................

 

326

10.3.6

b2b.c ...........................................................................................

 

330

10.3.7

stox.c ..........................................................................................

 

331

10.3.8

Loader Kernel ...........................................................................

332

10.4

REFERENCE .....................................................................................

336

INDEX

................................................................................................

 

337

FIGURES

 

 

Figure 1.1 ADSP-21020 Block Diagram .......................................................

9

Figure 1.2 ADSP-21020 System Diagram ....................................................

9

Figure 1.3 ADSP-21060 Block Diagram .....................................................

12

Figure 1.4 ADSP-21060 System Diagram ..................................................

13

Figure 1.5 ADSP-21060 Multiprocessing System Diagram ....................

14

Figure 4.1 Delay Line ...................................................................................

94

2277 xi

Contents

Figure 6.1

System Identification Model ..................................................

158

Figure 6.2

Transversal FIR Filter Structure.............................................

161

Figure 6.3

Symmetric Transversal Filter Structure................................

162

Figure 6.4

One Stage Of Lattice FIR.........................................................

163

Figure 6.5

Generic Adaptive Filter ..........................................................

167

Figure 7.1

Flow Graph Of Butterfly Calculation ...................................

208

Figure 7.2

32-Point Radix-2 DIT FFT ......................................................

209

Figure 8.1

Cubic Bezier Polynomial ........................................................

244

Figure 8.2

Register Assignments For Cubic Bezier Polynomial ..........

245

Figure 8.3

Cubic B-Spline Polynomial.....................................................

248

Figure 8.4

Register Assignments For Cubic B-Spline Polynomial ......

249

Figure 8.5

BitBlt ..........................................................................................

253

Figure 8.6

Register Usage For BitBlt ........................................................

253

Figure 9.1

3x3 Convolution Matrix ..........................................................

281

Figure 9.2

3x3 Convolution Operation ....................................................

281

Figure 9.3

Histogram Of Dark Picture ....................................................

288

Figure 9.4

Histogram Of Bright Picture ..................................................

289

Figure 9.5

Median Filter Algorithm.........................................................

293

Figure 10.1

System Diagram .......................................................................

301

Figure 10.2

Block Diagram ..........................................................................

302

Figure 10.3

Prototype Schematic ................................................................

303

Figure 10.4

Prototype Board Layout .........................................................

304

Figure 10.5

JTAG Test Access Port States .................................................

305

Figure 10.6

Worst-Case Data Setup To Clock Time ................................

309

Figure 10.7

TMS & TDI Timing From RESET Through Start

 

 

Of First Scan Of DR .................................................................

317

Figure 10.8

TMS & TDI Timing From End Of First Scan To

 

 

Start Of Second Scan ...............................................................

318

Figure 10.9

Other TMS & TDI Timing .......................................................

319

TABLES

 

 

Table 1.1

ADSP-21060 Benchmarks (@ 40 MHz)....................................

11

Table 6.1

Transversal FIR LMS Performance & Memory

 

 

Benchmarks For Filters Of Order N ......................................

202

Table 6.2

LMS Algorithm Benchmarks For

 

 

Different Filter Structures .......................................................

202

Table 6.3

LMS vs. RLS Benchmark Performance .................................

203

xii 2288

Contents

Table 10.1

Parts List....................................................................................

304

Table 10.2

JTAG States Used By The Downloader ................................

306

Table 10.3

Downloader Operations .........................................................

307

Table 10.4

Source Code Description & Usage ........................................

310

Table 10.5

Bitstream/EPROM Byte Relationship ..................................

311

Table 10.6

TMS Values For State Transitions .........................................

312

Table 10.7

TDI Values For IRSHIFT & DRSHIFT ..................................

312

Table 10.8

kernel.ach - Architecture File Used With kernel.asm.........

313

Table 10.9

kernel.stk - Stacked-format spl21k Output ..........................

314

Table 10.10

kernel.s0 - pub21k Output Used To Burn

 

 

Downloader EPROM ..............................................................

315

LISTINGS

 

 

Listing 2.1

sin.asm .........................................................................................

20

Listing 2.2

sintest.asm...................................................................................

21

Listing 2.3

tan.asm ........................................................................................

26

Listing 2.4

atan.asm ......................................................................................

32

Listing 2.5

sqrt.asm .......................................................................................

37

Listing 2.6

isqrt.asm ......................................................................................

39

Listing 2.7

sqrtsgl.asm ..................................................................................

41

Listing 2.8

isqrtsgl.asm .................................................................................

43

Listing 2.9

Divide..asm .................................................................................

45

Listing 2.10

logs.asm .......................................................................................

51

Listing 2.11

Exponential Subroutine ............................................................

57

Listing 2.12

pow.asm ......................................................................................

67

Listing 2.13

asm_glob.h ..................................................................................

68

Listing 2.14

pow.h ...........................................................................................

69

Listing 3.1

MxNxNx1.asm ...........................................................................

76

Listing 3.2

MxNxNxO.asm ..........................................................................

80

Listing 3.3

matinv.asm .................................................................................

87

Listing 4.1

firtest.asm....................................................................................

97

Listing 4.2

fir.asm ..........................................................................................

99

Listing 4.3

Filter Specifications From FDAS ...........................................

102

Listing 4.4

iirmem.asm ...............................................................................

108

Listing 4.5

cascade.asm ..............................................................................

110

Listing 5.1

decimate.asm ............................................................................

121

Listing 5.2

interpol.asm ..............................................................................

128

Listing 5.3

ratiobuf.asm ..............................................................................

137

2299xiii

Contents

Listing 5.4

rat2int.asm ................................................................................

142

Listing 5.5

dec2stg.asm...............................................................................

149

Listing 5.6

int2stg.asm ................................................................................

155

Listing 6.1

lms.asm......................................................................................

170

Listing 6.2

llms.asm ....................................................................................

173

Listing 6.3

nlms.asm ...................................................................................

176

Listing 6.4

selms.asm ..................................................................................

179

Listing 6.5

sdlms.asm .................................................................................

182

Listing 6.6

sslms.asm ..................................................................................

185

Listing 6.7

sylms.asm..................................................................................

188

Listing 6.8

latlms.asm .................................................................................

193

Listing 6.9

rls.asm........................................................................................

198

Listing 6.10

testafa.asm ................................................................................

201

Listing 7.1

FFT.ACH ...................................................................................

217

Listing 7.2

fftrad2.asm ................................................................................

224

Listing 7.3

fftrad4.asm ................................................................................

231

Listing 7.4

twidrad2.c .................................................................................

233

Listing 7.5

twidrad4.c .................................................................................

235

Listing 8.1

accej.asm....................................................................................

243

Listing 8.2

bezier.asm .................................................................................

247

Listing 8.3

B-spline.asm..............................................................................

252

Listing 8.4

bitblt.asm...................................................................................

256

Listing 8.5

bresen.asm ................................................................................

261

Listing 8.6

transf.asm ..................................................................................

266

Listing 8.7

mul44x41.asm ...........................................................................

270

Listing 8.8

tblllkup.asm ..............................................................................

273

Listing 8.9

xprod.asm .................................................................................

277

Listing 9.1

CONV3x3.ASM ........................................................................

284

Listing 9.2

med3x3.asm ..............................................................................

287

Listing 9.3

histo.asm ...................................................................................

292

Listing 9.4

Fixed-Point 1-D Median Fillter ..............................................

296

Listing 9.5

Floating-Point 1-D Median Fillter .........................................

298

Listing 10.1

pub21k.h....................................................................................

322

Listing 10.2

pub21k.c ....................................................................................

323

Listing 10.3

s2c.c ............................................................................................

325

Listing 10.4

c2b.c ...........................................................................................

329

Listing 10.5

b2b.c ...........................................................................................

331

Listing 10.6

stox.c ..........................................................................................

331

Listing 10.7

Loader Kernal ...........................................................................

335

xiv22–10

Introduction

This applications handbook is intended to help you get a quick start in developing DSP applications with ADSP-21000 Family digital signal processors.

This chapter includes a summary of available resources and an introduction to the ADSP-21000 Family architecture. (Complete architecture and programming details are found in each processor’s data sheet, the ADSP-21060 SHARC User’s Manual, and the ADSP-21020 User’s Manual.) The next eight chapters describe commonly used DSP algorithms and their implementations on ADSP-21000 family DSPs. The last chapter shows you how to build a bootstrap program downloader using the ADSP-21020 built-in JTAG port.

1.1 USAGE CONVENTIONS

• Code listings, assembly language instructions and labels, commands typed on an operating system shell command line, and file names are printed in the Courier font.

• Underlined variables are vectors: V

1.2 DEVELOPMENT RESOURCES

This section discusses resources available from Analog Devices to help you develop applications using ADSP-21000 Family digital signal processors.

1.2.1 Software Development Tools

A full set of software tools support ADSP-21000 family program development, including an assembler, linker, simulator, PROM splitter, and C Compiler. The development tools also include libraries of assembly language modules and C functions. See the ADSP-21000 Family Assembler Tools & Simulator Manual, the ADSP-21000 Family C Tools Manual, and the ADSP-21000 Family C Runtime Library Manual for complete details on the development tools.

1 Introduction

1.2.2 Hardware Development Tools

Analog Devices offers several systems that let you test your programs on real hardware without spending time hardware prototyping, as well as help you debug your target system hardware.

1.2.2.1 EZ-LAB

EZ-LAB® evaluation boards are complete ADSP-210xx systems that include memory, an audio codec, an analog interface, and expansion connectors on a single, small printed-circuit board. Several programs are included that demonstrate signal processing algorithms. You can download your own programs to the EZ-LAB from your IBM-PC compatible computer.

EZ-LAB connects with EZ-ICE (described in the next section) and an IBMPC compatible to form a high-speed, interactive DSP workstation that lets you debug and execute your software without prototype hardware.

EZ-LAB is also available bundled with the software development tools in the EZ-KIT packages. Each member of the ADSP-21000 family is supported by its own EZ-LAB.

1.2.2.2 EZ-ICE

EZ-ICE® in-circuit emulators give you an affordable alternative to large dedicated emulators without sacrificing features. The EZ-ICE software runs on an IBM-PC and gives you a debugging environment very similar to the ADSP-210xx simulator. The EZ-ICE probe connects to the PC with an ISA plug-in card and to the target system through a test connector on the target. EZ-ICE communicates to the target processor through the processor’s JTAG test access port. Your software runs on your hardware at full speed in real time, which simplifies hardware and software debugging.

1.2.3 Third Party Support

Several third party companies also provide products that support ADSP21000 family development; contact Analog Devices for a complete list. Here are a few of the products available as of this writing:

Spectron SPOX Real-time Operating System

Comdisco Signal Processing Worksystem

Loughborough Sound Images/Spectrum Processing PC Plug-in Board

Momentum Data Systems Filter Design Software (FDAS)

Hyperceptions Hypersignal Workstation

2

Introduction 11

1.2.4DSPatch

DSPatch is Analog Devices award-winning DSP product support newsletter. Each quarterly issue includes

applications feature articles

stories about customers using ADI DSPs in consumer, industrial and military products

new product announcements

product upgrade announcements

and features as regular columns

Q & A—tricks and tips from the Application Engineering staff

C Programming—a popular series of articles about programming DSPs with the C language.

11.2.2.5.5 ApplicationsEngineeringSupport

Analog Devices’ expert staff of Applications Engineers are available to answer your technical questions.

To speak to an Applications Engineer, Monday to Friday 9am to 5pm EST, call (617) 461-3672.

• You can send email to dsp_applications@analog.com .

Facsimiles may be sent to (617) 461-3010.

You may log in to the DSP Bulletin Board System [8:1:N:1200/2400/ 4800/9600/14,400] at (617) 461-4258, 24 hours a day.

The files on the DSP BBS are also available by anonymous ftp, at ftp.analog.com (132.71.32.11) , in the directory /pub/dsp .

Postal mail may be sent to “DSP Applications Engineering, Three Technology Way, PO Box 9106, Norwood, MA, 02062-2106.”

Technical support is also available for Analog Devices Authorized Distributers and Field Applications Offices.

33

Introduction

1.2.6 ADSP-21000 Family Classes

Applications Engineering regularly offers a course in ADSP-21000 family architecture and programming. Please contact Applications Engineering for a schedule of upcoming courses.

1.3 ADSP-21000 FAMILY: THE SIGNAL PROCESSING SOLUTION

1.3.1 Why DSP?

Digital signal processors are a special class of microprocessors that are optimized for computing the real-time calculations used in signal processing. Although it is possible to use some fast general-purpose microprocessors for signal processing, they are not optimized for that task. The resulting design can be hard to implement and costly to manufacture. In contrast, DSPs have an architecture that simplifies application designs and makes low-cost signal processing a reality.

The kinds of algorithms used in signal processing can be optimized if they are supported by a computer architecture specifically designed for them. In order to handle digital signal processing tasks efficiently, a microprocessor must have the following characteristics:

fast, flexible computation units

unconstrained data flow to and from the computation units

extended precision and dynamic range in the computation units

dual address generators

efficient program sequencing and looping mechanisms

1.3.2 Why Floatiing-Point?

A processor’s data format determines its ability to handle signals of differing precision, dynamic range, and signal-to-noise ratios. However, ease-of-use and time-to-market considerations are often equally important.

1.3.2.1 Precision

The precision of converters has been improving and will continue to increase. In the past few years, average precision requirements have risen by several bits and the trend is for both precision and sampling rates to increase.

4

Introduction 1

1.3.2.2 Dynamic Range

Traditionally, compression and decompression algorithms have operated on signals of known bandwidth. These algorithms were developed to behave regularly, to keep costs down and implementations easy. Increasingly, the trend in algorithm development is to remove constraints on the regularity and dynamic range of intermediate results. Adaptive filtering and imaging are two applications requiring wide dynamic range.

1.3.2.3 Signal-To-Noise Ratio

Radar, sonar, and even commercial applications (like speech recognition) require a wide dynamic range to discern selected signals from noisy environments.

1.3.2.4 Ease-Of-Use

Ideally, floating-point digital signal processors should be easier to use and allow a quicker time-to-market than DSPs that do not support floatingpoint formats. If the floating-point processor’s architecture is designed properly, designers can spend time on algorithm development instead of assembly coding, code paging, and error handling. The following features are hallmarks of a good floating-point DSP architecture:

• consistency with IEEE workstation simulations

• elimination of scaling

• high-level language (C, ADA) programmability

• large address spaces

• wide dynamic range

1.3.3 Why ADSP-21000 Family?

The ADSP-21020 and ADSP-21060 are the first members of Analog Devices’ ADSP-21000 family of floating-point digital signal processors (DSPs). The ADSP-21000 family architecture meets the five central requirements for DSPs:

Fast, flexible arithmetic computation units

Unconstrained data flow to and from the computation units

Extended precision and dynamic range in the computation units

Dual address generators

Efficient program sequencing

5

Introduction

1.3.3.1 Fast & Flexible Arithmetic

The ADSP-210xx can execute all instructions in a single cycle. It provides one of the fastest cycle times available and the most complete set of arithmetic operations, including Seed 1/X, Seed 1/R(x), Min, Max, Clip, Shift and Rotate, in addition to the traditional multiplication, addition, subtraction and combined addition/subtraction. It is IEEE floating-point compatible and allows either interrupt on arithmetic exception or latched status exception handling.

1.3.3.2 Unconstrained Data Flow

The ADSP-210xx has a Harvard architecture combined with a 10-port, 16 word data register file. In every cycle, all of these operations can be executed:

the register file can read or write two operands off-chip

the ALU can receive two operands

the multiplier can receive two operands

the ALU and multiplier can produce two results (three, if the ALU operation is a combined addition/subtraction)

The processors’ 48-bit orthogonal instruction word supports parallel data transfer and arithmetic operations in the same instruction.

1.3.3.3 Extended IEEE-Floating-Point Support

All members of the ADSP-21000 family handle 32-bit IEEE floating-point format, 32-bit integer and fractional formats (twos-complement and unsigned), and an extended-precision 40-bit IEEE floating-point format. These processors carry extended precision throughout their computation units, limiting intermediate data truncation errors. The fixed-point formats have an 80-bit accumulator for true 32-bit fixed-point computations.

1.3.3.4 Dual Address Generators

The ADSP-210xx has two data address generators (DAGs) that provide immediate or indirect (preand post-modify) addressing. Modulus and bit-reverse operations are supported, without constraints on buffer placement.

1.3.3.5 Efficient Program Sequencing

In addition to zero-overhead loops, the ADSP-210xx supports single-cycle setup and exit for loops. Loops are nestable (six levels in hardware) and interruptable. The processor also supports delayed and non-delayed branches.

6

Introduction 1

1.4 ADSP-21000 FAMILY ARCHITECTURE OVERVIEW

The following sections summarize the basic features of the ADSP-21020 architecture. These features are also common to the ADSP-21060 SHARC processor; SHARC-specific enhancements to the base architecture are discussed in the next section.

1.4.1 ADSP-21000 Family Base Architecture

All members of the ADSP-21000 Family have the same base architecture. The ADSP-21060 has advanced features built on to this base, but retains code compatibility with the ADSP-21020 processor. The key features of the base architecture are:

Independent, Parallel Computation Units

The arithmetic/logic unit (ALU), multiplier, and shifter perform single-cycle instructions. The three units are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. These computation units support IEEE 32-bit single-precision floating-point, extended precision 40-bit floating-point, and 32-bit fixed-point data formats.

Data Register File

A general-purpose data register file transfers data between the computation units and the data buses, and for storing intermediate results. This 10-port, 32-register (16 primary, 16 secondary) register file, combined with the ADSP-21000 Harvard architecture, allows unconstrained data flow between computation units and memory.

Single-Cycle Fetch of Instruction & Two Operands

The ADSP-210xx features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 1.1). With its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch two operands and an instruction (from the cache) in a single cycle.

Instruction Cache

The ADSP-210xx includes a high performance instruction cache that enables three-bus operation for fetching an instruction and two data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This allows full-speed execution of looped operations such as digital filter multiplyaccumulates and FFT butterfly processing.

7

Introduction

Data Address Generators with Hardware Circular Buffers

The ADSP-210xx’s two data address generators (DAGs) implement circular data buffers in hardware. Circular buffers let delay lines (and other data structures required in digital signal processing) be implemented efficiently; circular buffers are commonly used in digital filters and Fourier transforms. The ADSP-210xx’s two DAGs contain sufficient registers for up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reducing overhead, increasing performance, and simplifying implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The ADSP-210xx’s 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, in a single instruction, the ADSP-210xx can conditionally execute a multiply, an add, a subtract and a branch.

Serial Scan & Emulation Features

The ADSP-210xx supports the IEEE-standard P1149 Joint Test Action Group (JTAG) standard for system test. This standard defines a method for serially scanning the I/O status of each component in a system. This serial port also gives access to the ADSP-210xx on-chip emulation features.

11.4.4.2.2 ADSP-21020- DSP

The ADSP-21020 is the first member of the ADSP-21000 family. It is a complete implementation of the family base architecture. Figure 1.1 shows the block diagram of the ADSP-21020 and Figure 1.2 shows a system diagram.

8

ANALOG DEVICES ADSP-21000 Service Manual

Introduction 1

 

 

TIMER

CACHE

 

 

32 x 48

 

 

 

 

 

 

JTAG

 

 

 

TEST &

 

 

 

EMULATION

DAG 1

DAG 2

PROGRAM

8 x 4 x 32

8 x 4 x 24

SEQUENCER

 

 

 

FLAGS

 

 

PM ADDRESS BUS

24

 

 

DM ADDRESS BUS

32

 

 

PM DATA BUS

48

 

 

 

Bus

 

 

 

Connect

 

DM DATA BUS

40

 

 

 

 

REGISTER

 

 

FILE

 

 

16 x 40

 

MULTIPLIER

BARREL

ALU

SHIFTER

 

 

Figure 1.1 ADSP-21020 Block Diagram

1×

CLOCK

4

 

 

CLKIN

RESET

IRQ3-0

 

 

2

PMS1-0

 

 

 

 

DMS3-0

 

Selects

 

 

 

 

 

 

 

 

 

 

 

OE

 

PMRD

 

 

 

 

DMRD

 

PROGRAM WE

24

PMWR

 

 

 

 

DMWR

 

MEMORY

PMA

 

 

 

 

DMA

32

ADDR

 

 

 

 

 

 

DATA

48

PMD

ADSP-21020

DMD

40

 

 

 

 

 

PMTS

 

 

 

 

DMTS

 

 

 

 

 

 

 

 

 

 

PMPAGE

 

 

DMPAGE

 

 

 

PMACK

 

 

 

FLAG3-0

DMACK

 

 

 

BR

BG

TIMEXP

RCOMP

JTAG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

5

 

4

 

Selects

 

OE

 

WE

DATA

MEMORY

 

ADDR

 

DATA

 

Selects

OE

WE

ACK PERIPHERALS

ADDR

DATA

Figure 1.2 ADSP-21020 System Diagram

9

Introduction

11.4.4.3.3 ADSP-21060- SHARC

The ADSP-21060 SHARC (Super Harvard Architecture Computer) is a single-chip 32-bit computer optimized for signal computing applications. The ADSP-21060 SHARC has the following key features:

Four Megabit Configurable On-Chip SRAM

Dual-Ported for Independent Access by Base Processor and DMA

Configurable as Maximum 128K Words Data Memory (32-Bit),

80K Words Program Memory (48-Bit), or Combinations of Both Up To 4 Mbits

Off-Chip Memory Interfacing

4 Gigawords Addressable (32-bit Address)

Programmable Wait State Generation, Page-Mode DRAM Support

DMA Controller

10

Trigonometric, Mathematical &

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

Transcendental Functions

 

This chapter contains listings and descriptions of several useful trigonometric, mathematical and transcendental functions. The functions are

Trigonometric

sine/cosine approximation

tangent approximation

arctangent approximation

Mathematical

square root

square root with single precision

inverse square root

inverse square root with single precision

division

Transcendental

• logarithm

• exponential

• power

2.1 SINE/COSINE APPROXIMATION

The sine and cosine functions are fundamental operations commonly used in digital signal processing algorithms , such as simple tone generation and calculation of sine tables for FFTs. This section describes how to calculate the sine and cosine functions.

This ADSP-210xx implementation of sin(x) is based on a min-max polynomial approximation algorithm in the [CODY]. Computation of the function sin(x) is reduced to the evaluation of a sine approximation over a small interval that is symmetrical about the axis.

15

2 Trigonometric, Mathematical &

Transcendental Functions

Let

|x| = Nπ + f

where

|f| ≤ π/2.

Then

sin(x) = sign(x) * sin(f) * (-1)N

Once the sign of the input, x, is determined, the value of N can be determined. The next step is to calculate f. In order to maintain the maximum precision, f is calculated as follows

f = (|x| – xNC1) – xNC2

The constants C1 and C2 are determined such that C1 is approximately equal to pi (π). C2 is determined such that C1 + C2 represents pi to three or four decimal places beyond the precision of the ADSP-210xx.

For devices that represent floating-point numbers in 32 bits, Cody and Waite suggest a seven term min-max polynomial of the form R(g) = g·P(g). When expanded, the sine approximation for f is represented as

sin(f) = ((((((r7·f + r6) * f + r5) * f +r4) * f + r3) * f + r2) * f + r1) · f

With sin(f) calculated, sin(x) can be constructed. The cosine function is calculated similarly, using the trigonometric identity

cos(x) = sin(x + π/2)

2.1.1 Implementatiion

The two listings illustrate the sine approximation and the calling of the sine approximation. The first listing, sin.asm , is an implementation of the algorithm for calculation of sines and cosines. The second listing, sinetest.asm , is an example of a program that calls the sine approximation.

16

Trigonometric, Mathematical & 2

Transcendental Functions

Implementation of the sine algorithm on ADSP-21000 family processors is straightforward. In the first listing below, sin.asm , two segments are defined. The first segment, defined with the .SEGMENT directive, contains the assembly code for the sine/cosine approximation. The second segment is a data segment that contains the constants necessary to perform this approximation.

The code is structured as a called subroutine, where the parameter x is passed into this routine using register F0. When the subroutine is finished executing, the value sin(x) or cos(x) is returned in the same register, F0. The variables, i_reg and l_reg , are specified as an index register and a length register, in either data address generator on the ADSP-21000 family. These registers are used in the program to point to elements of the data table, sine_data . Elements of this table are accessed indirectly within this program. Specifically, index registers I0 - I7 are used if the data table containing all the constants is put in data memory and index registers I8 - I15 are used if the data table is put in program memory. The variable mem must be defined as program memory, PM , or data memory, DM .

The include file, asm_glob.h , contains definitions of mem, l_reg , and i_reg . You can alter these definitions to suit your needs.

The second listing, sinetest.asm , is an example of a routine that calls the cosine and sine routines.

There are two entry points in the subroutine, sin.asm . They are labeled cosine and sine . Code execution begins at these labels. The calling program uses these labels by executing the instruction

call sine (db);

or

call cosine (db);

with the argument x in register F0. These calls are delayed branch calls that efficiently use the instruction pipeline on the ADSP-21000 family. In a delayed branch, the two instructions following the branch instruction are executed prior to the branch. This prevents the need to flush an instruction pipeline before taking a branch.

17

2Trigonometric, Mathematical & Transcendental Functions

2.1.2Code Listings

2.1.2.1 Sine/Cosine Approximation Subroutine

/***************************************************************************

File Name

SIN.ASM

Version

0.037/4/90

Purpose

Subroutine to compute the Sine or Cosine values of a floating point input.

Equations Implemented

Y=SIN(X) or

Y=COS(X)

Calling Parameters

F0 = Input Value X=[6E-20, 6E20] l_reg=0

Return Values

F0 = Sine (or Cosine) of input Y=[-1,1]

Registers Affected

F0, F2, F4, F7, F8, F12 i_reg

Cycle Count

38Cycles

#PM Locations

34words

#DM Locations

11Words

***************************************************************************/

18

Trigonometric, Mathematical & 2

Transcendental Functions

#include “asm_glob.h”

.SEGMENT/PM Assembly_Library_Code_Space;

.PRECISION=MACHINE_PRECISION;

#define half_PI 1.57079632679489661923

.GLOBAL cosine, sine;

/****

Cosine/Sine approximation program starts here.

****/

/****

Based on algorithm found in Cody and Waite.

****/

cosine:

i_reg=sine_data; F8=ABS F0; F12=0.5;

F2=1.57079632679489661923;

JUMP compute_modulo (DB);

F4=F8+F2, F2=mem(i_reg,1);

F7=1.0;

sine:

/*Load pointer to data*/

/*Use absolute value of input*/ /*Used later after modulo*/

/* and add PI/2*/

/*Follow sin code from here!*/

/*Sign flag is set to 1*/

i_reg=sine_data;

/*Load pointer to data*/

F7=1.0;

/*Assume a positive sign*/

F12=0.0;

/*Used later after modulo*/

F8=ABS F0, F2=mem(i_reg,1);

 

F0=PASS F0, F4=F8;

 

IF LT F7=-F7;

/*If input was negative, invert

sign*/

 

compute_modulo:

 

F4=F4*F2;

/*Compute fp modulo value*/

R2=FIX F4;

/*Round nearest fractional portion*/

BTST R2 BY 0;

/*Test for odd number*/

IF NOT SZ F7=-F7;

/*Invert sign if odd modulo*/

F4=FLOAT R2;

/*Return to fp*/

F4=F4-F12, F2=mem(i_reg,1);

/*Add cos adjust if necessary,

 

F4=XN*/

compute_f:

 

F12=F2*F4, F2=mem(i_reg,1);

/*Compute XN*C1*/

F2=F2*F4, F12=F8-F12;

/*Compute |X|-XN*C1, and

XN*C2*/

 

F8=F12-F2, F4=mem(i_reg,1);

/*Compute f=(|X|-XN*C1)-

XN*C2*/

 

F12=ABS F8;

/*Need magnitude for test*/

F4=F12-F4, F12=F8;

/*Check for sin(x)=x*/

IF LT JUMP compute_sign;

/*Return with result in F1*/

compute_R:

 

F12=F12*F12, F4=mem(i_reg,1);

 

 

(listing continues on next page)

19

2Trigonometric, Mathematical & Transcendental Functions

LCNTR=6, DO compute_poly UNTIL LCE;

F4=F12*F4, F2=mem(i_reg,1);

/*Compute sum*g*/

compute_poly:

 

F4=F2+F4;

/*Compute sum=sum+next r*/

F4=F12*F4;

/*Final multiply by g*/

RTS (DB), F4=F4*F8;

/*Compute f*R*/

F12=F4+F8;

/*Compute Result=f+f*R*/

compute_sign:

 

F0=F12*F7;

/*Restore sign of result*/

RTS;

/*This return only for sin(eps)=eps

path*/

 

.ENDSEG;

 

.SEGMENT/SPACE Assembly_Library_Data_Space;

 

.PRECISION=MEMORY_PRECISION;

 

.VAR sine_data[11] =

 

0.31830988618379067154,

/*1/PI*/

3.14160156250000000000,

/*C1, almost PI*/

-8.908910206761537356617E-6, /*C2, PI=C1+C2*/

9.536743164E-7,

/*eps, sin(eps)=eps*/

-0.737066277507114174E-12,

/*R7*/

0.160478446323816900E-9,

/*R6*/

-0.250518708834705760E-7,

/*R5*/

0.275573164212926457E-5,

/*R4*/

-0.198412698232225068E-3,

/*R3*/

0.833333333327592139E-2,

/*R2*/

-0.166666666666659653;

/*R1*/

.ENDSEG;

20

Loading...
+ 303 hidden pages