Analog Devices ADM8691ARN, ADM8691AN, ADM8690ARN, ADM8690AN, ADM8695ARW Datasheet

...
0 (0)
Analog Devices ADM8691ARN, ADM8691AN, ADM8690ARN, ADM8690AN, ADM8695ARW Datasheet

a

Microprocessor

Supervisory Circuits

 

 

ADM8690–ADM8695

FEATURES

Upgrade for ADM690/ADM695, MAX690–MAX695 Specified Over Temperature

Low Power Consumption (0.7 mW) Precision Voltage Monitor

Reset Assertion Down to 1 V VCC

Low Switch On-Resistance 0.7 V Normal, 7 V in Backup

High Current Drive (100 mA)

Watchdog Timer—100 ms, 1.6 s, or Adjustable 400 nA Standby Current

Automatic Battery Backup Power Switching Extremely Fast Gating of Chip Enable Signals (3 ns) Voltage Monitor for Power Fail

Available in TSSOP Package

APPLICATIONS

Microprocessor Systems

Computers

Controllers

Intelligent Instruments

Automotive Systems

GENERAL DESCRIPTION

The ADM8690–ADM8695 family of supervisory circuits offers complete single chip solutions for power supply monitoring and battery control functions in microprocessor systems. These functions include μP reset, backup battery switchover, watchdog timer, CMOS RAM write protection and power failure warning. The complete family provides a variety of configurations to satisfy most microprocessor system requirements.

The ADM8690, ADM8692 and ADM8694 are available in 8-pin DIP packages and provide:

1.Power-on reset output during power-up, power-down and brownout conditions. The RESET output remains operational with VCC as low as 1 V.

2.Battery backup switching for CMOS RAM, CMOS microprocessor or other low power logic.

3.A reset pulse if the optional watchdog timer has not been toggled within a specified time.

4.A 1.3 V threshold detector for power fail warning, low battery detection or to monitor a power supply other than +5 V.

The ADM8691, ADM8693 and ADM8695 are available in 16-pin DIP and small outline packages (including TSSOP) and provide three additional functions:

1.Write protection of CMOS RAM or EEPROM.

2.Adjustable reset and watchdog timeout periods.

3.Separate watchdog timeout, backup battery switchover, and low VCC status outputs.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

VBATT

 

 

 

 

 

 

 

 

VOUT

VCC

 

 

 

 

 

4.65V1

RESET

RESET

 

GENERATOR2

 

 

 

WATCHDOG

 

WATCHDOG

ADM8690

 

TRANSITION DETECTOR

ADM8692

 

INPUT (WDI)

 

 

(1.6s)

ADM8694

 

 

 

 

POWER FAIL

 

 

 

 

INPUT (PFI)

 

 

 

POWER FAIL

 

1.3V

 

 

OUTPUT (PFO)

 

 

 

 

 

1VOLTAGE DETECTOR = 4.65V (ADM8690, ADM8694)

 

 

 

4.40V (ADM8692)

 

 

2RESET PULSE WIDTH = 50ms (AD8690, ADM8692)

 

 

 

200ms (ADM8694)

 

BATT ON

VBATT

 

 

 

 

 

 

 

ADM8691

VOUT

VCC

 

 

ADM8693

 

 

 

ADM8695

 

CEIN

 

 

 

 

 

 

CEOUT

 

 

 

 

 

4.65V1

 

 

LOW LINE

 

 

 

 

 

 

 

 

RESET

OSC IN

RESET AND

RESET

 

 

 

WATCHDOG

 

RESET

OSC SEL

GENERATOR

TIMEBASE

 

 

 

 

WATCHDOG

WATCHDOG

 

WATCHDOG

WATCHDOG

INPUT (WDI)

TRANSITION DETECTOR

TIMER

OUTPUT (WDO)

 

 

 

 

POWER FAIL

 

 

 

POWER FAIL

INPUT (PFI)

 

 

 

 

1.3V

 

 

OUTPUT (PFO)

 

 

 

 

 

1VOLTAGE DETECTOR = 4.65V (ADM8691, ADM8695)

 

 

 

4.40V (ADM8693)

 

The ADM8690–ADM8695 family is fabricated using an advanced epitaxial CMOS process combining low power consumption (0.7 mW), extremely fast Chip Enable gating (3 ns) and high reliability. RESET assertion is guaranteed with VCC as low as 1 V. In addition, the power switching circuitry is designed for minimal voltage drop thereby permitting increased output current drive of up to 100 mA without the need of an external pass transistor.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 617/329-4700

World Wide Web Site: http://www.analog.com

Fax: 617/326-8703

© Analog Devices, Inc., 1997

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(V

= Full Operating Range, V

 

= +2.8 V, T

 

= T

 

to

ADM8690–ADM8695–SPECIFICATIONS TMAXCC

unless otherwise noted)

BATT

 

 

A

 

MIN

 

Parameter

Min

Typ

Max

 

Units

Test Conditions/Comments

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BATTERY BACKUP SWITCHING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC Operating Voltage Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADM8690, ADM8691, ADM8694, ADM8695

4.75

 

5.5

 

V

 

 

 

 

 

 

 

 

 

 

 

ADM8692, ADM8693

4.5

 

5.5

 

V

 

 

 

 

 

 

 

 

 

 

 

VBATT Operating Voltage Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADM8690, ADM8691, ADM8694, ADM8695

2.0

 

4.25

 

V

 

 

 

 

 

 

 

 

 

 

 

ADM8692, ADM8693

2.0

 

4.0

 

V

 

 

 

 

 

 

 

 

 

 

VOUT Output Voltage

VCC – 0.005

VCC – 0.0025

 

 

V

IOUT = 1 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC – 0.2

VCC – 0.125

 

 

V

IOUT 100 mA

 

 

 

 

 

 

 

VOUT in Battery Backup Mode

VBATT – 0.005

VBATT – 0.002

 

 

V

IOUT = 250 μA, VCC < VBATT – 0.2 V

 

 

Supply Current (Excludes IOUT)

 

140

200

 

μA

IOUT = 100 μA

 

 

 

 

 

 

 

Supply Current in Battery Backup Mode

 

0.4

1

 

μA

VCC = 0 V, VBATT = 2.8 V

 

 

 

 

 

Battery Standby Current

 

 

 

 

 

5.5 V > VCC > VBATT + 0.2 V

 

 

 

 

 

(+ = Discharge, – = Charge)

–0.1

 

+0.02

μA

TA = +25°C

 

 

 

 

 

 

 

 

Battery Switchover Threshold

 

70

 

 

mV

Power-Up

 

 

 

 

 

 

 

 

VCC – VBATT

 

50

 

 

mV

Power-Down

 

 

 

 

 

 

 

Battery Switchover Hysteresis

 

20

 

 

mV

 

 

 

 

 

 

 

 

 

 

BATT ON Output Voltage

 

 

0.3

 

V

ISINK = 3.2 mA

 

 

 

 

 

 

 

BATT ON Output Short Circuit Current

 

55

 

 

mA

BATT ON = VOUT = 4.5 V Sink Current

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

2.5

25

 

μA

BATT ON = 0 V Source Current

 

 

RESET AND WATCHDOG TIMER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Voltage Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADM8690, ADM8691, ADM8694, ADM8695

4.5

4.65

4.73

 

V

 

 

 

 

 

 

 

 

 

 

 

ADM8692, ADM8693

4.25

4.4

4.48

 

V

 

 

 

 

 

 

 

 

 

 

Reset Threshold Hysteresis

 

40

 

 

mV

 

 

 

 

 

 

 

 

 

 

Reset Timeout Delay

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADM8690, ADM8691, ADM8692, ADM8693

35

50

70

 

ms

OSC SEL = HIGH

 

 

 

 

 

 

ADM8694, ADM8695

140

200

280

 

ms

OSC SEL = HIGH

 

 

 

 

 

Watchdog Timeout Period, Internal Oscillator

1.0

1.6

2.25

 

s

Long Period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

100

140

 

ms

Short Period

 

 

 

 

 

 

 

 

Watchdog Timeout Period, External Clock

3840

4064

4097

 

Cycles

Long Period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

768

1011

1025

 

Cycles

Short Period

 

 

 

 

 

 

 

 

Minimum WDI Input Pulse Width

50

 

 

 

ns

VIL = 0.4, VIH = 3.5 V

 

 

 

 

 

 

 

 

 

 

 

Output Voltage @ VCC = +1 V

 

4

20

 

mV

ISINK = 10 μA, VCC = 1 V

 

 

 

 

 

RESET

 

 

 

 

 

 

RESET

,

LOW

 

 

LINE

Output Voltage

 

0.05

0.4

 

V

ISINK = 1.6 mA, VCC = 4.25 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

V

ISOURCE = 1 μA

 

 

 

 

 

 

 

 

RESET

,

WDO

Output Voltage

 

 

0.4

 

V

ISINK = 1.6 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

V

ISOURCE = 1 μA

 

 

 

 

 

 

 

Output Short Circuit Source Current

1

10

25

 

μA

 

 

 

 

 

 

 

 

 

 

Output Short Circuit Sink Current

 

25

 

 

mA

 

 

 

 

 

 

 

 

 

 

WDI Input Threshold

 

 

 

 

 

Note 1

 

 

 

 

 

 

 

 

 

Logic Low

 

 

0.8

 

V

 

 

 

 

 

 

 

 

 

 

 

Logic High

3.5

 

 

 

V

 

 

 

 

 

 

 

 

 

 

WDI Input Current

 

1

10

 

μA

WDI = VOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–10

–1

 

 

μA

WDI = 0 V

 

 

 

 

 

 

 

POWER FAIL DETECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PFI Input Threshold

1.25

1.3

1.35

 

V

VCC = +5 V

 

 

 

 

 

 

 

 

PFI Input Current

–25

±0.01

+25

 

nA

 

 

 

 

 

 

 

 

 

 

PFO

Output Voltage

 

 

0.4

 

V

ISINK = 3.2 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

V

ISOURCE = 1 μA

 

 

 

 

 

 

 

 

 

 

Short Circuit Source Current

1

3

25

 

μA

PFI = Low,

 

 

 

= 0 V

 

 

 

 

 

PFO

PFO

 

 

 

 

 

PFO

Short Circuit Sink Current

 

25

 

 

mA

PFI = High,

PFO

= VOUT

 

 

 

 

CHIP ENABLE GATING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

IN Threshold

 

 

0.8

 

V

VIL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

 

 

V

VIH

 

 

 

 

 

 

 

 

 

 

IN Pull-Up Current

 

3

 

 

μA

 

 

 

 

 

 

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

CE

OUT Output Voltage

 

 

0.4

 

V

ISINK = 3.2 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOUT – 1.5

 

 

 

V

ISOURCE = 3.0 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOUT – 0.05

 

 

 

V

ISOURCE = 1 μA, VCC = 0 V

 

 

 

 

 

 

CE

Propagation Delay

 

3

7

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–2–

REV. 0

 

 

 

 

 

ADM8690–ADM8695

 

 

 

 

 

 

Parameter

Min

Typ

Max

Units

Test Conditions/Comments

 

 

 

 

 

 

OSCILLATOR

 

±2

 

μA

 

OSC IN Input Current

 

 

 

OSC SEL Input Pull-Up Current

 

5

 

μA

 

OSC IN Frequency Range

0

 

500

kHz

OSC SEL = 0 V

OSC IN Frequency with External Capacitor

 

4

 

kHz

OSC SEL = 0 V, COSC = 47 pF

NOTE

1WDI is a three level input which is internally biased to 38% of VCC and has an input impedance of approximately 5 MΩ. Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

(TA = +25°C unless otherwise noted)

VCC . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . –0.3 V to +6 V

VBATT . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . –0.3 V to +6 V

All Other Inputs . . . . . . . . . . . . . . . . . .

–0.3 V to VOUT + 0.5 V

Input Current

 

VCC . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . 200 mA

VBATT . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 50 mA

GND . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 20 mA

Digital Output Current . . . . . . . . . . . . .

. . . . . . . . . . . . 20 mA

Power Dissipation, N-8 DIP . . . . . . . . .

. . . . . . . . . . . 400 mW

θJA Thermal Impedance . . . . . . . . . . .

. . . . . . . . . . 120°C/W

Power Dissipation, N-16 DIP . . . . . . . .

. . . . . . . . . . . 600 mW

θJA Thermal Impedance . . . . . . . . . . .

. . . . . . . . . . 135°C/W

Power Dissipation, RU-16 DIP . . . . . . .

. . . . . . . . . . . 600 mW

θJA Thermal Impedance . . . . . . . . . . .

. . . . . . . . . . 158°C/W

Power Dissipation, R-16 SOIC . . . . . . .

. . . . . . . . . . . 600 mW

θJA Thermal Impedance . . . . . . . . . . .

. . . . . . . . . . 110°C/W

Operating Temperature Range

–40°C to +85°C

Industrial (A Version) . . . . . . . . . . . .

Extended (S Version) . . . . . . . . . . . . .

. . . . –55°C to +125°C

Lead Temperature (Soldering, 10 sec) . .

. . . . . . . . . . . +300°C

Vapor Phase (60 sec) . . . . . . . . . . . . .

. . . . . . . . . . . +215°C

Infrared (15 sec) . . . . . . . . . . . . . . . . .

. . . . . . . . . . . +220°C

Storage Temperature Range . . . . . . . . .

. . . . –65°C to +150°C

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods of time may affect device reliability.

ORDERING GUIDE

Model

Temperature Range

Package Options*

 

 

 

ADM8690AN

–40°C to +85°C

N-8

ADM8690ARN

–40°C to +85°C

SO-8

ADM8691AN

–40°C to +85°C

N-16

ADM8691ARN

–40°C to +85°C

R-16A

ADM8691ARW

–40°C to +85°C

R-16

ADM8691ARU

–40°C to +85°C

RU-16

ADM8692AN

–40°C to +85°C

N-8

ADM8692ARN

–40°C to +85°C

SO-8

ADM8693AN

–40°C to +85°C

N-16

ADM8693ARN

–40°C to +85°C

R-16A

ADM8693ARW

–40°C to +85°C

R-16

ADM8693ARU

–40°C to +85°C

RU-16

ADM8694AN

–40°C to +85°C

N-8

ADM8694ARN

–40°C to +85°C

SO-8

ADM8695AN

–40°C to +85°C

N-16

ADM8695ARW

–40°C to +85°C

R-16

*N = Plastic DIP; R = Small Outline (Wide); R = Small Outline (Narrow); RU = Thin Shrink Small Outline; SO = Small Outline.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADM8690–ADM8695 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. 0

–3–

ADM8690–ADM8695

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN FUNCTION DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mnemonic

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

Power Supply Input: +5 V Nominal.

VBATT

Backup Battery Input.

VOUT

Output Voltage, VCC or VBATT is internally switched to VOUT depending on which is at the highest potential. VOUT

 

 

 

 

 

 

 

can supply up to 100 mA to power CMOS RAM. Connect VOUT to VCC if VOUT and VBATT are not used.

GND

0 V. Ground reference for all signals.

 

 

 

 

 

 

 

Logic Output.

 

 

 

 

 

goes low if

RESET

RESET

 

 

 

 

 

 

 

1. VCC falls below the Reset Threshold

 

 

 

 

 

 

 

2. The watchdog timer is not serviced within its timeout period.

 

 

 

 

 

 

 

The reset threshold is typically 4.65 V for the ADM8690/ADM8691/ADM8694/ADM8695 and 4.4 V for the ADM8692

 

 

 

 

 

 

 

and ADM8693.

RESET

remains low for 50 ms (ADM8690/ADM8691/ADM8692/ADM8693) or 200 ms (ADM8694/

 

 

 

 

 

 

 

ADM8695) after VCC returns above the threshold. RESET also goes low for 50 (200) ms if the watchdog timer is

 

 

 

 

 

 

 

enabled but not serviced within its timeout period. The

RESET

pulse width can be adjusted on the ADM8691/ADM8693/

 

 

 

 

 

 

 

ADM8695 as shown in Table I. The

 

 

 

 

output has an internal 3 μA pull up, and can either connect

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

to an open collector Reset bus or directly drive a CMOS gate without an external pull-up resistor.

WDI

Watchdog Input. WDI is a three level input. If WDI remains either high or low for longer than the watchdog timeout

 

 

 

 

 

 

 

period,

RESET

pulses low and WDO goes low. The timer resets with each transition on the WDI line. The watchdog

 

 

 

 

 

 

 

timer may be disabled if WDI is left floating or is driven to midsupply.

PFI

Power Fail Input. PFI is the noninverting input to the Power Fail Comparator when PFI is less than 1.3 V,

 

 

PFO

 

 

 

 

 

 

 

goes low. Connect PFI to GND or VOUT when not used.

 

 

 

 

 

 

Power Fail Output.

 

is the output of the Power Fail Comparator. It goes low when PFI is less than 1.3 V. The

PFO

PFO

 

 

 

 

 

 

 

comparator is turned off and

PFO

goes low when VCC is below VBATT.

 

 

IN

Logic Input. The input to the

 

 

gating circuit. Connect to GND or VOUT if not used.

CE

CE

 

OUT

Logic Output.

 

OUT is a gated version of the

 

 

IN signal.

 

 

OUT tracks

 

 

IN when VCC is above the reset

CE

CE

CE

CE

CE

 

 

 

 

 

 

 

threshold. If VCC is below the reset threshold,

CE

OUT is forced high. See Figures 5 and 6.

BATT ON

Logic Output. BATT ON goes high when VOUT is internally switched to the VBATT input. It goes low when VOUT

 

 

 

 

 

 

 

is internally switched to VCC. The output typically sinks 35 mA and can directly drive the base of an external

 

 

 

 

 

 

 

PNP transistor to increase the output current above the 100 mA rating of VOUT.

 

 

 

Logic Output.

 

 

goes low when VCC falls below the reset threshold. It returns high as soon as VCC rises

LOW LINE

LOW LINE

 

 

 

 

 

 

 

above the reset threshold.

RESET

Logic Output. RESET is an active high output. It is the inverse of

 

.

 

 

RESET

OSC SEL

Logic Oscillator Select Input. When OSC SEL is unconnected (floating) or driven high, the internal oscillator sets

 

 

 

 

 

 

 

the reset active time and watchdog timeout period. When OSC SEL is low, the external oscillator input, OSC IN,

 

 

 

 

 

 

 

is enabled. OSC SEL has a 3 μA internal pull-up (see Table I).

OSC IN

Oscillator Logic Input. With OSC SEL low, OSC IN can be driven by an external clock signal or an external

 

 

 

 

 

 

 

capacitor can be connected between OSC IN and GND. This sets both the reset active pulse timing and the watch-

 

 

 

 

 

 

 

dog timeout period (see Table I and Figure 4). With OSC SEL high or floating, the internal oscillator is enabled

 

 

 

 

 

 

 

and the reset active time is fixed at 50 ms typ. (ADM8691/ADM8693) or 200 ms typ (ADM8695). In this mode the

 

 

 

 

 

 

 

OSC IN pin selects between fast (100 ms) and slow (1.6 s) watchdog timeout periods. In both modes, the timeout

 

 

 

 

 

 

 

period immediately after a reset is 1.6 s typical.

 

 

Logic Output. The Watchdog Output,

 

 

, goes low if WDI remains either high or low for longer than the

WDO

WDO

 

 

 

 

 

 

 

watchdog timeout period.

WDO

is set high by the next transition at WDI. If WDI is unconnected or at midsupply,

 

 

 

 

 

 

 

the watchdog timer is disabled and

WDO

remains high.

WDO

also goes high when

LOW LINE

goes low.

–4–

REV. 0

ADM8690–ADM8695

PIN CONFIGURATIONS

 

 

 

 

 

 

 

VBATT

 

 

 

 

VOUT

 

 

 

 

 

VBATT

1

 

16

RESET

1

ADM8690

8

VOUT

2

ADM8691

15

RESET

VCC

 

 

 

 

 

 

 

 

2

ADM8692

7

RESET

VCC

3

ADM8693

14

WDO

 

 

ADM8694

 

 

 

 

 

 

 

GND

3

TOP VIEW

6

WDI

GND

4

ADM8695

13

CEIN

PFI

 

 

 

 

 

 

 

 

 

4

(Not to Scale)

5

PFO

BATT ON

5

TOP VIEW

12

CEOUT

 

 

 

 

 

 

 

 

 

 

(Not to Scale)

 

WDI

 

 

 

 

 

 

 

LOW LINE

6

 

11

 

 

 

 

 

 

 

 

 

 

 

 

PFO

 

 

 

 

 

 

 

OSC IN

7

 

10

 

 

 

 

 

 

 

OSC SEL

 

 

 

 

 

 

 

 

 

 

 

8

 

9

PFI

 

 

 

 

 

 

 

 

 

 

 

 

 

PRODUCT SELECTION GUIDE

Part

Nominal Reset

Nominal VCC

Nominal Watchdog

Battery Backup

Base Drive

Chip Enable

Number

Time

Reset Threshold

Timeout Period

Switching

Ext PNP

Signals

 

 

 

 

 

 

 

ADM8690

50 ms

4.65 V

1.6 s

Yes

No

No

ADM8691

50 ms or ADJ

4.65 V

100 ms, 1.6 s, ADJ

Yes

Yes

Yes

ADM8692

50 ms

4.4 V

1.6 s

Yes

No

No

ADM8693

50 ms or ADJ

4.4 V

100 ms, 1.6 s, ADJ

Yes

Yes

Yes

ADM8694

200 ms

4.65 V

1.6 s

Yes

No

No

ADM8695

200 ms or ADJ

4.65 V

100 ms, 1.6 s, ADJ

Yes

Yes

Yes

 

 

 

 

 

 

 

CIRCUIT INFORMATION

Battery Switchover Section

The battery switchover circuit compares VCC to the VBATT input, and connects VOUT to whichever is higher. Switchover

occurs when VCC is 50 mV higher than VBATT as VCC falls, and when VCC is 70 mV greater than VBATT as VCC rises. This

20 mV of hysteresis prevents repeated rapid switching if VCC falls very slowly or remains nearly equal to the battery voltage.

VCC

 

 

VBATT

 

VOUT

 

 

 

GATE DRIVE

 

 

100

BATT ON

 

mV

 

(ADM8690,

 

 

 

INTERNAL

ADM8695)

 

SHUTDOWN SIGNAL

 

700

WHEN

 

mV

VBATT > (VCC + 0.7V)

 

Figure 1. Battery Switchover Schematic

During normal operation, with VCC higher than VBATT, VCC is internally switched to VOUT via an internal PMOS transistor

switch. This switch has a typical on-resistance of 0.7 Ω and can

supply up to 100 mA at the VOUT terminal. VOUT is normally used to drive a RAM memory bank which may require instanta-

neous currents of greater than 100 mA. If this is the case then a bypass capacitor should be connected to VOUT. The capacitor will provide the peak current transients to the RAM. A capacitance value of 0.1 μF or greater may be used.

If the continuous output current requirement at VOUT exceeds 100 mA, or if a lower VCC–VOUT voltage differential is desired, an external PNP pass transistor may be connected in parallel with the internal transistor. The BATT ON output (ADM8691/ ADM8693/ADM8695) can directly drive the base of the external transistor.

A 7 Ω MOSFET switch connects the VBATT input to VOUT during battery backup. This MOSFET has very low input-to-out-

put differential (dropout voltage) at the low current levels required for battery back up of CMOS RAM or other low power CMOS circuitry. The supply current in battery back up is typically 0.4 μA.

The ADM8690/ADM8691/ADM8694/ADM8695 operates with battery voltages from 2.0 V to 4.25 V, and the ADM8692/ ADM8693 operates with battery voltages from 2.0 V to 4.0 V. High value capacitors, either standard electrolytic or the farad size double layer capacitors, can also be used for short-term memory backup. A small charging current of typically 10 nA

(0.1 μA max) flows out of the VBATT terminal. This current is useful for maintaining rechargeable batteries in a fully charged

condition. This extends the life of the backup battery by compensating for its self discharge current. Also note that this current poses no problem when lithium batteries are used for backup since the maximum charging current (0.1 μA) is safe for even the smallest lithium cells.

If the battery switchover section is not used, VBATT should be connected to GND and VOUT should be connected to VCC.

REV. 0

–5–

Loading...
+ 11 hidden pages