Analog Devices AD7854CB, AD7854ARS, AD7854AR, AD7854AQ, AD7854SQ Datasheet

...
0 (0)

a

3 V to 5 V Single Supply, 200 kSPS

12-Bit Sampling ADCs

 

 

 

 

 

AD7854/AD7854L*

FEATURES

Specified for VDD of 3 V to 5.5 V Read-Only Operation

AD7854–200 kSPS; AD7854L–100 kSPS System and Self-Calibration

Low Power

Normal Operation

AD7854: 15 mW (VDD = 3 V)

AD7854L: 5.5 mW (VDD = 3 V)

Automatic Power-Down After Conversion (25 W)

AD7854: 1.3 mW 10 kSPS AD7854L: 650 W 10 kSPS

Flexible Parallel Interface

12-Bit Parallel/8-Bit Parallel (AD7854)

28-Lead DIP, SOIC and SSOP Packages (AD7854)

APPLICATIONS

Battery-Powered Systems (Personal Digital Assistants,

Medical Instruments, Mobile Communications)

Pen Computers

Instrumentation and Control Systems

High Speed Modems

FUNCTIONAL BLOCK DIAGRAM

 

AVDD

AGND

 

AIN(+)

T/H

AD7854/AD7854L

 

 

 

 

AIN(–)

 

 

 

 

2.5V

 

DVDD

 

REFERENCE

 

 

REFIN/

 

COMP

 

BUF

 

 

REFOUT

 

 

 

 

 

 

 

 

DGND

CREF1

CHARGE

 

 

 

REDISTRIBUTION

 

 

 

DAC

 

 

 

 

 

CLKIN

CREF2

 

SAR + ADC

CONVST

CALIBRATION

CONTROL

 

 

BUSY

 

MEMORY

 

 

 

 

 

AND CONTROLLER

 

 

 

PARALLEL INTERFACE/CONTROL REGISTER

 

DB11–DB0 CS RD WR HBEN

GENERAL DESCRIPTION

The AD7854/AD7854L is a high speed, low power, 12-bit ADC that operates from a single 3 V or 5 V power supply, the AD7854 being optimized for speed and the AD7854L for low power. The ADC powers up with a set of default conditions at which time it can be operated as a read-only ADC. The ADC contains self-calibration and system calibration options to ensure accurate operation over time and temperature and has a number of power-down options for low power applications.

The AD7854 is capable of 200 kHz throughput rate while the AD7854L is capable of 100 kHz throughput rate. The input track-and-hold acquires a signal in 500 ns and features a pseudodifferential sampling scheme. The AD7854 and AD7854L input

voltage range is 0 to VREF (unipolar) and –VREF/2 to +VREF/2, centered at VREF/2 (bipolar). The coding is straight binary in

unipolar mode and twos complement in bipolar mode. Input signal range is to the supply and the part is capable of converting full-power signals to 100 kHz.

CMOS construction ensures low power dissipation of typically 5.4 mW for normal operation and 3.6 W in power-down mode. The part is available in 28-lead, 0.6 inch wide dual-in-line package (DIP), 28-lead small outline (SOIC) and 28-lead small shrink outline (SSOP) packages.

*Patent pending.

See Page 27 for data sheet index.

PRODUCT HIGHLIGHTS

1.Operation with either 3 V or 5 V power supplies.

2.Flexible power management options including automatic power-down after conversion. By using the power management options a superior power performance at slower throughput rates can be achieved:

AD7854: 1 mW typ @ 10 kSPS AD7854L: 1 mW typ @ 20 kSPS

3.Operates with reference voltages from 1.2 V to AVDD.

4.Analog input ranges from 0 V to AVDD.

5.Self-calibration and system calibration.

6.Versatile parallel I/O port.

7.Lower power version AD7854L.

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2000

AD7854/AD7854L–SPECIFICATIONS1, 2 (AVDD = DVDD = +3.0 V to +5.5 V, REFIN/REFOUT = 2.5 V External Reference, fCLKIN = 4 MHz (for L Version: 1.8 MHz (0 C to +70 C) and 1 MHz (–40 C to +85 C)); fSAMPLE = 200 kHz (AD7854), 100 kHz

(AD7854L); TA = TMIN to TMAX, unless otherwise noted.) Specifications in () apply to the AD7854L.

Parameter

A Version1

B Version1

S Version1

Units

Test Conditions/Comments

DYNAMIC PERFORMANCE

 

 

 

 

 

Signal to Noise + Distortion Ratio3

70

71

70

dB min

Typically SNR is 72 dB

(SNR)

 

 

 

 

VIN = 10 kHz Sine Wave, fSAMPLE = 200 kHz

 

 

 

 

 

(L Version: fSAMPLE = 100 kHz @ fCLKIN = 2 MHz)

Total Harmonic Distortion (THD)

–78

–78

–78

dB max

VIN = 10 kHz Sine Wave, fSAMPLE = 200 kHz

 

 

 

 

 

(L Version: fSAMPLE = 100 kHz @ fCLKIN = 2 MHz)

Peak Harmonic or Spurious Noise

–78

–78

–78

dB max

VIN = 10 kHz Sine Wave, fSAMPLE = 200 kHz

 

 

 

 

 

(L Version: fSAMPLE = 100 kHz @ fCLKIN = 2 MHz)

Intermodulation Distortion (IMD)

 

 

 

 

 

Second Order Terms

–78

–78

–78

dB typ

fa = 9.983 kHz, fb = 10.05 kHz, fSAMPLE = 200 kHz

 

 

 

 

 

(L Version: fSAMPLE = 100 kHz @ fCLKIN = 2 MHz)

Third Order Terms

–78

–78

–78

dB typ

fa = 9.983 kHz, fb = 10.05 kHz, fSAMPLE = 200 kHz

 

 

 

 

 

(L Version: fSAMPLE = 100 kHz @ fCLKIN = 2 MHz)

DC ACCURACY

 

 

 

 

 

Resolution

12

12

12

Bits

 

Integral Nonlinearity

±1

±0.5

±1

LSB max

5 V Reference VDD = 5 V

Differential Nonlinearity

±1

±1

±1

LSB max

Guaranteed No Missed Codes to 12 Bits

Unipolar Offset Error

±3

±3

±4

LSB max

 

 

±2

±2

±2

LSB typ

 

Unipolar Gain Error

±4

±4

±4

LSB max

 

 

±2

±2

±2

LSB typ

 

Bipolar Positive Full-Scale Error

±4

±4

±5

LSB max

 

 

±2

±2

±2

LSB typ

 

Negative Full-Scale Error

±4

±4

±5

LSB max

 

 

±2

±2

±2

LSB typ

 

Bipolar Zero Error

±4

±4

±5

LSB max

 

 

 

 

 

 

 

ANALOG INPUT

 

 

 

 

 

Input Voltage Ranges

0 to VREF

0 to VREF

0 to VREF

Volts

i.e., AIN(+) – AIN(–) = 0 to VREF, AIN(–) can be

 

±VREF/2

±VREF/2

±VREF/2

 

biased up but AIN(+) cannot go below AIN(–).

 

Volts

i.e., AIN(+) – AIN(–) = –VREF/2 to +VREF/2, AIN(–)

 

 

 

 

 

should be biased to +VREF/2 and AIN(+) can go below

 

±1

±1

±1

µA max

AIN(–) but cannot go below 0 V.

Leakage Current

 

Input Capacitance

20

20

20

pF typ

 

 

 

 

 

 

 

REFERENCE INPUT/OUTPUT

 

 

 

 

 

REFIN Input Voltage Range

2.3/VDD

2.3/VDD

2.3/VDD

V min/max

Functional from 1.2 V

Input Impedance

150

150

150

kΩ typ

 

REFOUT Output Voltage

2.3/2.75

2.3/2.7

2.3/2.7

V min/max

 

REFOUT Tempco

20

20

20

ppm/°C typ

 

LOGIC INPUTS

 

 

 

 

 

Input High Voltage, VINH

3

3

3

V min

AVDD = DVDD = 4.5 V to 5.5 V

 

2.1

2.1

2.1

V min

AVDD = DVDD = 3.0 V to 3.6 V

Input Low Voltage, VINL

0.4

0.4

0.4

V max

AVDD = DVDD = 4.5 V to 5.5 V

 

0.6

0.6

0.6

V max

AVDD = DVDD = 3.0 V to 3.6 V

Input Current, IIN

±10

±10

±10

µA max

Typically 10 nA, VIN = 0 V or VDD

Input Capacitance, CIN4

10

10

10

pF max

 

LOGIC OUTPUTS

 

 

 

 

ISOURCE = 200 µA

Output High Voltage, VOH

 

 

 

 

 

4

4

4

V min

AVDD = DVDD = 4.5 V to 5.5 V

 

2.4

2.4

2.4

V min

AVDD = DVDD = 3.0 V to 3.6 V

Output Low Voltage, VOL

0.4

0.4

0.4

V max

ISINK = 0.8 mA

Floating-State Leakage Current

±10

±10

±10

µA max

 

Floating-State Output Capacitance4

10

10

10

pF max

 

Output Coding

Straight (Natural)

Binary

 

Unipolar Input Range

 

 

Twos Complement

 

Bipolar Input Range

 

 

 

 

 

 

CONVERSION RATE

 

 

 

 

tCLKIN × 18

Conversion Time

4.6 (10)

4.6 (9)

4.6 (9)

µs max

(L Versions Only, 0°C to +70°C, 1.8 MHz CLKIN)

Track/Hold Acquisition Time

0.5 (1)

0.5 (1)

0.5 (1)

µs min

(L Versions Only, –40°C to +85°C, 1 MHz CLKIN)

 

 

 

 

 

 

–2–

REV. B

 

 

 

 

 

 

 

AD7854/AD7854L

 

 

 

 

 

 

 

Parameter

A Version1

B Version1

S Version1

Units

Test Conditions/Comments

POWER REQUIREMENTS

 

 

 

 

 

 

 

 

AVDD, DVDD

+3.0/+5.5

+3.0/+5.5

+3.0/+5.5

V min/max

 

 

IDD

 

 

 

 

 

 

 

 

Normal Mode5

5.5 (1.8)

5.5 (1.8)

6 (1.8)

mA max

AVDD = DVDD = 4.5 V to 5.5 V. Typically 4.5 mA

 

 

 

 

 

 

 

(1.5 mA);

 

5.5 (1.8)

5.5 (1.8)

6 (1.8)

mA max

AVDD = DVDD = 3.0 V to 3.6 V. Typically 4.0 mA

Sleep Mode6

 

 

 

 

 

 

(1.5 mA).

 

 

 

 

 

µA typ

 

 

With External Clock On

10

10

 

10

 

Full power-down. Power management bits in control

 

 

 

 

 

 

µA typ

register set as PMGT1 = 1, PMGT0 = 0.

 

400

400

400

Partial power-down. Power management bits in

 

 

 

 

 

 

 

control register set as PMGT1 = 1, PMGT0 = 1.

With External Clock Off

5

5

 

5

 

µA max

Typically 1 µA. Full power-down. Power management

 

 

 

 

 

 

 

bits in control register set as PMGT1 = 1,

 

 

 

 

 

 

µA typ

PMGT0 = 0.

 

200

200

200

Partial power-down. Power management bits in

 

 

 

 

 

 

 

control register set as PMGT1 = 1, PMGT0 = 1.

Normal Mode Power Dissipation

30 (10)

30

(10)

30

(10)

mW max

VDD = 5.5 V: Typically 25 mW (8)

 

20 (6.5)

20

(6.5)

20

(6.5)

mW max

VDD = 3.6 V: Typically 15 mW (5.4)

Sleep Mode Power Dissipation

 

 

 

 

 

µW typ

 

 

With External Clock On

55

55

 

55

 

VDD = 5.5 V

 

36

36

 

36

 

µW typ

VDD = 3.6 V

With External Clock Off

27.5

27.5

27.5

µW max

VDD = 5.5 V: Typically 5.5 µW

 

18

18

 

18

 

µW max

VDD = 3.6 V: Typically 3.6 µW

SYSTEM CALIBRATION

+0.05 × VREF/–0.05 × VREF

 

 

 

Offset Calibration Span7

V max/min

Allowable Offset Voltage Span for Calibration

Gain Calibration Span7

+0.025 × VREF/–0.025 × VREF

V max/min

Allowable Full-Scale Voltage Span for Calibration

 

NOTES

1Temperature ranges as follows: A, B Versions, –40°C to +85°C; S Version, –55°C to +125°C. 2Specifications apply after calibration.

3Not production tested. Guaranteed by characterization at initial product release.

4Sample tested @ +25°C to ensure compliance.

5All digital inputs @ DGND except for CONVST @ DVDD. No load on the digital outputs. Analog inputs @ AGND.

6CLKIN @ DGND when external clock off. All digital inputs @ DGND except for CONVST @ DVDD. No load on the digital outputs. Analog inputs @ AGND. 7The offset and gain calibration spans are defined as the range of offset and gain errors that the AD7854/AD7854L can calibrate. Note also that these are voltage spans and are not absolute voltages (i.e., the allowable system offset voltage presented at AIN(+) for the system offset error to be adjusted out will be AIN(–) ± 0.05 × VREF, and the allowable system full-scale voltage applied between AIN(+) and AIN(–) for the system full-scale voltage error to be adjusted out will be VREF ± 0.025 × VREF (unipolar mode) and VREF/2 ± 0.025 × VREF (bipolar mode)). This is explained in more detail in the calibration section of the data sheet.

Specifications subject to change without notice.

REV. B

–3–

AD7854/AD7854L

 

 

 

(AVDD = DVDD = +3.0 V to +5.5 V; fCLKIN = 4 MHz for AD7854 and 1.8 MHz for AD7854L;

TIMING SPECIFICATIONS1 TA = TMIN to TMAX, unless otherwise noted)

 

Limit at TMIN, TMAX

 

 

 

(A, B, S Versions)

 

 

Parameter

5 V

 

3 V

Units

Description

 

 

 

 

 

 

 

2

500

 

500

kHz min

Master Clock Frequency

fCLKIN

 

 

4

 

4

MHz max

 

t13

1.8

 

1.8

MHz max

L Version

100

 

100

ns min

CONVST Pulsewidth

t2

50

 

90

ns max

CONVST to BUSY ↑ Propagation Delay

tCONVERT

4.5

 

4.5

µs max

Conversion Time = 18 tCLKIN

 

10

 

10

µs max

L Version 1.8 MHz CLKIN. Conversion Time = 18 tCLKIN

t3

15

 

15

ns min

HBEN to RD Setup Time

t4

5

 

5

ns min

HBEN to RD Hold Time

t5

0

 

0

ns min

CS to RD to Setup Time

t6

0

 

0

ns min

CS to RD Hold Time

t7

55

 

70

ns min

RD Pulsewidth

t84

50

 

50

ns max

Data Access Time After RD

t95

5

 

5

ns min

Bus Relinquish Time After RD

 

40

 

40

ns max

 

t10

60

 

70

ns min

Minimum Time Between Reads

t11

0

 

0

ns min

HBEN to WR Setup Time

t12

5

 

5

ns max

HBEN to WR Hold Time

t13

0

 

0

ns min

CS to WR Setup Time

t14

0

 

0

ns max

CS to WR Hold Time

t15

55

 

70

ns min

WR Pulsewidth

t16

10

 

10

ns min

Data Setup Time Before WR

t17

5

 

5

ns min

Data Hold Time After WR

t184

1/2 tCLKIN

 

1/2 tCLKIN

ns min

New Data Valid Before Falling Edge of BUSY

t19

50

 

70

ns min

HBEN High Pulse Duration

t20

50

 

70

ns min

HBEN Low Pulse Duration

t21

40

 

60

ns min

Propagation Delay from HBEN Rising Edge to Data Valid

t22

40

 

60

ns min

Propagation Delay from HBEN Falling Edge to Data Valid

t23

2.5 tCLKIN

 

2.5 tCLKIN

ns max

CS↑ to BUSY ↑ in Calibration Sequence

6

31.25

 

31.25

ms typ

Full Self-Calibration Time, Master Clock Dependent (125013

tCAL

 

6

 

 

 

 

tCLKIN)

27.78

 

27.78

ms typ

Internal DAC Plus System Full-Scale Cal Time, Master Clock

tCAL1

 

6

 

 

 

 

Dependent (111124 tCLKIN)

3.47

 

3.47

ms typ

System Offset Calibration Time, Master Clock Dependent

tCAL2

 

 

 

 

 

 

(13889 tCLKIN)

NOTES

1Sample tested at +25°C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of V DD) and timed from a voltage level of 1.6 V.

2Mark/Space ratio for the master clock input is 40/60 to 60/40.

3The CONVST pulsewidth here only applies for normal operation. When the part is in power-down mode, a different CONVST pulsewidth applies (see Power-Down section).

4Measured with the load circuit of Figure 1 and defined as the time required for the output to cross 0.8 V or 2.4 V.

5t9 is derived form the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t 9, quoted in the timing characteristics is the true bus relinquish time of the part and is independent of the bus loading.

6The typical time specified for the calibration times is for a master clock of 4 MHz. For the L version the calibration times will be longer than those quoted here due to the 1.8 MHz master clock.

Specifications subject to change without notice.

–4–

REV. B

AD7854/AD7854L

 

1.6mA

IOL

TO

 

 

OUTPUT

 

+2.1V

PIN

CL

 

 

50pF

 

 

200µA

IOH

Figure 1. Load Circuit for Digital Output Timing Specifications

PIN CONFIGURATION

FOR DIP, SOIC AND SSOP

 

 

 

 

 

 

 

 

 

 

CONVST

1

 

 

 

28

BUSY

 

 

 

 

 

 

 

 

 

 

 

WR

2

 

 

 

27

CLKIN

 

 

 

 

 

 

 

 

 

 

 

RD

3

 

 

 

26

DB11

 

 

 

 

 

 

 

 

 

 

 

CS

4

 

 

 

25

DB10

 

 

 

 

 

 

 

 

 

REF

 

/REF

5

AD7854

24

DB9

 

IN

OUT

 

 

 

 

 

AVDD

6

TOP VIEW

23

DGND

 

 

 

 

(Not to Scale)

 

 

 

 

AGND

7

22

DVDD

 

 

 

 

 

 

 

 

 

 

CREF1

8

 

 

 

21

DB8

 

 

 

 

 

 

 

 

 

 

CREF2

9

 

 

 

20

DB7

 

 

 

 

 

 

19

 

 

 

AIN(+)

10

 

 

 

DB6

 

 

 

 

 

 

18

 

 

 

AIN(–)

11

 

 

 

DB5

 

 

 

 

 

 

17

 

 

 

HBEN

12

 

 

 

DB4

 

 

 

 

 

 

16

 

 

 

DB0

13

 

 

 

DB3

 

 

 

 

 

 

 

 

 

 

DB1

14

 

 

 

15

DB2

 

 

 

 

 

 

 

 

 

ABSOLUTE MAXIMUM RATINGS1

(TA = +25°C unless otherwise noted)

AVDD to AGND . . . . . . . . . .

. . . . . . .

. . . . .

. –0.3 V to +7 V

DVDD to DGND . . . . . . . . . .

. . . . . . .

. . . . .

. –0.3 V to +7 V

AVDD to DVDD . . . . . . . . . . .

. . . . . . .

. . . . .

–0.3 V to +0.3 V

Analog Input Voltage to AGND . . . .

–0.3 V to AVDD + 0.3 V

Digital Input Voltage to DGND . . . .

–0.3 V to DVDD + 0.3 V

Digital Output Voltage to DGND . . .

–0.3 V to DVDD + 0.3 V

REFIN/REFOUT to AGND . . .

. . . . . .

–0.3 V to AVDD + 0.3 V

Input Current to Any Pin Except Supplies2 . .

. . . . . . . ± 10 mA

Operating Temperature Range

 

 

–40°C to +85°C

Commercial (A, B Versions)

. . . . . .

. . . . .

Commercial (S Version) . . .

. . . . . . .

. . . .

–55°C to +125°C

Storage Temperature Range

. . . . . . .

. . . .

–65°C to +150°C

Junction Temperature . . . . . .

. . . . . . .

. . . . .

. . . . . . . +150°C

Cerdip Package, Power Dissipation . . .

. . . . .

. . . . . . 450 mW

θJA Thermal Impedance . . .

. . . . . . .

. . . . .

. . . . . . . 75°C/W

Lead Temperature, (Soldering, 10 secs) . .

. . . . . . . +300°C

SOIC, SSOP Package, Power Dissipation . . .

. . . . . . 450 mW

θJA Thermal Impedance . . .

75°C/W (SOIC) 115°C/W (SSOP)

θJC Thermal Impedance . . .

25°C/W (SOIC) 35°C/W (SSOP)

Lead Temperature, Soldering

 

+215°C

Vapor Phase (60 secs) . . .

. . . . . . .

. . . . .

Infrared (15 secs) . . . . . .

. . . . . . .

. . . . .

. . . . . . . +220°C

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2Transient currents of up to 100 mA will not cause SCR latchup.

ORDERING GUIDE

 

 

Linearity

Power

 

 

Temperature

Error

Dissipation

Package

Model

Range1

(LSB)

(mW)

Option2

AD7854AQ

–40°C to +85°C

1

15

Q-28

AD7854SQ

–55°C to +125°C

1

15

Q-28

AD7854AR

–40°C to +85°C

1

15

R-28

AD7854BR

–40°C to +85°C

1/2

15

R-28

AD7854ARS

–40°C to +85°C

1

15

RS-28

AD7854LAQ3

–40°C to +85°C

1

5.5

Q-28

AD7854LAR3

–40°C to +85°C

1

5.5

R-28

AD7854LARS3

–40°C to +85°C

1

5.5

RS-28

EVAL-AD7854CB4

 

 

 

 

EVAL-CONTROL BOARD5

 

 

 

 

NOTES

1Linearity error refers to the integral linearity error. 2Q = Cerdip; R = SOIC; RS = SSOP.

3L signifies the low power version.

4This can be used as a stand-alone evaluation board or in conjunction with the EVAL-CONTROL BOARD for evaluation/demonstration purposes.

5This board is a complete unit allowing a PC to control and communicate with all Analog Devices evaluation boards ending in the CB designator. For more information on Analog Devices products and evaluation boards visit our World Wide Web home page at http://www.analog.com.

REV. B

–5–

Analog Devices AD7854CB, AD7854ARS, AD7854AR, AD7854AQ, AD7854SQ Datasheet

AD7854/AD7854L

PIN FUNCTION DESCRIPTIONS

Pin Mnemonic Description

1CONVST Convert Start. Logic input. A low to high transition on this input puts the track/hold into its hold

 

 

mode and starts conversion. When this input is not used, it should be tied to DVDD.

2

WR

Write Input. Active low logic input. Used in conjunction with CS and HBEN to write to internal registers.

3

RD

Read Input. Active low logic input. Used in conjunction with CS and HBEN to read from internal

 

 

registers.

4

CS

Chip Select Input. Active low logic input. The device is selected when this input is active.

5

REFIN/

Reference Input/Output. This pin is connected to the internal reference through a series resistor and is the

 

REFOUT

reference source for the analog-to-digital converter. The nominal reference voltage is 2.5 V and this appears

 

 

at the pin. This pin can be overdriven by an external reference and can be taken as high as AVDD. When

 

 

this pin is tied to AVDD, then the CREF1 pin should also be tied to AVDD.

6

AVDD

Analog Positive Supply Voltage, +3.0 V to +5.5 V.

7

AGND

Analog Ground. Ground reference for track/hold, reference and DAC.

8

CREF1

Reference Capacitor (0.1 µF multilayer ceramic). This external capacitor is used as a charge source for the

 

 

internal DAC. The capacitor should be tied between the pin and AGND.

9

CREF2

Reference Capacitor (0.01 µF ceramic disc). This external capacitor is used in conjunction with the on-chip

 

 

reference. The capacitor should be tied between the pin and AGND.

10

AIN(+)

Analog Input. Positive input of the pseudo-differential analog input. Cannot go below AGND or above

 

 

AVDD at any time, and cannot go below AIN(–) when the unipolar input range is selected.

11

AIN(–)

Analog Input. Negative input of the pseudo-differential analog input. Cannot go below AGND or above

 

 

AVDD at any time.

12

HBEN

High Byte Enable Input. The AD7854 operates in byte mode only but outputs 12 bits of data during a read

 

 

cycle with HBEN low. When HBEN is high, then the high byte of data that is written to or read from the

 

 

part is on DB0 to DB7. When HBEN is low, then the lowest byte of data being written to the part is on

 

 

DB0 to DB7. If reading from the part with HBEN low, then the lowest 12 bits of data appear on pins DB0

 

 

to DB11. This allows a single read from the ADC or from the control register in a 16-bit bus system.

 

 

However, two reads are needed to access the calibration registers. Also, two writes are necessary to write to

 

 

any of the registers.

13–21

DB0–DB8

Data Bits 0 to 8. Three state data I/O pins that are controlled by CS, RD, WR and HBEN. Data output is

 

 

straight binary (unipolar mode) or twos complement (bipolar mode).

22

DVDD

Digital Supply Voltage, +3.0 V to +5.5 V.

23

DGND

Digital Ground. Ground reference point for digital circuitry.

24–26

DB9–DB11

Data Bits 9 to 11. Three state data output pins that are controlled by CS, RD and HBEN. Data output is

 

 

straight binary (unipolar mode) or twos complement (bipolar mode). These output pins should be tied to

 

 

DVDD via 100 kΩ resistors when the AD7854/AD7854L is being interfaced to an 8-bit data bus.

27

CLKIN

Master Clock Signal for the device (4 MHz for AD7854, 1.8 MHz for AD7854L). Sets the conversion and

 

 

calibration times.

28

BUSY

Busy Output. The busy output is triggered high by the falling edge of CONVST and remains high until

 

 

conversion is completed. BUSY is also used to indicate when the AD7854/AD7854L has completed its on-

 

 

chip calibration sequence.

–6–

REV. B

AD7854/AD7854L

TERMINOLOGY Integral Nonlinearity

This is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point 1/2 LSB below the first code transition, and full scale, a point 1/2 LSB above the last code transition.

Differential Nonlinearity

This is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Unipolar Offset Error

This is the deviation of the first code transition (00 . . . 000 to 00 . . . 001) from the ideal AIN(+) voltage (AIN(–) + 1/2 LSB) when operating in the unipolar mode.

Unipolar Gain Error

This is the deviation of the last code transition (111 . . . 110 to

111 . . . 111) from the ideal, i.e., AIN(–) +VREF/2 – 1.5 LSB, after the unipolar offset error has been adjusted out.

Bipolar Positive Full-Scale Error

This applies to the bipolar modes only and is the deviation of the last code transition from the ideal AIN(+) voltage. For bipolar mode, the ideal AIN(+) voltage is (AIN(–) +VREF/2 – 1.5 LSB).

Negative Full-Scale Error

This applies to the bipolar mode only and is the deviation of the first code transition (10 . . . 000 to 10 . . . 001) from the ideal AIN(+) voltage (AIN(–) – VREF/2 + 0.5 LSB).

Bipolar Zero Error

This is the deviation of the midscale transition (all 0s to all 1s) from the ideal AIN(+) voltage (AIN(–) – 1/2 LSB).

Track/Hold Acquisition Time

The track/hold amplifier returns into track mode and the end of conversion. Track/Hold acquisition time is the time required for the output of the track/hold amplifier to reach its final value, within ±1/2 LSB, after the end of conversion.

Signal to (Noise + Distortion) Ratio

This is the measured ratio of signal to (noise + distortion) at the output of the A/D converter. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency (fS/2), excluding dc. The ratio is dependent on the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal to (noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by:

Signal to (Noise + Distortion) = (6.02 N + 1.76) dB

Thus for a 12-bit converter, this is 74 dB.

Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the rms sum of harmonics to the fundamental. For the AD7854/AD7854L, it is defined as:

= (V22 +V32 +V 42 +V52 +V62 )

THD (dB) 20 log

V1

where V1 is the rms amplitude of the fundamental and V2, V3, V4, V5 and V6 are the rms amplitudes of the second through the sixth harmonics.

Peak Harmonic or Spurious Noise

Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to fS/2 and excluding dc) to the rms value of the fundamental. Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it will be a noise peak.

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities will create distortion products at sum and difference frequencies of mfa ± nfb where m, n = 0, 1, 2, 3, etc. Intermodulation distortion terms are those for which neither m nor n are equal to zero. For example, the second order terms include (fa + fb) and (fa – fb), while the third order terms include (2fa + fb), (2fa – fb), (fa + 2fb) and (fa – 2fb).

Testing is performed using the CCIF standard where two input frequencies near the top end of the input bandwidth are used. In this case, the second order terms are usually distanced in frequency from the original sine waves while the third order terms are usually at a frequency close to the input frequencies. As a result, the second and third order terms are specified separately. The calculation of the intermodulation distortion is as per the THD specification where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the sum of the fundamentals expressed in dBs.

REV. B

–7–

AD7854/AD7854L

AD7854/AD7854L ON-CHIP REGISTERS

The AD7854/AD7854L powers up with a set of default conditions, and the user need not ever write to the device. In this case the AD7854/AD7854L will operate as a read-only ADC. The WR pin should be tied to DVDD for operating the AD7854/AD7854L as a read-only ADC.

Extra features and flexibility such as performing different power-down options, different types of calibrations including system calibration, and software conversion start can be selected by writing to the part.

The AD7854/AD7854L contains a control register, ADC output data register, status register, test register and 10 calibration registers. The control register is write-only, the ADC output data register and the status register are read-only, and the test and calibration registers are both read/write registers. The test register is used for testing the part and should not be written to.

Addressing the On-Chip Registers

Writing

To write to the AD7854/AD7854L, a 16-bit word of data must be transferred. This transfer consists of two 8-bit writes. The first 8 bits of data that are written must consist of the 8 LSBs of the 16-bit word and the second 8 bits that are written must consist of the 8 MSBs of the 16-bit word. For each of these 8-bit writes, the data is placed on Pins DB0 to DB7, Pin DB0 being the LSB of each transfer and Pin DB7 being the MSB of each transfer. The two MSBs of the 16-bit word, ADDR1 and ADDR0, are decoded to determine which register is addressed, and the 14 LSBs are written to the addressed register. Table I shows the decoding of the address bits, while Figure 2 shows the overall write register hierarchy.

 

 

Table I. Write Register Addressing

 

 

 

ADDR1

ADDR0

Comment

 

 

 

0

0

This combination does not address any register.

0

1

This combination addresses the TEST REGISTER. The 14 LSBs of data are written to the test register.

1

0

This combination addresses the CALIBRATION REGISTER. The 14 least significant data bits are writ-

 

 

ten to the selected calibration register.

1

1

This combination addresses the CONTROL REGISTER. The 14 least significant data bits are written to

 

 

the control register.

 

 

 

Reading

To read from the various registers the user must first write to Bits 6 and 7 in the Control Register, RDSLT0 and RDSLT1. These bits are decoded to determine which register is addressed during a read operation. Table II shows the decoding of the read address bits while Figure 3 shows the overall read register hierarchy. The power-up status of these bits is 00 so that the default read will be from the ADC output data register. Note: when reading from the calibration registers, the low byte must always be read first.

Once the read selection bits are set in the control register all subsequent read operations that follow are from the selected register until the read selection bits are changed in the control register.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II. Read Register Addressing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDSLT1

RDSLT0

Comment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

All successive read operations are from the ADC OUTPUT DATA REGISTER. This is the default power-

 

 

up setting. There is always four leading zeros when reading from the ADC output data register.

0

1

All successive read operations are from the TEST REGISTER.

1

0

All successive read operations are from the CALIBRATION REGISTERS.

1

1

All successive read operations are from the STATUS REGISTER.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDR1, ADDR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDSLT1, RDSLT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

11

 

00

 

 

 

 

 

 

 

 

 

 

01

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEST

 

 

 

 

 

CALIBRATION

 

 

 

CONTROL

 

 

ADC OUTPUT

 

 

 

 

TEST

 

 

 

CALIBRATION

 

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGISTER

 

 

 

 

 

REGISTERS

 

 

 

REGISTER

 

DATA REGISTER

 

 

 

 

REGISTER

 

 

 

REGISTERS

 

 

 

REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAIN(1)

 

 

GAIN(1)

 

 

OFFSET(1)

 

GAIN(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAIN(1)

 

 

GAIN(1)

 

OFFSET(1)

 

GAIN(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFFSET(1)

 

OFFSET(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OFFSET(1)

 

 

OFFSET(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAC(8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAC(8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

 

01

 

 

 

 

 

 

10

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

 

 

 

 

01

 

 

 

 

 

10

 

 

 

 

 

11

 

 

CALSLT1, CALSLT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALSLT1, CALSLT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Write Register Hierarchy/Address Decoding

 

Figure 3. Read Register Hierarchy/Address Decoding

–8–

REV. B

AD7854/AD7854L

CONTROL REGISTER

The arrangement of the control register is shown below. The control register is a write only register and contains 14 bits of data. The control register is selected by putting two 1s in ADDR1 and ADDR0. The function of the bits in the control register is described below. The power-up status of all bits is 0.

 

 

MSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZERO

ZERO

ZERO

ZERO

PMGT1

 

PMGT0

RDSLT1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDSLT0

AMODE

CONVST

CALMD

CALSLT1

 

CALSLT0

STCAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LSB

 

 

 

 

Control Register Bit Function Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

Mnemonic

Comment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

ZERO

These four bits must be set to 0 when writing to the control register.

 

 

12

ZERO

 

 

 

 

 

 

 

 

11

ZERO

 

 

 

 

 

 

 

 

10

ZERO

 

 

 

 

 

 

 

 

9

PMGT1

Power Management Bits. These two bits are used for putting the part into various power-down modes

8

PMGT0

(See Power-Down section for more details).

 

 

 

 

 

7

RDSLT1

Theses two bits determine which register is addressed for the read operations. See Table II.

6RDSLT0

5

AMODE

Analog Mode Bit. This pin allows two different analog input ranges to be selected. A logic 0 in this bit

 

 

 

position selects range 0 to VREF (i.e., AIN(+) – AIN(–) = 0 to VREF). In this range AIN(+) cannot go

 

 

 

below AIN(–) and AIN(–) cannot go below AGND and data coding is straight binary. A logic 1 in this

 

 

 

bit position selects range –VREF/2 to +VREF/2 (i.e., AIN(+) – AIN(–) = –VREF /2 to +VREF/2). AIN(+)

 

 

 

cannot go below AGND, so for this range, AIN(–) needs to be biased to at least +VREF/2 to allow

 

 

 

AIN(+) to go as low as AIN(–) –VREF/2 V. Data coding is twos complement for this range.

4

CONVST

Conversion Start Bit. A logic one in this bit position starts a single conversion, and this bit is automati-

 

 

 

cally reset to 0 at the end of conversion. This bit may also used in conjunction with system calibration

 

 

 

(see Calibration section).

3

CALMD

Calibration Mode Bit. A 0 here selects self-calibration and a 1 selects a system calibration (see Table III).

2

CALSLT1

Calibration Selection Bits and Start Calibration Bit. These bits have two functions.

1

CALSLT0

With the STCAL bit set to 1, the CALSLT1 and CALSLT0 bits determine the type of calibration per-

0

STCAL

formed by the part (see Table III). The STCAL bit is automatically reset to 0 at the end of calibration.

 

 

 

With the STCAL bit set to 0, the CALSLT1 and CALSLT0 bits are decoded to address the calibration

 

 

 

register for read/write of calibration coefficients (see section on the calibration registers for more details).

 

 

 

 

 

 

 

 

 

Table III. Calibration Selection

 

 

 

 

 

CALMD

 

CALSLT1

CALSLT0

Calibration Type

 

 

 

 

 

0

 

0

0

A full internal calibration is initiated. First the internal DAC is calibrated, then the

 

 

 

 

internal gain error and finally the internal offset error are removed. This is the default setting.

0

 

0

1

First the internal gain error is removed, then the internal offset error is removed.

0

 

1

0

The internal offset error only is calibrated out.

0

 

1

1

The internal gain error only is calibrated out.

1

 

0

0

A full system calibration is initiated. First the internal DAC is calibrated, followed by the

 

 

 

 

system gain error calibration, and finally the system offset error calibration.

1

 

0

1

First the system gain error is calibrated out followed by the system offset error.

1

 

1

0

The system offset error only is removed.

1

 

1

1

The system gain error only is removed.

 

 

 

 

 

REV. B

–9–

Loading...
+ 19 hidden pages