Analog Devices AD736JR-REEL-7, AD736JR-REEL, AD736JR, AD736JN, AD736BQ Datasheet

...
0 (0)

a

Low Cost, Low Power,

True RMS-to-DC Converter

 

 

AD736

FEATURES

COMPUTES

True RMS Value

Average Rectified Value

Absolute Value

PROVIDES

200 mV Full-Scale Input Range

(Larger Inputs with Input Attenuator) High Input Impedance of 1012 V

Low Input Bias Current: 25 pA max

High Accuracy: 60.3 mV 60.3% of Reading

RMS Conversion with Signal Crest Factors Up to 5 Wide Power Supply Range: +2.8 V, –3.2 V to 616.5 V Low Power: 200 mA max Supply Current

Buffered Voltage Output

No External Trims Needed for Specified Accuracy AD737—An Unbuffered Voltage Output Version with

Chip Power Down Is Also Available

FUNCTIONAL BLOCK DIAGRAM

which allows the measurement of 300 mV input levels, while operating from the minimum power supply voltage of +2.8 V, –3.2 V. The two inputs may be used either singly or differentially.

PRODUCT DESCRIPTION

The AD736 is a low power, precision, monolithic true rms-to-dc converter. It is laser trimmed to provide a maximum error of ±0.3 mV ±0.3% of reading with sine-wave inputs. Furthermore, it maintains high accuracy while measuring a wide range of input waveforms, including variable duty cycle pulses and triac (phase) controlled sine waves. The low cost and small physical size of this converter make it suitable for upgrading the performance of non-rms “precision rectifiers” in many applications. Compared to these circuits, the AD736 offers higher accuracy at equal or lower cost.

The AD736 can compute the rms value of both ac and dc input voltages. It can also be operated ac coupled by adding one external capacitor. In this mode, the AD736 can resolve input signal levels of 100 μV rms or less, despite variations in temperature or supply voltage. High accuracy is also maintained for input waveforms with crest factors of 1 to 3. In addition, crest factors as high as 5 can be measured (while introducing only 2.5% additional error) at the 200 mV full-scale input level.

The AD736 has its own output buffer amplifier, thereby providing a great deal of design flexibility. Requiring only 200 μA of power supply current, the AD736 is optimized for use in portable multimeters and other battery powered applications.

The AD736 allows the choice of two signal input terminals: a high impedance (1012 Ω) FET input which will directly interface with high Z input attenuators and a low impedance (8 kΩ) input

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

The AD736 achieves a 1% of reading error bandwidth exceeding 10 kHz for input amplitudes from 20 mV rms to 200 mV rms while consuming only 1 mW.

The AD736 is available in four performance grades. The AD736J and AD736K grades are rated over the commercial temperature range of 0°C to +70°C. The AD736A and AD736B grades are rated over the industrial temperature range of –40°C to +85°C.

The AD736 is available in three low-cost, 8-pin packages: plastic mini-DIP, plastic SO and hermetic cerdip.

PRODUCT HIGHLIGHTS

1.The AD736 is capable of computing the average rectified value, absolute value or true rms value of various input signals.

2.Only one external component, an averaging capacitor, is required for the AD736 to perform true rms measurement.

3.The low power consumption of 1 mW makes the AD736 suitable for many battery powered applications.

4.A high input impedance of 1012 Ω eliminates the need for an external buffer when interfacing with input attenuators.

5.A low impedance input is available for those applications requiring up to 300 mV rms input signal operating from low power supply voltages.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

(@ +258C 65 V supplies, ac coupled with 1 kHz sine-wave input applied unless

AD736–SPECIFICATIONS otherwise noted.)

 

 

 

 

AD736J/A

 

AD736K/B

 

 

Model

 

Conditions

Min

Typ

Max

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

 

TRANSFER FUNCTION

 

 

VOUT =

Avg.(V IN

2 )

VOUT =

Avg.(V IN

2 )

 

CONVERSION ACCURACY

 

1 kHz Sine Wave

 

 

 

 

 

 

 

 

Total Error, Internal Trim1

 

ac Coupled Using CC

 

 

0.5/0.5

 

 

0.3/0.3

±mV/±% of Reading

 

All Grades

 

0–200 mV rms

 

0.3/0.3

 

0.2/0.2

 

TMIN–TMAX

 

200 mV–1 V rms

 

–1.2

62.0

 

–1.2

62.0

% of Reading

 

 

 

 

 

0.7/0.7

 

 

0.5/0.5

±mV/±% of Reading

 

A&B Grades

 

@ 200 mV rms

 

 

 

 

 

J&K Grades

 

@ 200 mV rms

 

0.007

 

 

0.007

 

±% of Reading/°C

 

vs. Supply Voltage

 

VS = ±5 V to ±16.5 V

0

 

+0.1

0

 

+0.1

 

 

@ 200 mV rms Input

 

+0.06

+0.06

%/V

 

@ 200 mV rms Input

 

VS = ±5 V to ±3 V

0

–0.18

–0.3

0

–0.18

–0.3

%/V

 

dc Reversal Error, dc Coupled

 

@ 600 mV dc

 

1.3

2.5

 

1.3

2.5

% of Reading

 

Nonlinearity2, 0 mV–200 mV

 

@ 100 mV rms

0

+0.25

+0.35

0

+0.25

+0.35

% of Reading

 

Total Error, External Trim

 

0–200 mV rms

 

0.1/0.5

 

 

0.1/0.3

 

±mV/±% of Reading

 

ERROR vs. CREST FACTOR3

 

CAV, CF = 100 μF

 

 

 

 

 

 

 

 

Crest Factor 1 to 3

 

 

0.7

 

 

0.7

 

% Additional Error

 

Crest Factor = 5

 

CAV, CF = 100 μF

 

2.5

 

 

2.5

 

% Additional Error

INPUT CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

High Impedance Input (Pin 2)

 

 

 

 

 

 

 

 

 

 

Signal Range

 

 

 

 

200

 

 

200

 

 

Continuous rms Level

 

VS = +2.8 V, –3.2 V

 

 

 

 

mV rms

 

Continuous rms Level

 

VS = ±5 V to ±16.5 V

60.9

 

1

60.9

 

1

V rms

 

Peak Transient Input

 

VS = +2.8 V, –3.2 V

±2.7

 

±2.7

 

V

 

Peak Transient Input

 

VS = ±5 V

 

 

 

 

V

 

Peak Transient Input

 

VS = ±16.5 V

64.0

 

 

64.0

 

 

V

 

Input Resistance

 

VS = ±3 V to ±16.5 V

 

1012

25

 

1012

25

Ω

 

Input Bias Current

 

 

1

 

1

pA

 

Low Impedance Input (Pin 1)

 

 

 

 

 

 

 

 

 

 

Signal Range

 

 

 

 

 

 

 

 

 

 

Continuous rms Level

 

VS = +2.8 V, –3.2 V

 

 

300

 

 

300

mV rms

 

Continuous rms Level

 

VS = ±5 V to ±16.5 V

 

±1.7

l

 

±1.7

l

V rms

 

Peak Transient Input

 

VS = +2.8 V, –3.2 V

 

 

 

 

V

 

Peak Transient Input

 

VS = ±5 V

 

±3.8

 

 

±3.8

 

V

 

Peak Transient Input

 

VS = ±16.5 V

 

±11

 

 

±11

 

V

 

Input Resistance

 

 

6.4

8

9.6

6.4

8

9.6

kΩ

 

Maximum Continuous

 

 

 

 

±12

 

 

±12

 

 

Nondestructive Input

 

All Supply Voltages

 

 

 

 

V p-p

 

Input Offset Voltage4

 

ac Coupled

 

 

63

 

 

63

 

 

J&K Grades

 

 

 

 

 

 

mV

 

A&B Grades

 

 

 

 

63

 

 

63

mV

 

vs. Temperature

 

VS = ±5 V to ±16.5 V

 

8

30

 

8

30

μV/°C

 

vs. Supply

 

 

50

150

 

50

150

μV/V

 

vs. Supply

 

VS = ±5 V to ±3 V

 

80

 

 

80

 

μV/V

OUTPUT CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

Output Offset Voltage

 

 

±0.1

60.5

 

±0.1

60.3

 

 

J&K Grades

 

 

 

mV

 

A&B Grades

 

 

 

60.5

 

 

60.3

mV

 

vs.Temperature

VS = ±5 V to ±16.5 V

 

1

20

 

1

20

μV/°C

 

vs. Supply

 

50

130

 

50

130

μV/V

 

Output Voltage Swing

VS = ±5 V to ±3 V

 

50

 

 

50

 

μV/V

 

 

 

 

 

 

 

 

 

 

2 kΩ Load

VS = +2.8 V, –3.2 V

0 to +1.6

+1.7

 

0 to +1.6

+1.7

 

V

 

2 kΩ Load

VS = ±5 V

0 to +3.6

+3.8

 

0 to +3.6

+3.8

 

V

 

2 kΩ Load

VS = ±16.5 V

0 to +4

+5

 

0 to +4

+5

 

V

 

No Load

VS = ±16.5 V

0 to +4

+12

 

0 to +4

+12

 

V

 

Output Current

 

2

 

 

2

 

 

mA

 

Short-Circuit Current

 

 

3

 

 

3

 

mA

 

Output Resistance

@ dc

 

0.2

 

 

0.2

 

Ω

FREQUENCY RESPONSE

 

 

 

 

 

 

 

 

 

High Impedance Input (Pin 2)

 

 

 

 

 

 

 

 

 

For 1% Additional Error

Sine-Wave Input

 

 

 

 

 

 

 

 

VIN = 1 mV rms

 

 

1

 

 

1

 

kHz

 

VIN = 10 mV rms

 

 

6

 

 

6

 

kHz

 

VIN = 100 mV rms

 

 

37

 

 

37

 

kHz

 

VIN = 200 mV rms

 

 

33

 

 

33

 

kHz

–2–

REV. C

Analog Devices AD736JR-REEL-7, AD736JR-REEL, AD736JR, AD736JN, AD736BQ Datasheet

AD736

 

 

 

AD736J/A

 

AD736K/B

 

 

Model

Conditions

Min

Typ

Max

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

±3 dB Bandwidth

Sine-Wave Input

 

 

 

 

 

 

 

VIN = 1 mV rms

 

 

5

 

 

5

 

kHz

VIN = 10 mV rms

 

 

55

 

 

55

 

kHz

VIN = 100 mV rms

 

 

170

 

 

170

 

kHz

VIN = 200 mV rms

 

 

190

 

 

190

 

kHz

FREQUENCY RESPONSE

 

 

 

 

 

 

 

 

Low Impedance Input (Pin 1)

 

 

 

 

 

 

 

 

For 1% Additional Error

Sine-Wave Input

 

 

 

 

 

 

 

VIN = 1 mV rms

 

 

1

 

 

1

 

kHz

VIN = 10 mV rms

 

 

6

 

 

6

 

kHz

VIN = 100 mV rms

 

 

90

 

 

90

 

kHz

VIN = 200 mV rms

 

 

90

 

 

90

 

kHz

±3 dB Bandwidth

Sine-Wave Input

 

 

 

 

 

 

 

VIN = l mV rms

 

 

5

 

 

5

 

kHz

VIN = 10 mV rms

 

 

55

 

 

55

 

kHz

VIN = 100 mV rms

 

 

350

 

 

350

 

kHz

VIN = 200 mV rms

 

 

460

 

 

460

 

kHz

POWER SUPPLY

 

+2.8, –3.2 ±5

±16.5

 

±5

±16.5

 

OperatingVoltageRange

 

+2.8, –3.2

Volts

Quiescent Current

Zero Signal

 

160

200

 

160

200

μA

200 mV rms, No Load

Sine-Wave Input

 

230

270

 

230

270

μA

TEMPERATURE RANGE

 

 

 

 

 

 

 

 

Operating, Rated Performance

 

 

 

 

 

 

 

 

Commercial (0°C to +70°C)

 

 

AD736J

 

 

AD736K

 

 

Industrial (–40°C to +85°C)

 

 

AD736A

 

 

AD736B

 

 

 

 

 

 

 

 

 

 

 

NOTES

lAccuracy is specified with the AD736 connected as shown in Figure 16 with capacitor CC.

2Nonlinearity is defined as the maximum deviation (in percent error) from a straight line connecting the readings at 0 and 200 mV rms. Output offset voltage is adjusted to zero. 3Error vs. Crest Factor is specified as additional error for a 200 mV rms signal. C.F. = VPEAK/V rms.

4DC offset does not limit ac resolution.

Specifications are subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test.

Results from those tests are used to calculate outgoing quality levels.

ABSOLUTE MAXIMUM RATINGS1

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16.5 V Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . .200 mW

Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±VS Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite

Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS Storage Temperature Range (Q) . . . . . . –65°C to +150°C Storage Temperature Range (N, R) . . . . . –65°C to +125°C Operating Temperature Range

AD736J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C AD736A/B . . . . . . . . . . . . . . . . . . . . . . . . . .–40°C to +85°C

ORDERING GUIDE

 

Temperature

Package

Package

Model

Range

Description

Option

 

 

 

 

AD736JN

0°C to +70°C

Plastic Mini-DIP

N-8

AD736KN

0°C to +70°C

Plastic Mini-DIP

N-8

AD736JR

0°C to +70°C

Plastic SOIC

SO-8

AD736KR

0°C to +70°C

Plastic SOIC

SO-8

AD736AQ

–40°C to +85°C

Cerdip

Q-8

AD736BQ

–40°C to +85°C

Cerdip

Q-8

AD736JR-REEL

0°C to +70°C

Plastic SOIC

SO-8

AD736JR-REEL-7

0°C to +70°C

Plastic SOIC

SO-8

AD736KR-REEL

0°C to +70°C

Plastic SOIC

SO-8

AD736KR-REEL-7

0°C to +70°C

Plastic SOIC

SO-8

 

 

 

 

Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V

NOTES

1Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability .

28-Pin Plastic Package: θJA = 165°C/W

8-Pin Cerdip Package: θJA = 110°C/W

8-Pin Small Outline Package: θJA = 155°C/W

PIN CONFIGURATION

8-Pin Mini-DIP (N-8), 8-Pin SOIC (R-8),

8-Pin Cerdip (Q-8)

REV. C

–3–

Loading...
+ 5 hidden pages