Analog Devices AD7376AN50, AD7376AN1M, AD7376AN100, AD7376AN10, AD7376ARU50 Datasheet

...
0 (0)

a

615 V Operation

Digital Potentiometer

 

 

AD7376*

 

 

 

 

FEATURES

FUNCTIONAL BLOCK DIAGRAM

128 Position

Potentiometer Replacement 10 kV, 50 kV, 100 kV, 1 MV

Power Shutdown: Less than 1 mA

3-Wire SPI Compatible Serial Data Input

+5 V to +30 V Single Supply Operation 65 V to 615 V Dual Supply Operation

Midscale Preset

APPLICATIONS

Mechanical Potentiometer Replacement

Instrumentation: Gain, Offset Adjustment

Programmable Voltage-to-Current Conversion

Programmable Filters, Delays, Time Constants

Line Impedance Matching

Power Supply Adjustment

GENERAL DESCRIPTION

The AD7376 provides a single channel, 128-position digitallycontrolled variable resistor (VR) device. This device performs the same electronic adjustment function as a potentiometer or variable resistor. These products were optimized for instrument and test equipment applications where a combination of high voltage with a choice between bandwidth or power dissipation are available as a result of the wide selection of end-to-end terminal resistance values. The AD7376 contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the SPI-compatible serial-input register. The resistance between the wiper and either endpoint of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. The variable resistor offers a completely programmable value of resistance between the A terminal and the wiper or the B terminal and the wiper. The fixed A to B terminal resistance of 10 kΩ, 50 kΩ, 100 kΩ or 1 MΩ has a nominal temperature coefficient of –300 ppm/°C.

The VR has its own VR latch which holds its programmed resistance value. The VR latch is updated from an internal serial-to- parallel shift register which is loaded from a standard 3-wire serial-input digital interface. Seven data bits make up the data word clocked into the serial data input register (SDI). Only the last seven bits of the data word loaded are transferred into the 7-bit VR latch when the CS strobe is returned to logic high. A serial data output pin (SDO) at the opposite end of the serial register allows simple daisy-chaining in multiple VR applications without additional external decoding logic.

The reset (RS) pin forces the wiper to the midscale position by loading 40H into the VR latch. The SHDN pin forces the resistor

*Patent Number: 5495245

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 

AD7376

 

 

VDD

SDO

Q

 

 

 

A

 

 

7-BIT

 

 

 

 

7

7-BIT

7

 

 

SERIAL

 

LATCH

W

 

REGISTER

 

B

 

 

 

SDI

D

 

 

 

CK

 

R

SHDN

 

 

 

CLK

 

 

 

 

VSS

CS

 

 

 

 

 

 

GND

 

RS

SHDN

 

 

 

 

to an end-to-end open circuit condition on the A terminal and shorts the wiper to the B terminal, achieving a microwatt power shutdown state. When shutdown is returned to logic high, the previous latch settings put the wiper in the same resistance setting prior to shutdown as long as power to VDD is not removed. The digital interface is still active in shutdown so that code changes can be made that will produce a new wiper position when the device is taken out of shutdown.

The AD7376 is available in both surface mount (SOL-16) and the 14-lead plastic DIP package. For ultracompact solutions selected models are available in the thin TSSOP package. All parts are guaranteed to operate over the extended industrial temperature range of –40°C to +85°C. For operation at lower supply voltages (+3 V to +5 V), see the AD8400/AD8402/ AD8403 products.

SDI

1

 

 

 

 

 

 

DX

 

 

 

 

 

 

 

 

 

 

DX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(DATA IN)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDO

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D'X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D'X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(DATA OUT) 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPD_MAX

 

1

 

 

 

 

 

 

 

 

tCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSH0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

tCSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOUT

0V

 

 

 

 

 

 

 

 

 

61 LSB ERROR BAND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61 LSB

Figure 1. Detail Timing Diagram

The last seven data bits clocked into the serial input register will be transferred to the VR 7-bit latch when CS returns to logic high. Extra data bits are ignored.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1997

AD7376–SPECIFICATIONS

 

(VDD/VSS = 615 V 6 10% or 6 5 V 6 10%, VA = +VDD, VB = VSS/0 V, –408C < TA < +858C

ELECTRICAL CHARACTERISTICS unless otherwise noted.)

 

 

 

 

 

 

 

 

 

 

 

Parameter

Symbol

Conditions

Min

Typ1

Max

Units

DC CHARACTERISTICS RHEOSTAT MODE (Specifications Apply to All VRs)

 

± 0.25

 

 

Resistor Differential NL2

R-DNL

RWB, VA = NC

–1

+1

LSB

Resistor Nonlinearity2

R-INL

RWB, VA = NC

–1

± 0.5

+1

LSB

Nominal Resistor Tolerance

DR

TA = +25°C

–30

 

30

%

Resistance Temperature Coefficient

RAB/DT

VAB = VDD, Wiper = No Connect

 

–300

 

ppm/°C

Wiper Resistance

RW

IW = ± 15 V/RNOMINAL

 

120

200

W

Wiper Resistance

RW

IW = ± 5 V/RNOMINAL

 

200

 

W

DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)

 

 

 

 

Resolution

N

 

7

± 0.5

 

Bits

Integral Nonlinearity3

INL

 

–1

+1

LSB

Differential Nonlinearity3

DNL

 

–1

± 0.1

+1

LSB

Voltage Divider Temperature Coefficient

DVW/DT

Code = 40H

 

5

 

ppm/°C

Full-Scale Error

VWFSE

Code = 7FH

–2

–0.5

+0

LSB

Zero-Scale Error

VWZSE

Code = 00H

0

+0.5

+1

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

Voltage Range4

VA, B, W

 

VSS

 

VDD

V

Capacitance5 A, B

CA, B

f = 1 MHz, Measured to GND, Code = 40H

 

45

 

pF

Capacitance5 W

CW

f = 1 MHz, Measured to GND, Code = 40H

 

60

 

pF

Shutdown Supply Current6

IA_SD

VA = VDD, VB = 0 V, SHDN = 0

 

0.01

1

mA

Shutdown Wiper Resistance

RW_SD

VA = VDD, VB = 0 V, SHDN = 0, VDD = +15 V

 

170

400

W

Common-Mode Leakage

ICM

VA = VB = VW

 

1

 

nA

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

Input Logic High

VIH

VDD = +5 V or +15 V

2.4

 

 

V

Input Logic Low

VIL

VDD = +5 V or +15 V

 

 

0.8

V

Output Logic High

VOH

RL = 2.2 kW to +5 V

4.9

 

 

V

Output Logic Low7

VOL

IOL = 1.6 mA, VLOGIC = +5 V, VDD = +15 V

 

 

0.4

V

Input Current

IIL

VIN = 0 V or +15 V

 

 

± 1

mA

Input Capacitance5

CIL

 

 

5

 

pF

POWER SUPPLIES

 

 

± 4.5

 

± 16.5

 

Power Supply Range

VDD/VSS

Dual Supply Range

 

V

Power Supply Range

VDD

Single Supply Range, VSS = 0

4.5

 

28

V

Supply Current

IDD

VIH = +5 V or VIL = 0 V, VDD = +5 V

 

0.0001

0.01

mA

Supply Current

IDD

VIH = +5 V or VIL = 0 V, VDD = +15 V

 

0.75

2

mA

Supply Current

ISS

VIH = +5 V or VIL = 0 V, VSS = –5 V or –15 V

 

0.02

0.1

mA

Power Dissipation8

PDISS

VIH = +5 V or VIL = 0 V, VDD = +15 V, VSS = –15 V

 

11

30

mW

Power Supply Sensitivity

PSS

DVDD = +5 V ± 10%, or DVSS = –5 V ± 10%

 

0.05

0.15

%/%

 

PSS

DVDD = +15 V ± 10% or DVSS = –15 V ± 10%

 

0.01

0.02

%/%

DYNAMIC CHARACTERISTICS5, 9, 10

 

RAB = 10 kW, Code = 40H

 

 

 

 

Bandwidth –3 dB

BW_10K

 

520

 

kHz

Bandwidth –3 dB

BW_50K

RAB = 50 kW, Code = 40H

 

125

 

kHz

Bandwidth –3 dB

BW_100K

RAB = 100 kW, Code = 40H

 

60

 

kHz

Total Harmonic Distortion

THDW

VA = 1 V rms, VB = 0 V, f = 1 kHz

 

0.005

 

%

VW Settling Time

tS

VA = 10 V, VB = 0 V, ±1 LSB Error Band

 

4

 

ms

Resistor Noise Voltage

eN_WB

RWB = 25 kW, f = 1 kHz, RS = 0

 

14

 

nVÖHz

INTERFACE TIMING CHARACTERISTICS (Applies to All Parts [Notes 5, 11])

 

 

 

 

Input Clock Pulsewidth

tCH, tCL

Clock Level High or Low

120

 

 

ns

Data Setup Time

tDS

 

30

 

 

ns

Data Hold Time

tDH

RL = 2.2 kW, CL < 20 pF

20

 

 

ns

CLK to SDO Propagation Delay12

tPD

10

 

100

ns

CS Setup Time

tCSS

 

120

 

 

ns

CS High Pulsewidth

tCSW

 

150

 

 

ns

Reset Pulsewidth

tRS

 

120

 

 

ns

CLK Rise to CS Rise Hold Time

tCSH

 

120

 

 

ns

CS Rise to Clock Rise Setup

tCS1

 

120

 

 

ns

–2–

REV. 0

AD7376

NOTES

1Typicals represent average readings at +25°C, VDD = +15 V, and VSS = –15 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 27. Test Circuit.

3INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = 0 V. DNL specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 26. Test Circuit.

4Resistor terminals A, B, W have no limitations on polarity with respect to each other. 5Guaranteed by design and not subject to production test.

6Measured at the A terminal. A terminal is open circuit in shutdown mode. 7IOL = 200 μA for the 50 kΩ version operating at VDD = +5 V.

8PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.

9Bandwidth, noise and settling time are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest bandwidth. The highest R value results in the minimum overall power consumption.

10All dynamic characteristics use VDD = +15 V and VSS = –15 V.

11See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V. Switching characteristics are measured using both VDD = +5 V or +15 V.

12Propagation delay depends on value of VDD, RL and CL see Applications section. Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

(TA = +25°C, unless otherwise noted)

VDD to GND . . . . . . . . . . . . . . . . . . . . . . .

.

. . . –0.3 V, +30

V

VSS to GND . . . . . . . . . . . . . . . . . . . . . . . .

.

. +0.3 V, –16.5 V

VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . .

.

. . –0.3 V, +44

V

VA, VB, VW to GND . . . . . . . . . . . . . . . . . . .

.

. . . . . . VSS, VDD

AX – BX, AX – WX, BX – WX . . . . . . . . . . . .

.

. . . . . . ±20 mA

Digital Input Voltages to GND . . . . . . . . . .

 

0 V, VDD + 0.3

V

Digital Output Voltage to GND . . . . . . . . .

.

. . . . 0 V, +30

V

Operating Temperature Range . . . . . . . . . .

.

–40°C to +85°C

Maximum Junction Temperature (TJ MAX)

. . . . . . .+150°C

Storage Temperature . . . . . . . . . . . . . . . . . .

 

–65°C to +150°C

Lead Temperature (Soldering, 10 sec) . . . .

.

. . . . . . .+300°C

Package Power Dissipation . . . . . . . . . . . .

(TJ MAX – TA)/θJA

Thermal Resistance θJA

 

92°C/W

P-DIP (N-14) . . . . . . . . . . . . . . . . . . . . .

.

SOIC (SOL-16) . . . . . . . . . . . . . . . . . . . .

.

. . . . . 120°C/W

TSSOP-14 . . . . . . . . . . . . . . . . . . . . . . . .

.

. . . . . 240°C/W

PIN CONFIGURATIONS

PDIP & TSSOP-14

SOL-16

A

 

 

 

 

1

 

14

W

B

 

 

 

 

2

 

13

NC

 

 

 

 

 

VSS

3

AD7376

12

VDD

 

 

 

 

GND

4

TOP VIEW

11

SDO

 

 

(Not to Scale)

 

 

CS

5

10

SHDN

 

 

 

 

SDI

RS

6

 

9

CLK

 

 

 

NC

7

 

8

 

 

 

 

 

NC = NO CONNECT

 

 

 

 

 

A

1

 

16

W

 

 

 

 

 

B

2

 

15

NC

 

 

 

 

 

VSS

3

 

14

VDD

 

 

AD7376

 

 

GND

4

13

SDO

 

 

TOP VIEW

 

 

CS

5

(Not to Scale)

12

SHDN

 

 

 

 

SDI

RS

6

 

11

CLK

 

 

 

NC

7

 

10

NC

 

 

 

NC

8

 

9

 

 

 

 

 

NC = NO CONNECT

ORDERING GUIDE

 

 

Temperature

Package

Package

Model

kV

Range

Description

Options

 

 

 

 

 

AD7376AN10

10

–40°C to +85°C

PDIP-14

N-14

AD7376AR10

10

–40°C to +85°C

SOL-16

R-16

AD7376ARU10

10

–40°C to +85°C

TSSOP-14

RU-14

AD7376AN50

50

–40°C to +85°C

PDIP-14

N-14

AD7376AR50

50

–40°C to +85°C

SOL-16

R-16

AD7376ARU50

50

–40°C to +85°C

TSSOP-14

RU-14

AD7376AN100

100

–40°C to +85°C

PDIP-14

N-14

AD7376AR100

100

–40°C to +85°C

SOL-16

R-16

AD7376ARU100

100

–40°C to +85°C

TSSOP-14

RU-14

AD7376AN1M

1,000

–40°C to +85°C

PDIP-14

N-14

AD7376AR1M

1,000

–40°C to +85°C

SOL-16

R-16

AD7376ARU1M

1,000

–40°C to +85°C

TSSOP-14

RU-14

Die Size: 101.6 mil

× 127.6 mil,

2.58 mm × 3.24 mm

 

 

Number Transistors: 840

 

 

 

 

 

 

 

 

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7376 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. 0

–3–

Analog Devices AD7376AN50, AD7376AN1M, AD7376AN100, AD7376AN10, AD7376ARU50 Datasheet

AD7376–Typical Performance Characteristics

 

 

100

 

 

 

0.5

 

 

AB

 

 

 

0.4

 

 

 

 

 

 

 

OFPERCENTNOMINAL

%R

 

 

 

ERRORINL-R – LSB

0.3

TA = –558C

RESISTANCEEND-TO- –

 

 

 

 

VB = 0V

 

 

75

 

 

 

0.2

TA = +258C

 

 

 

 

 

 

0.1

TA = +858C

 

 

50

 

 

 

0

 

 

 

 

 

 

 

–0.1

VDD = +15V

 

 

 

 

 

 

–0.2

VSS = –15V

 

 

25

 

 

 

VA = 2.5V

 

 

 

 

 

–0.3

 

 

END

 

 

 

 

RAB = 50kV

 

 

RWB

RWA

 

–0.4

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

–0.5

 

 

 

 

 

 

 

 

 

 

0

32

64

96

128

0

16

32

48

64

80

96

112

128

 

 

 

CODE – Decimal

 

 

 

 

 

 

 

CODE – Decimal

 

 

 

 

 

0.25

 

 

 

 

 

 

 

 

 

0.20

 

 

 

 

 

 

 

 

LSB

0.15

 

 

 

 

 

TA = –558C

 

0.10

TA = +258C

 

 

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

ERROR

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

–0.05

 

 

 

 

 

 

 

 

DNL

 

 

 

TA = +858C

 

 

 

–0.10

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

–0.15

 

 

 

 

 

VDD = +15V

 

 

 

 

 

 

 

VSS = –15V

 

 

–0.20

 

 

 

 

 

 

 

 

 

 

 

 

RAB = 50kV

 

 

–0.25

16

32

48

64

80

96

112

128

 

0

CODE – Decimal

Figure 2. Wiper To End Terminal

Figure 3. Resistance Step Position

Percent Resistance vs. Code

Nonlinearity Error vs. Code

Figure 4. Relative Resistance Step Change from Ideal vs. Code

NOMINAL END-TO-END RESISTANCE – kV

50

49VDD = +15V VSS = –15V

RAB = 50kV NOMINAL

48

47

46

45 –55 –35–15 5 25 45 65 85 105125

TEMPERATURE –8C

 

14

01H

 

 

 

 

 

 

 

 

12

 

 

10H

 

 

 

 

 

 

 

 

 

20H

 

 

 

 

 

 

10

 

 

40H

 

 

 

 

 

– V

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

WA

 

 

 

 

 

TA = +258C

 

V

6

 

 

 

 

VDD = +15V

 

 

 

 

 

 

 

 

4

 

 

 

 

VSS = –15V

 

 

 

CODE = 70H

RAB = 50kV

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

7FH

 

 

0

 

 

 

 

 

 

 

 

 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 

 

 

 

IWA – mA

 

 

 

 

1.5

 

 

 

 

 

 

 

 

Iw = 100mA, TA = +258C

 

 

1.2

 

DATA = 40H

 

 

 

 

 

 

 

 

LSB

0.9

 

 

 

 

 

R INL –

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

0

 

 

 

 

 

 

5

10

15

20

25

30

 

 

SUPPLY VOLTAGE (VDD - VSS) – Volts

 

Figure 5. Nominal Resistance vs.

Figure 6. Resistance Linearity vs.

Figure 7. Resistance Nonlinearity

Conduction Current

Error vs. Supply Voltage

Temperature

 

 

INL – LSB

1.0

0.8

0.6

0.4

0.2

0

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

 

 

 

 

VA = 2.5V

 

 

15

 

 

 

 

 

 

 

 

V

900

RAB = 50kV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VB = 0V

 

TEMPCOMODE– ppm/8C

10

 

 

 

 

 

 

 

 

CONTACTWIPERRESISTANCE

800

 

 

 

 

 

 

 

 

 

 

 

 

 

DV

–25

 

 

 

RAB = 50kV

 

 

100

 

 

 

 

VDD = +15V

 

 

 

 

 

CODE = 40H

POTENTIOMETER

 

5

 

 

 

 

 

 

 

 

 

700

 

 

 

 

 

 

 

 

 

 

 

 

RAB = 50kV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD = +5V

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

600

 

 

VSS = 0V

 

 

 

 

 

 

 

 

 

 

 

–5

 

 

 

VDD = +15V

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–10

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

 

 

 

DT

 

 

 

 

VSS = –15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD = +5V

 

 

 

 

 

 

 

 

 

 

 

 

–15

 

 

 

VA = +2.5V

 

 

 

300

 

 

 

 

 

 

 

 

 

 

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WB

 

 

 

 

 

VB = 0V

 

 

 

 

200

VSS = –5V

 

 

 

 

 

 

 

 

 

 

 

 

–20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–558C < TA < +858C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–30

 

 

 

 

 

 

 

 

 

0

 

 

 

 

VSS = –15V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

10

15

20

25

30

 

0

16

32

48

64

80

96

112

128

 

–55 –35–15

5

25

45

65

85

105

125

 

 

 

 

CODE – Decimal

 

 

 

 

 

TEMPERATURE –8C

 

 

 

 

SUPPLY VOLTAGE (VDD - VSS) – Volts

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Potentiometer Divider

Figure 9. VWB/ T Potentiometer

Figure 10. Wiper Contact

Nonlinearity Error vs. Supply

Mode Tempco

Resistance vs. Temperature

Voltage

 

 

–4–

REV. 0

Loading...
+ 8 hidden pages