Texas Instruments TLVH431, TLVH431A, TLVH431B, TLVH432, TLVH432A Datasheet

...
0 (0)

PRODUCT

ORDER

TECHNICAL

TOOLS &

Support &

FOLDER

NOW

DOCUMENTS

SOFTWARE

Community

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

TLVH431, TLVH432 Low-Voltage Adjustable Precision Shunt Regulators

1 Features

Low-voltage operation: down to 1.24 V

Reference voltage tolerances at 25°C

0.5% for B grade

1% for A grade

1.5% for standard grade

Adjustable output voltage, VO = VREF to 18 V

Wide operating cathode current range: 100 μA to 70 mA

0.25-Ω typical output impedance

–40°C to +125°C specifications

TLVH432 provides alternative pinouts for SOT-23-3 and SOT-89 packages

Ultra-small SC-70 package offers 40% smaller footprint than SOT-23-3

2 Applications

Adjustable voltage reference for data Converters

Secondary side regulation in flyback SMPSs

Zener replacement with low leakage current

Voltage monitoring for power rails

Comparator with integrated reference

3 Description

The TLVH431 and TLVH432 devices are low-voltage 3-terminal adjustable voltage references, with specified thermal stability over applicable industrial and commercial temperature ranges. Output voltage

can be set to any value between VREF (1.24 V) and 18 V with two external resistors (see Figure 19).

These devices operate from a lower voltage (1.24 V) than the widely used TL431 and TL1431 shuntregulator references.

When used with an optocoupler, the TLVH431 and TLVH432 devices are ideal voltage references in isolated feedback circuits for 3-V to 3.3-V switchingmode power supplies. They have a typical output impedance of 0.25 Ω. Active output circuitry provides a very sharp turn-on characteristic, making the TLVH431 and TLVH432 devices excellent replacements for low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies.

The TLVH432 device is identical to the TLVH431 device, but is offered with different pinouts for the 3-pin SOT-23 and SOT-89 packages.

Device Information(1)

PART NUMBER

PACKAGE

BODY SIZE (NOM)

TLVH43xxDBZ

SOT-23 (5)

2.90 mm × 1.60 mm

TLVH43xxDBZ

SOT-23 (3)

2.92 mm × 1.30 mm

TLVH43xxDCK

SC70 (6)

2.00 mm × 1.25 mm

TLVH43xxLP

TO-92 (3)

4.30 mm × 4.30 mm

TLVH43xxPK

SOT-89 (3)

4.50 mm × 2.50 mm

(1)For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Input

VO

IK

VREF

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020 www.ti.com

Table of Contents

1

Features ..................................................................

1

 

8.3

Feature Description.................................................

17

2

Applications ...........................................................

1

 

8.4

Device Functional Modes........................................

18

3

Description .............................................................

1

9

Applications and Implementation ......................

19

4

Revision History.....................................................

2

 

9.1

Application Information............................................

19

5

Pin Configuration and Functions

3

 

9.2

Typical Applications ................................................

20

10

Power Supply Recommendations

24

6

Specifications

4

11

Layout

24

 

6.1

Absolute Maximum Ratings ......................................

4

 

6.2

ESD Ratings

4

 

11.1

Layout Guidelines .................................................

24

 

 

11.2

Layout Example

24

 

6.3

Recommended Operating Conditions

4

 

 

12

Device and Documentation Support

25

 

6.4

Thermal Information ..................................................

4

 

6.5

TLVH43x Electrical Characteristics...........................

5

 

12.1

Documentation Support ........................................

25

 

6.6

TLVH43xA Electrical Characteristics ........................

6

 

12.2

Receiving Notification of Documentation Updates 25

 

6.7

TLVH43xB Electrical Characteristics ........................

7

 

12.3

Community Resources..........................................

25

 

6.8

Typical Characteristics ..............................................

8

 

12.4

Related Links ........................................................

25

7

Parameter Measurement Information ................

15

 

12.5

Trademarks ...........................................................

25

8

Detailed Description

16

 

12.6

Electrostatic Discharge Caution............................

25

 

12.7

Glossary

25

 

8.1

Overview

16

 

 

13

Mechanical, Packaging, and Orderable

 

 

8.2

Functional Block Diagram .......................................

16

25

 

 

 

 

 

Information ...........................................................

 

 

 

 

 

 

 

 

4

Revision History

 

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

 

Changes from Revision K (September 2016) to Revision L

Page

 

 

• Added links to applications on TI.com ...................................................................................................................................

1

Changed Thermal Information................................................................................................................................................

4

• Changed load capacitance value to better reflect the device behavior................................................................................

22

 

 

Changes from Revision J (January 2015) to Revision K

Page

 

 

• Changed data sheet title.........................................................................................................................................................

1

• Updated pinout images and Pin Functions table....................................................................................................................

3

• Deleted D package from Pin Functions table .........................................................................................................................

3

• Added Receiving Notification of Documentation Updates section and Community Resources section ..............................

25

 

 

Changes from Revision I (September 2009) to Revision J

Page

 

 

 

Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and

Mechanical, Packaging, and Orderable Information section. .................................................................................................

1

• Deleted Ordering Information table. .......................................................................................................................................

1

2

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

 

TLVH431, TLVH431A, TLVH431B

 

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

5 Pin Configuration and Functions

TLVH431 DBV Package

 

5-Pin SOT-23

 

 

TLVH431 DBZ Package

 

 

 

 

 

3-Pin SOT-23

 

 

Top View

 

 

 

 

 

 

 

 

Top View

 

 

 

 

 

 

 

NC

1

5

ANODE

REF

1

 

 

 

 

 

 

*

2

 

 

 

3

ANODE

CATHODE

3

4

REF

CATHODE

2

 

 

 

 

NOT TO SCALE

NOT TO SCALE

NC – No internal connection

* Pin 2 is attached to Substrate and must be connected to ANODE or left open.

TLVH431 DCK Package

6-Pin SC70

Top View

TLVH432 DBZ Package

3-Pin SOT-23

Top View

CATHODE 1

3 ANODE

REF 2

CATHODE

1

6

ANODE

 

 

 

NOT TO SCALE

NC

2

5

NC

REF

3

4

NC

 

TLVH431 PK Package

 

3-Pin SOT-89

NOT TO SCALE

Top View

 

TLVH431 LP Package

3

CATHODE

3-Pin TO-92

 

 

Top View

2

ANODE

 

 

1

REF

1

CATHODE

 

 

 

 

NOT TO SCALE

 

2

ANODE

 

 

3

REF

TLVH432 PK Package

 

 

NOT TO SCALE

 

3-Pin SOT-89

 

Top View

 

 

 

 

 

 

3

REF

 

 

2

ANODE

 

 

1

CATHODE

 

 

NOT TO SCALE

 

Pin Functions

 

 

 

 

 

PIN

 

 

 

 

 

 

 

NAME

 

 

 

TLVH431

 

TLVH432

 

TYPE

DESCRIPTION

 

DBZ

DBV

 

LP

 

DCK

 

PK

DBZ

 

PK

 

 

 

 

 

 

 

 

 

 

 

CATHODE

2

3

 

1

 

1

 

3

1

 

1

I/O

Shunt Current/Voltage input

 

REF

1

4

 

3

 

3

 

1

2

 

3

I

Threshold relative to common anode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANODE

3

5

 

2

 

6

 

2

3

 

2

O

Common pin, normally connected to ground

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

1

 

 

2, 4, 5

 

 

I

No Internal Connection

 

*

2

 

 

 

 

I

Substrate Connection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2004–2020, Texas Instruments Incorporated

 

 

 

 

 

Submit Documentation Feedback

3

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

 

 

MIN

MAX

UNIT

V

Cathode voltage(2)

 

20

V

KA

 

 

 

 

IK

Cathode current

–25

80

mA

Iref

Reference current

–0.05

3

mA

TJ

Operating virtual junction temperature

 

150

°C

Tstg

Storage temperature

–65

150

°C

(1)Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)Voltage values are with respect to the anode terminal, unless otherwise noted.

6.2 ESD Ratings

 

 

 

VALUE

UNIT

V(ESD)

Electrostatic

Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)

±2000

V

discharge

Charged device model (CDM), per JEDEC specification JESD22-C101(2)

±1000

 

 

(1)JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2)JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3

Recommended Operating Conditions

 

 

 

 

See(1)

 

 

 

 

 

 

 

 

 

 

MIN

MAX

UNIT

VKA

Cathode voltage

 

VREF

18

V

IK

Cathode current (continuous)

 

0.1

70

mA

 

 

 

TLVH43x_C

0

70

 

TA

Operating free-air temperature

 

TLVH43x_I

–40

85

°C

 

 

 

TLVH43x_Q

–40

125

 

(1)Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA) / θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.

6.4 Thermal Information

 

 

 

 

TLVH43xx

 

 

 

 

THERMAL METRIC(1)

DCK

PK

DBV

DBZ

LP

UNIT

 

 

(SC70)

(SOT-89)

(SOT-23)

(SOT-23)

(TO-92)

 

 

 

6 PINS

3 PINS

5 PINS

3 PINS

3 PINS

 

RθJA

Junction-to-ambient thermal resistance

259

52

206

206

140

°C/W

RθJC(top)

Junction-to-case (top) thermal resistance

87

9

131

76

55

°C/W

(1)For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

4

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

6.5 TLVH43x Electrical Characteristics

at 25°C free-air temperature (unless otherwise noted)

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431

 

 

 

 

 

PARAMETER

 

 

 

 

 

TEST CONDITIONS

 

 

 

TLVH432

 

UNIT

 

 

 

 

 

 

 

 

 

 

 

MIN

 

TYP

MAX

 

 

 

 

 

 

 

 

 

 

TA = 25°C

 

1.222

1.24

 

1.258

 

VREF

Reference voltage

VKA = VREF,

 

 

TA = full range,

TLVH431C

1.21

 

 

 

1.27

V

IK = 10 mA

 

 

 

TLVH431I

1.202

 

 

 

1.278

 

 

 

 

 

 

 

 

 

See Figure 18(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431Q

1.194

 

 

 

1.286

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF deviation over full

 

 

 

 

 

 

TLVH431C

 

4

 

12

 

V

V = V

 

, I

 

= 10 mA, See Figure 18(1)

TLVH431I

 

6

 

20

mV

 

REF(dev)

temperature range(2)

KA

REF

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431Q

 

11

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVREF

Ratio of VREF change to

IK = 10 mA, VK = VREF to 18 V, See Figure 19

 

 

 

–1.5

–2.7

mV/V

 

DVKA

 

cathode voltage change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iref

Reference terminal current

IK = 10 mA, R1 = 10 kΩ, R2 = open, See Figure 19

 

0.1

 

0.5

μA

 

 

 

Iref deviation over full

IK = 10 mA, R1 = 10 kΩ, R2 = open,

TLVH431C

 

0.05

 

0.3

 

Iref(dev)

TLVH431I

 

0.1

 

0.4

μA

temperature range(2)

See Figure 19(1)

 

 

 

 

 

TLVH431Q

 

0.15

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IK(min)

Minimum cathode current

VKA = VREF, See Figure 18

 

 

60

 

100

μA

for regulation

 

 

 

IK(off)

Off-state cathode current

VREF = 0, VKA = 18 V, See Figure 20

 

 

0.02

 

0.1

μA

|z |

Dynamic impedance(3)

VKA = VREF, f ≤ 1 kHz, IK = 0.1 mA to 70 mA,

 

 

0.25

 

0.4

 

KA

 

See Figure 18

 

 

 

 

 

 

 

 

 

(1) Full temperature ranges are –40°C to +125°C for TLVH431Q, –40°C to +85°C for TLVH431I, and 0°C to 70°C for TLVH431C.

(2) The deviation parameters VREF(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over

the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αVREF, is defined as:

 

 

 

 

 

 

 

æ

VREF( dev )

ö

´ 10

6

 

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

aVREF

 

æ ppm ö

=

è

VREF (TA = 25°C ) ø

 

 

 

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

è

°C ø

 

 

DTA

 

 

 

 

where

 

TA is the rated operating free-air temperature range of the device.

αVREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at the lower temperature.

(3)The dynamic impedance is defined as:

ZKA = DVKA

DIK

When the device is operating with two external resistors (see Figure 19), the total dynamic impedance of the circuit is defined as:

 

 

DV

 

 

æ

 

R1

ö

ZKA

¢ =

 

»

ZKA

´ ç 1

+

 

÷

 

 

 

 

DI

 

 

è

 

R2

ø

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

5

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

 

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

6.6 TLVH43xA Electrical Characteristics

at 25°C free-air temperature (unless otherwise noted)

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431A

 

 

 

 

 

PARAMETER

 

 

 

 

 

TEST CONDITIONS

 

 

TLVH432A

 

UNIT

 

 

 

 

 

 

 

 

 

 

 

MIN

TYP

MAX

 

 

 

 

 

 

 

 

 

 

TA = 25°C

 

1.228

1.24

 

1.252

 

VREF

Reference voltage

VKA = VREF,

 

 

TA = full range,

TLVH431AC

1.221

 

 

1.259

V

IK = 10 mA

 

 

 

TLVH431AI

1.215

 

 

1.265

 

 

 

 

 

 

 

 

 

See Figure 18(1)

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431AQ

1.209

 

 

1.271

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF deviation over full

 

 

 

 

 

 

TLVH431AC

 

4

 

12

 

V

V = V

 

, I

 

= 10 mA, See Figure 18(1)

TLVH431AI

 

6

 

20

mV

 

REF(dev)

temperature range(2)

KA

REF

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431AQ

 

11

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVREF

Ratio of VREF change to

VK = VREF to 18 V, IK = 10 mA, See Figure 19

 

 

–1.5

–2.7

mV/V

 

DVKA

 

cathode voltage change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iref

Reference terminal current

IK = 10 mA, R1 = 10 kΩ, R2 = open, See Figure 19

 

0.1

 

0.5

μA

 

 

 

Iref deviation over full

IK = 10 mA, R1 = 10 kΩ, R2 = open,

TLVH431AC

 

0.05

 

0.3

 

Iref(dev)

TLVH431AI

 

0.1

 

0.4

μA

temperature range(2)

See Figure 19(1)

 

 

 

 

 

TLVH431AQ

 

0.15

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IK(min)

Minimum cathode current

VKA = VREF, See Figure 18

 

 

60

 

100

μA

for regulation

 

 

 

IK(off)

Off-state cathode current

VREF = 0, VKA = 18 V, See Figure 20

 

 

0.02

 

0.1

μA

|z |

Dynamic impedance(3)

VKA = VREF, f ≤ 1 kHz, IK = 0.1 mA to 70 mA,

 

 

0.25

 

0.4

 

KA

 

See Figure 18

 

 

 

 

 

 

 

 

(1) Full temperature ranges are –40°C to +125°C for TLVH431Q, –40°C to +85°C for TLVH431I, and 0°C to 70°C for TLVH431C.

(2) The deviation parameters VREF(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over

the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αVREF, is defined as:

 

 

 

 

 

 

 

æ

VREF( dev )

ö

´ 10

6

 

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

aVREF

 

æ ppm ö

=

è

VREF (TA = 25°C ) ø

 

 

 

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

è

°C ø

 

 

DTA

 

 

 

 

where

 

TA is the rated operating free-air temperature range of the device.

αVREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at the lower temperature.

(3)The dynamic impedance is defined as:

ZKA = DVKA

DIK

When the device is operating with two external resistors (see Figure 19), the total dynamic impedance of the circuit is defined as:

 

 

DV

 

 

æ

 

R1

ö

ZKA

¢ =

 

»

ZKA

´ ç 1

+

 

÷

 

 

 

 

DI

 

 

è

 

R2

ø

6

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

 

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

6.7 TLVH43xB Electrical Characteristics

at 25°C free-air temperature (unless otherwise noted)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431B

 

 

 

 

 

PARAMETER

 

 

 

 

 

 

 

TEST CONDITIONS

 

 

TLVH432B

 

UNIT

 

 

 

 

 

 

 

 

 

 

 

 

 

MIN

TYP

MAX

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25°C

 

1.234

1.24

 

1.246

 

VREF

Reference voltage

VKA = VREF,

 

 

TA = full range,

TLVH431BC

1.227

 

 

1.253

V

IK = 10 mA

 

 

 

TLVH431BI

1.224

 

 

1.259

 

 

 

 

 

 

 

 

 

 

 

See Figure 18(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431BQ

1.221

 

 

1.265

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF deviation over full

 

 

 

 

 

 

 

 

TLVH431BC

 

4

 

12

 

V

V

 

= V

 

, I

 

= 10 mA, See Figure 18(1)

TLVH431BI

 

6

 

20

mV

 

REF(dev)

temperature range(2)

 

KA

 

REF

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TLVH431BQ

 

11

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVREF

Ratio of VREF change to

IK = 10 mA, VK = VREF to 18 V, See Figure 19

 

 

–1.5

–2.7

mV/V

 

DVKA

 

cathode voltage change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iref

Reference terminal current

IK = 10 mA, R1 = 10 kΩ, R2 = open, See Figure 19

 

0.1

 

0.5

μA

 

 

 

Iref deviation over full

IK = 10 mA, R1 = 10 kΩ, R2 = open,

TLVH431BC

 

0.05

 

0.3

 

Iref(dev)

TLVH431BI

 

0.1

 

0.4

μA

temperature range(2)

See Figure 19(1)

 

 

 

 

 

TLVH431BQ

 

0.15

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IK(min)

Minimum cathode current

VKA = VREF, See Figure 18

 

 

60

 

100

μA

for regulation

 

 

 

IK(off)

Off-state cathode current

VREF = 0, VKA = 18 V, See Figure 20

 

 

0.02

 

0.1

μA

|z |

Dynamic impedance(3)

V

KA

= V

REF

, f ≤ 1 kHz, I = 0.1 mA to 70 mA, See Figure 18

 

0.25

 

0.4

 

KA

 

 

 

 

 

 

K

 

 

 

 

 

 

(1) Full temperature ranges are –40°C to +125°C for TLVH431Q, –40°C to +85°C for TLVH431I, and 0°C to 70°C for TLVH431C.

(2) The deviation parameters VREF(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over

the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αVREF, is defined as:

 

 

 

 

 

 

 

æ

VREF( dev )

ö

´ 10

6

 

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

aVREF

 

æ ppm ö

=

è

VREF (TA = 25°C ) ø

 

 

 

 

 

 

 

 

 

 

ç

 

÷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

è

°C ø

 

 

DTA

 

 

 

 

where

 

TA is the rated operating free-air temperature range of the device.

αVREF can be positive or negative, depending on whether minimum VREF or maximum VREF, respectively, occurs at the lower temperature.

(3)The dynamic impedance is defined as:

ZKA = DVKA

DIK

When the device is operating with two external resistors (see Figure 19), the total dynamic impedance of the circuit is defined as:

 

 

DV

 

 

æ

 

R1

ö

ZKA

¢ =

 

»

ZKA

´ ç 1

+

 

÷

 

 

 

 

DI

 

 

è

 

R2

ø

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

7

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

 

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

6.8 Typical Characteristics

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

 

1.254

 

 

 

 

 

 

 

 

 

250

 

 

 

 

 

 

 

 

 

 

IK = 10 mA

 

 

 

 

 

 

 

230

IK = 10 mA

 

 

 

 

 

 

 

1.252

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 = 10 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>nA

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>V

 

 

 

 

 

 

 

 

 

210

R2 = Open

 

 

 

 

 

 

1.250

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Reference Voltage −

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Input Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

190

 

 

 

 

 

 

 

 

1.248

 

 

 

 

 

 

 

 

170

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.246

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

1.244

 

 

 

 

 

 

 

 

130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Reference

110

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>ref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.242

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>V

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>ref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.240

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.238

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

− 50

− 25

0

25

50

75

100

125

150

 

−50

−25

0

25

50

75

100

125

150

 

 

 

TJ − Junction Temperature − °C

 

 

 

 

 

TJ − Junction Temperature − °C

 

 

Figure 1. Reference Voltage

vs Junction Temperature

Figure 2. Reference Input Current

vs Junction Temperature

 

70

 

 

 

 

 

 

 

 

250

VKA = VREF

 

 

 

 

 

V

KA

= V

 

 

 

 

 

 

 

 

 

 

 

~ T

REF

 

 

 

 

 

TA = 25°C

 

 

 

 

 

 

= 25°C

 

 

 

 

 

200

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

150

 

 

 

 

 

<![if ! IE]>

<![endif]>mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>µA

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

5

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Current

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

<![if ! IE]>

<![endif]>Cathode

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Cathode

 

 

 

 

 

 

 

 

 

 

 

 

 

− 50

 

 

 

 

 

− 5

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

− 100

 

 

 

 

 

<![if ! IE]>

<![endif]>K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>I

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>I

 

 

 

 

 

 

 

− 10

 

 

 

 

 

 

 

 

− 150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− 200

 

 

 

 

 

 

− 15

 

 

 

 

 

 

 

 

− 250

 

 

 

 

 

 

− 1

 

 

− 0.5

0

0.5

1

1.5

 

− 1

− 0.5

0

0.5

1

1.5

 

 

 

 

 

VKA − Cathode Voltage − V

 

 

 

 

VKA − Cathode Voltage − V

 

 

Figure 3. Cathode Current

Figure 4. Cathode Current

vs Cathode Voltage

vs Cathode Voltage

 

120

 

 

 

 

 

 

 

 

 

 

115

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>nA

 

110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

 

 

105

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Current

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Ik(min)

95

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>State-Off− Cathode

70

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

85

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

75

 

 

 

 

 

 

 

 

 

 

65

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>K(off)

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>I

 

55

 

 

 

 

 

 

 

 

 

 

-40

-20

0

20

40

60

80

100

120

140

 

 

 

 

 

Temperature (qC)

 

 

 

 

Figure 5. Minimum Cathode Current vs. Temperature

4000

 

 

 

 

 

 

 

 

3500

VKA = 5 V

 

 

 

 

 

 

VREF

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

3000

 

 

 

 

 

 

 

 

2500

 

 

 

 

 

 

 

 

2000

 

 

 

 

 

 

 

 

1500

 

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

−50

−25

0

25

50

75

100

125

150

TJ − Junction Temperature − °C

Figure 6. Off-State Cathode Current

vs Junction Temperature

8

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

Typical Characteristics (continued)

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

<![if ! IE]>

<![endif]>VoltageReference

<![if ! IE]>

<![endif]>mV/V−

0.00

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>V

0.025

 

 

 

 

 

 

−0.1

IK = 10 mA

 

 

 

 

 

 

 

IK = 1 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VKA = VREF to 18 V

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

−0.2

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

−0.3

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>ref

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>ref

 

 

 

% Change (avg)

 

 

<![if ! IE]>

<![endif]>V

<![if ! IE]>

<![endif]>VoltageCathodeDeltato

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>VinChangePercentage

− 0.025

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Delta

 

−0.4

 

 

 

 

 

 

 

 

 

 

 

% Change (3δ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

− 0.05

 

 

 

 

 

 

<![if ! IE]>

<![endif]>of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Ratio

 

−0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.7

 

 

 

 

 

 

 

 

 

− 0.075

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>KA

 

−0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>ref/

 

 

 

 

 

 

 

 

 

 

 

− 0.1

 

 

 

 

 

 

 

−0.9

 

 

 

 

 

 

 

 

 

 

% Change (−3δ)

 

 

 

<![if ! IE]>

<![endif]>V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1−.10

 

 

 

 

 

 

 

 

 

− 0.125

 

 

 

 

 

 

 

 

−50

−25

0

25

50

75

100

125

150

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TJ − Junction Temperature − °C

 

 

 

 

Operating Life at 55°C − kh(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Extrapolated from life-test data taken at 125°C; the activation energy

Figure 7. Ratio of Delta Reference Voltage to Delta Cathode

assumed is 0.7 eV.

Figure 8. Percentage Change in VREF

Voltage

vs

vs Junction Temperature

Operating Life at 55°C

EQUIVALENT INPUT NOISE VOLTAGE vs

FREQUENCY

<![if ! IE]>

<![endif]>Hz)

350

 

 

 

 

 

VKA = VREF

 

 

 

<![if ! IE]>

<![endif]>(nV/

 

IK = 1 mA

 

 

 

 

TA = 25°C

 

 

 

<![if ! IE]>

<![endif]>−

300

 

 

 

 

<![if ! IE]>

<![endif]>Voltage

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>InputNoise

250

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−Equivalent

200

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>n

 

 

 

 

 

<![if ! IE]>

<![endif]>V

 

 

 

 

 

 

150

 

 

 

 

 

10

100

1 k

10 k

100 k

 

 

 

f – Frequency – (Hz)

 

 

 

3 V

 

 

 

1 kW

 

 

+

750 W

 

 

470 mF

2200 mF

TLE2027

 

 

 

 

 

 

 

+

+

 

 

 

 

 

 

_

TP

 

 

 

TLVH431

820 W

 

 

 

 

 

TLVH432

 

 

 

 

 

160 kW

 

 

160 W

 

 

TEST CIRCUIT FOR EQUIVALENT INPUT NOISE VOLTAGE

Figure 9. Equivalent Input Noise Voltage

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

9

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

Typical Characteristics (continued)

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

EQUIVALENT INPUT NOISE VOLTAGE

OVER A 10-S PERIOD

 

10

 

 

 

 

 

<![if ! IE]>

<![endif]>(mV)

8

f = 0.1 Hz to 10 Hz

 

 

 

IK = 1 mA

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

TA = 25°C

 

 

 

 

<![if ! IE]>

<![endif]>Voltage

6

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Noise

2

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Input

0

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Equivalent

− 2

 

 

 

 

 

− 4

 

 

 

 

 

− 6

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>n

 

 

 

 

 

 

<![if ! IE]>

<![endif]>V

− 8

 

 

 

 

 

 

 

 

 

 

 

 

− 10

 

 

 

 

 

 

0

2

4

6

8

10

 

 

 

t − Time − (s)

 

 

 

 

3 V

 

 

 

 

 

 

 

 

1 kW

 

 

 

 

 

 

 

+

750 W

 

 

 

0.47 mF

 

 

470 mF

 

 

 

 

 

 

 

 

2200 mF

 

 

 

 

 

 

 

 

TLE2027

 

 

 

 

 

 

 

+

 

 

TLE2027

TP

 

 

 

+

10 kW

10 kW

 

 

 

 

2.2 mF

 

 

 

 

+

 

 

 

 

_

 

 

+

 

 

 

 

 

 

 

 

 

 

820 W

 

 

 

_

 

 

 

 

160 kW

 

1 mF

 

 

 

TLVH431

 

 

 

 

 

1 MW

 

 

 

 

 

 

CRO

TLVH432

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33 kW

 

 

 

 

16 W

0.1 mF

 

33 kW

 

 

 

 

 

 

 

 

 

 

TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT NOISE VOLTAGE

Figure 10. Equivalent Input Noise Voltage

10

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

Typical Characteristics (continued)

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

SMALL-SIGNAL VOLTAGE GAIN

/PHASE MARGIN vs FREQUENCY

<![if ! IE]>

<![endif]>(dB)

80

 

 

 

0°

 

 

 

 

IK = 10 mA

 

 

<![if ! IE]>

<![endif]>−

70

 

 

TA = 25°C

36°

 

<![if ! IE]>

<![endif]>Gain/PhaseMargin

 

 

<![if ! IE]>

<![endif]>PhaseShift

60

 

 

 

72°

50

 

 

 

108°

40

 

 

 

144°

 

 

 

 

180°

<![if ! IE]>

<![endif]>Voltage

30

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Small-Signal

10

 

 

 

 

 

0

 

 

 

 

 

− 10

 

 

 

 

 

<![if ! IE]>

<![endif]>−

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>V

− 20

 

 

 

 

 

<![if ! IE]>

<![endif]>A

 

 

 

 

 

100

1 k

10 k

100 k

1 M

 

 

 

 

 

 

f − Frequency − (Hz)

 

 

 

Output

6.8 kW

IK

 

180 W

10 mF

 

 

5 V

4.3 kW

 

 

GND

TEST CIRCUIT FOR VOLTAGE GAIN

AND PHASE MARGIN

 

 

 

 

Figure 11. Voltage Gain and Phase Margin

 

 

 

 

PULSE RESPONSE 1

 

 

 

 

 

3.5

 

 

 

 

 

R = 18 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

Input

 

 

TA = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

18 kΩ

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−V

2.5

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Voltage

2

 

 

 

 

 

 

 

Pulse

 

Ik

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generator

50

Ω

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

f = 100 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>and

1

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Input

0.5

 

 

 

 

 

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

TEST CIRCUIT FOR PULSE RESPONSE 1

 

 

 

 

 

 

 

 

 

 

− 0.5

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

 

 

 

 

 

t − Time − µs

 

 

 

 

 

 

Figure 12. Pulse Response 1

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

11

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

Typical Characteristics (continued)

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

 

 

PULSE RESPONSE 2

 

 

 

 

 

3.5

 

 

 

 

 

R = 1.8 kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

Input

 

 

TA = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

1.8 kΩ

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>−V

2.5

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Voltage

2

 

 

 

 

 

 

 

Pulse

 

IK

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generator

50

Ω

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

Output

 

 

 

 

f = 100 kHz

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>and

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Input

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

TEST CIRCUIT FOR PULSE RESPONSE 2

 

 

 

 

 

 

 

 

 

 

− 0.5

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

 

 

 

 

 

t − Time − µs

 

 

 

 

 

 

Figure 13. Pulse Response 2

 

 

30 kΩ

 

 

 

IK

 

50

Ω

100 µF

 

 

 

 

 

I2

CL

 

 

I1

 

Figure 14. Phase Margin Test Circuit

12

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

Texas Instruments TLVH431, TLVH431A, TLVH431B, TLVH432, TLVH432A Datasheet

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

Typical Characteristics (continued)

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

IK

Figure 15. Phase Margin vs Capacitive Load

VKA = VREF (1.25 V), TA= 25°C

IK

Figure 16. Phase Margin vs Capacitive Load

VKA = 2.50 V, TA= 25°C

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

13

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

Typical Characteristics (continued)

Operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions table are not implied.

IK

Figure 17. Phase Margin vs Capacitive Load

VKA = 5.00 V, TA= 25°C

14

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

7 Parameter Measurement Information

Input

VO

 

IK

 

VREF

Figure 18. Test Circuit for VKA = VREF, VO = VKA = VREF

Input

VO

 

IK

R1

Iref

 

R2

VREF

 

Figure 19. Test Circuit for VKA > VREF, VO = VKA = VREF × (1 + R1/R2) + Iref × R1

Input VO

IK(off)

Figure 20. Test Circuit for IK(off)

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

15

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

8 Detailed Description

8.1 Overview

TLVH431 is a low power counterpart to TL431, having lower reference voltage (1.24 V versus 2.5 V) for lower

voltage adjustability and lower minimum cathode current (Ik(min)= 100 µA versus 1 mA). Like TL431, TLVH431 is used in conjunction with its key components to behave as a single voltage reference, error amplifier, voltage

clamp or comparator with integrated reference.

TLVH431 is also a higher voltage counterpart to TLV431, with cathode voltage adjustability from 1.24 V to 18 V, making this part optimum for a wide range of end equipments in industrial, auto, telecom and computing. In order for this device to behave as a shunt regulator or error amplifier, >100 µA (Imin(max)) must be supplied in to the cathode pin. Under this condition, feedback can be applied from the Cathode and Ref pins to create a replica of the internal reference voltage.

Various reference voltage options can be purchased with initial tolerances (at 25°C) of 0.5%, 1%, and 1.5%. These reference options are denoted by B (0.5%), A (1.0%) and blank (1.5%) after the TLVH431.

The TLVH431xC devices are characterized for operation from 0°C to 70°C, the TLVH431xI devices are characterized for operation from –40°C to +85°C, and the TLVH431xQ devices are characterized for operation from –40°C to +125°C.

8.2 Functional Block Diagram

 

CATHODE

REF

+

 

VREF = 1.24 V

 

ANODE

Figure 21. Equivalent Schematic

16

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

www.ti.com

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

Functional Block Diagram (continued)

CATHODE

REF

ANODE

Figure 22. Detailed Schematic

8.3 Feature Description

TLVH431 consists of an internal reference and amplifier that outputs a sink current base on the difference between the reference pin and the virtual internal pin. The sink current is produced by an internal Darlington pair.

When operated with enough voltage headroom (≥ 1.24 V) and cathode current (Ika), TLVH431 forces the reference pin to 1.24 V. However, the reference pin can not be left floating, as it needs Iref ≥ 0.5 µA (see Specifications). This is because the reference pin is driven into an NPN, which needs base current in order operate properly.

When feedback is applied from the Cathode and Reference pins, TLVH431 behaves as a Zener diode, regulating to a constant voltage dependent on current being supplied into the cathode. This is due to the internal amplifier and reference entering the proper operating regions. The same amount of current needed in the above feedback situation must be applied to this device in open loop, servo or error amplifying implementations in order for it to be in the proper linear region giving TLVH431 enough gain.

Unlike many linear regulators, TLVH431 is internally compensated to be stable without an output capacitor between the cathode and anode. However, if it is desired to use an output capacitor Figure 15, Figure 16, and Figure 17 can be used as a guide to assist in choosing the correct capacitor to maintain stability.

Copyright © 2004–2020, Texas Instruments Incorporated

Submit Documentation Feedback

17

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

TLVH431, TLVH431A, TLVH431B

TLVH432, TLVH432A, TLVH432B

SLVS555L –NOVEMBER 2004–REVISED APRIL 2020

www.ti.com

8.4 Device Functional Modes

8.4.1 Open Loop (Comparator)

When the cathode/output voltage or current of TLVH431 is not being fed back to the reference/input pin in any form, this device is operating in open loop. With proper cathode current (Ika) applied to this device, TLVH431 has the characteristics shown in Figure 4. With such high gain in this configuration, the TLVH431 device is typically used as a comparator. With the reference integrated makes TLVH431 the preferred choice when users are trying to monitor a certain level of a single signal.

8.4.2 Closed Loop

When the cathode/output voltage or current of TLVH431 is being fed back to the reference/input pin in any form, this device is operating in closed loop. The majority of applications involving TLVH431 use it in this manner to regulate a fixed voltage or current. The feedback enables this device to behave as an error amplifier, computing a portion of the output voltage and adjusting it to maintain the desired regulation. This is done by relating the output voltage back to the reference pin in a manner to make it equal to the internal reference voltage, which can be accomplished through resistive or direct feedback.

18

Submit Documentation Feedback

Copyright © 2004–2020, Texas Instruments Incorporated

Product Folder Links: TLVH431 TLVH431A TLVH431B TLVH432 TLVH432A TLVH432B

Loading...
+ 39 hidden pages