Texas Instruments TLV571EVM, TLV571IPW, TLV571IPWR, TLV571IDWR, TLV571IDW Datasheet

0 (0)
NC ± No internal connection

TLV571 2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTER

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

features

DFast Throughput Rate: 1.25 MSPS at 5 V,

625 KSPS at 3 V

DWide Analog Input: 0 V to AVDD

DDifferential Nonlinearity Error: < ± 0.5 LSB

DIntegral Nonlinearity Error: < ± 0.5 LSB

DSingle 2.7-V to 5.5-V Supply Operation

DLow Power: 12 mW at 3 V and 35 mW at 5 V

DAuto Power Down of 1 mA Max

DSoftware Power Down: 10 A Max

DInternal OSC

DHardware Configurable

DDSP and Microcontroller Compatible Parallel Interface

DBinary/Twos Complement Output

DHardware Controlled Extended Sampling

DHardware or Software Start of Conversion

description

applications

DMass Storage and HDD

DAutomotive

DDigital Servos

DProcess Control

DGeneral-Purpose DSP

DImage Sensor Processing

DW OR PW PACKAGE

(TOP VIEW)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

 

 

1

24

 

 

NC

 

 

 

 

 

 

 

 

WR

 

 

 

2

23

 

 

AIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD

 

3

22

 

 

AVDD

 

 

 

 

 

 

 

 

 

 

 

 

CLK

 

 

4

21

 

 

AGND

DGND

 

5

20

 

 

REFM

 

 

 

 

 

 

 

 

DVDD

 

 

6

19

 

 

 

REFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INT/EOC

 

 

7

18

 

 

 

CSTART

DGND

 

 

8

17

 

 

 

A1/D7

 

 

 

 

 

 

 

 

 

 

DGND

 

9

16

 

 

 

A0/D6

 

 

 

 

 

 

 

 

 

 

 

 

 

D0

 

 

10

15

 

 

 

D5

 

 

 

 

 

 

 

 

 

 

 

D1

 

11

14

 

 

 

D4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2

 

 

12

13

 

 

 

D3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The TLV571 is an 8-bit data acquisition system that combines a high-speed 8-bit ADC and a

parallel interface. The device contains two on-chip control registers allowing control of software conversion start and power down via the bidirectional parallel port. The control registers can be set to a default mode using a dummy RD while WR is tied low allowing the registers to be hardware configurable.

The TLV571 operates from a single 2.7-V to 5.5-V power supply. It accepts an analog input range from 0 V to AVDD and digitizes the input at a maximum 1.25 MSPS throughput rate at 5 V. The power dissipations are only 12 mW with a 3-V supply or 35 mW with a 5-V supply. The device features an auto power-down mode that automatically powers down to 1 mA 50 ns after conversion is performed. In software power-down mode, the ADC is further powered down to only 10 A.

Very high throughput rate, simple parallel interface, and low power consumption make the TLV571 an ideal choice for high-speed digital signal processing.

AVAILABLE OPTIONS

 

 

PACKAGE

TA

 

 

 

24 TSSOP

 

24 SOIC

 

(PW)

 

(DW)

 

 

 

 

± 40°C to 85°C

TLV571IPW

 

TLV571IDW

 

 

 

 

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright 2000, Texas Instruments Incorporated

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

1

TLV571

2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,

PARALLEL ANALOG-TO-DIGITAL CONVERTER

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

functional block diagram

AV

DD

AIN

REFP REFM

DVDD

 

 

 

 

Internal

 

Clock

MUX

 

CLK

 

CS

RD

WR

CSTART

 

Three

D0 ± D5

8-BIT

 

State

 

SAR ADC

 

Latch

D6/A0

 

 

 

 

 

D7/A1

Input Registers

 

INT/EOC

and Control Logic

 

 

 

AGND DGND

 

 

 

 

 

 

 

 

Terminal Functions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TERMINAL

I/O

 

 

 

 

 

 

 

 

DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAME

NO.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AGND

21

 

Analog ground

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AIN

23

I

ADC analog input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVDD

22

 

Analog supply voltage, 2.7 V to 5.5 V

 

 

A0/D6

16

I/O

Bidirectional 3-state data bus. D6/A0 along with D7/A1 is used as address lines to access CR0 and CR1 for

 

 

 

 

 

 

 

 

 

initialization.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1/D7

17

I/O

Bidirectional 3-state data bus. D7/A1 along with D6/A0 is used as address lines to access CR0 and CR1 for

 

 

 

 

 

 

 

 

 

initialization.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

4

I

External clock input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

I

Chip select. A logic low on

 

 

enables the TLV571.

 

 

CS

 

 

 

 

CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

I

Hardware sample and conversion start input. The falling edge of

 

starts sampling and the rising edge

 

 

CSTART

 

CSTART

 

 

 

 

 

 

 

 

 

of CSTART starts conversion.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DGND

5, 8, 9

 

Digital ground

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVDD

6

 

Digital supply voltage, 2.7 V to 5.5 V

 

 

D0 ± D5

10±15

I/O

Bidirectional 3-state data bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

O

End-of-conversion/interrupt

 

 

INT/EOC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

24

 

Not connected

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD

 

 

3

I

Read data. A falling edge on

RD

 

enables a read operation on the data bus when

CS

is low.

 

 

REFM

20

I

Lower reference voltage (nominally ground). REFM must be supplied or REFM pin must be grounded.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFP

19

I

Upper reference voltage (nominally AVDD). The maximum input voltage range is determined by the difference

 

 

 

 

 

 

 

 

 

between the voltage applied to REFP and REFM.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

2

I

Write data. A rising edge on the

WR

latches in configuration data when

CS

is low. When using software

 

 

 

 

 

 

 

 

 

conversion start, a rising edge on

WR

also initiates an internal sampling start pulse. When WR is tied to ground,

 

 

 

 

 

 

 

 

 

the ADC in nonprogrammable (hardware configuration mode).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TLV571 2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTER

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

detailed description

analog-to-digital SAR converter

Ain

 

 

 

 

 

 

 

 

Charge

 

 

 

 

 

 

 

 

Redistribution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAC

 

 

 

 

 

 

 

_

 

 

 

 

 

 

 

 

 

 

 

SAR

 

ADC Code

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFM

 

 

 

 

 

 

 

Control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logic

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1

The TLV571 is a successive-approximation ADC utilizing a charge redistribution DAC. Figure 1 shows a simplified version of the ADC.

The sampling capacitor acquires the signal on Ain during the sampling period. When the conversion process starts, the SAR control logic and charge redistribution DAC are used to add and subtract fixed amounts of charge from the sampling capacitor to bring the comparator into a balanced condition. When the comparator is balanced, the conversion is complete and the ADC output code is generated.

sampling frequency, fs

The TLV571 requires 16 CLKs for each conversion, therefore the equivalent maximum sampling frequency achievable with a given CLK frequency is:

fs(max) = (1/16) fCLK

The TLV571 is software configurable. The first two MSB bits, D(7,6) are used to address which register to set. The remaining six bits are used as control data bits. There are two control registers, CR0 and CR1, that are user configurable. All of the register bits are written to the control register during write cycles. A description of the control registers is shown in Figure 2.

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

3

TLV571

2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,

PARALLEL ANALOG-TO-DIGITAL CONVERTER

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

detailed description (continued)

control registers

A1

 

A0

D5

D4

D3

D2

D1

D0

 

 

 

Control Register Zero (CR0)

 

 

 

 

 

 

D5

D4

D3

D2

D1

D0

A(1:0)=00

STARTSEL

PROGEOC

CLKSEL

SWPWDN

Don't Care

Don't Care

 

 

 

0:0: 0: 0:

 

 

HARDWARE INT

Internal

NORMAL

 

 

 

 

START

 

Clock

 

Don't Care

Don't Care

 

 

(CSTART)

1:

 

1:

 

 

 

 

 

 

 

1:

EOC

1:

Powerdown

 

 

 

 

 

 

 

 

 

SOFTWARE

 

External

 

 

 

 

 

 

 

 

 

 

 

START

 

Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

Control Register One (CR1)

 

 

 

 

 

D5

D4

D3

D2

D1

D0

A(1:0)=01

Reserved

OSCSPD

0 Reserved

0 Reserved

OUTCODE

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0:

0:

0:

0:

0:

0:

 

 

Reserved

INT. OSC.

Reserved

Reserved

Binary

Reserved

 

 

Bit

SLOW

Bit

Bit,

 

Bit,

 

 

Always

1:

Always

Always

1:

Always

 

 

Write 0

INT. OSC.

Write 0

Write 0

Write 0

 

 

 

FAST

 

 

2's

 

 

 

 

 

 

 

Complement

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Input Data Format

hardware configuration option

The TLV571 can configure itself. This option is enabled when the WR pin is tied to ground and a dummy RD signal is applied. The ADC is now fully configured. Zeros or default values are applied to both control registers. The ADC is configured ideally for 3-V operation, which means the internal OSC is set at 10 MHz and hardware start of conversion using CSTART.

ADC conversion modes

The TLV571 provides two start of conversion modes. Table 1 explains these modes in more detail.

4

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

 

 

 

 

 

 

TLV571

 

2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,

 

PARALLEL ANALOG-TO-DIGITAL CONVERTER

 

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

 

 

 

 

 

 

 

 

 

 

detailed description (continued)

 

 

 

 

 

 

 

 

 

Table 1. Conversion Modes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START OF

OPERATION

 

COMMENTS ± FOR INPUT

 

CONVERSION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hardware start

Repeated conversions from AIN

 

 

 

 

 

 

 

CSTART

rising edge must be applied

 

(CSTART)

CSTART falling edge to start sampling

a minimum of 5 ns before or after CLK

 

CR0.D5 = 0

CSTART rising edge to start conversion

rising edge.

 

 

If in INT mode, one INT pulse generated after each conversion

 

 

 

 

 

 

 

 

 

If in EOC mode, EOC will go high to low at start of conversion, and return high

 

 

 

 

 

 

 

 

 

at end of conversion.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Repeated conversions from AIN

 

 

 

 

Software start

With external clock,

WR

and

RD

rising

 

CR0.D5 = 1

WR rising edge to start sampling initially. Thereafter, sampling occurs at the

edge must be a minimum 5 ns before

 

 

rising edge of RD.

or after CLK rising edge.

 

 

Conversion begins after 6 clocks after sampling has begun. Thereafter, if in INT

 

 

 

 

 

 

 

 

 

mode, one INT pulse generated after each conversion

 

 

 

 

 

 

 

 

 

If in EOC mode, EOC will go high to low at start of conversion and return high at

 

 

 

 

 

 

 

 

 

end of conversion.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

configure the device

The device can be configured by writing to control registers CR0 and CR1.

Table 2. TLV571 Programming Examples

REGISTER

 

INDEX

D5

D4

D3

D2

D1

D0

COMMENT

 

 

 

D7

 

D6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CR0

0

 

0

0

0

0

0

0

0

Normal, INT OSC

 

 

 

 

 

 

 

 

 

 

 

CR1

0

 

1

0

0

0

0

0

0

Binary

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CR0

0

 

0

0

1

1

1

0

0

Power down, EXT OSC

 

 

 

 

 

 

 

 

 

 

 

CR1

0

 

1

0

0

0

0

1

0

2's complement output

power down

The TLV571 offers two power down modes, auto power down and software power down. This device will automatically proceed to auto power down mode if RD is not present one clock after conversion. Software power down is controlled directly by the user by pulling CS to DVDD.

Table 3. Power Down Modes

PARAMETERS/MODES

AUTO POWER DOWN

SOFTWARE POWER DOWN

(CS = DVDD)

 

 

Maximum power down dissipation current

1 mA

10 A

 

 

 

Comparator

Power down

Power down

 

 

 

Clock buffer

Power down

Power down

 

 

 

Control registers

Saved

Saved

 

 

 

Minimum power down time

1 CLK

2 CLK

 

 

 

Minimum resume time

1 CLK

2 CLK

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

5

TLV571

2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT,

PARALLEL ANALOG-TO-DIGITAL CONVERTER

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

detailed description (continued)

reference voltage input

The TLV571 has two reference input pins: REFP and REFM. The voltage levels applied to these pins establish the upper and lower limits of the analog inputs to produce a full-scale and zero-scale reading respectively. The values of REFP, REFM, and the analog input should not exceed the positive supply or be less than GND consistent with the specified absolute maximum ratings. The digital output is at full scale when the input signal is equal to or higher than REFP and is at zero when the input signal is equal to or lower than REFM.

sampling/conversion

All sampling, conversion, and data output in the device are started by a trigger. This could be the RD, WR, or CSTART signal depending on the mode of conversion and configuration. The rising edge of RD, WR, and CSTART signal are extremely important, since they are used to start the conversion. These edges need to stay close to the rising edge of the external clock (if it is used as CLK). The minimum setup and hold time with respect to the rising edge of the external clock should be 5 ns minimum. When the internal clock is used, this is not an issue since these two edges will start the internal clock automatically. Therefore, the setup time is always met. Software controlled sampling lasts 6 clock cycles. This is done via the CLK input or the internal oscillator if enabled. The input clock frequency can be 1 MHz to 20 MHz, translating into a sampling time from 0.6 s to 0.3 s. The internal oscillator frequency is 9 MHz minimum (ocillator frequency is between 9 MHz to 22 MHz), translating into a sampling time from 0.6 s to 0.3 s. Conversion begins immediately after sampling and lasts 10 clock cycles. This is again done using the external clock input (1 MHz±20 MHz) or the internal oscillator (9 MHz minimum) if enabled. Hardware controlled sampling, via CSTART, begins on falling CSTART lasts the length of the active CSTART signal. This allows more control over the sampling time, which is useful when sampling sources with large output impedances. On rising CSTART, conversion begins. Conversion in hardware controlled mode also lasts 10 clock cycles. This is done using the external clock input (1 MHz±20 MHz) or the internal oscillator (9 MHz minimum) as is the case in software controlled mode.

ExtClk

WR

RD

 

th(WRL_EXTCLKH) 5 ns

 

tsu(WRH_EXTCLKH) 5 ns

OR

th(RDL_EXTCLKH) 5 ns

 

 

tsu(RDH_EXTCLKH) 5 ns

OR

 

 

th(CSTARTL_EXTCLKH) 5 ns

td(EXTCLK_CSTARTL) 5 ns

tsu(CSTARTH_EXTCLKH)

 

5 ns

CSTART

NOTE: tsu = setup time, th = hold time

Figure 3. Trigger Timing ± Software Start Mode Using External Clock

6

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TLV571 2.7 V TO 5.5 V, 1-CHANNEL, 8-BIT, PARALLEL ANALOG-TO-DIGITAL CONVERTER

SLAS239A ± SEPTEMBER 1999 ± REVISED FEBRUARY 2000

start of conversion mechanism

There are two ways to convert data: hardware and software. In the hardware conversion mode the ADC begins sampling at the falling edge of CSTART and begins conversion at the rising edge of CSTART. Software start mode ADC samples for 6 clocks, then conversion occurs for ten clocks. The total sampling and conversion process lasts only 16 clocks in this case. If RD is not detected during the next clock cycle, the ADC automatically proceeds to a power-down state. Data is valid on the rising edge of INT in both conversion modes.

hardware CSTART conversion

external clock

With CS low and WR low, data is written into the ADC. The sampling begins at the falling edge of CSTART and conversion begins at the rising edge of CSTART. At the end of conversion, EOC goes from low to high, telling the host that conversion is ready to be read out. The external clock is active and is used as the reference at all times. With this mode, it is required that CSTART is not applied at the rising edge of the clock (see Figure 4).

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

7

655303BOXOFFICEPOST8

start of conversion mechanism (continued)

 

2000FEBRUARYREVISED±1999SEPTEMBER±SLAS239A

BIT-8CHANNEL,-1V,5.5toV7.2 CONVERTERDIGITAL-TO-ANALOGRARALLEL

TLV571

 

 

 

 

 

 

CLK

 

 

 

 

 

 

 

t su(CSL_WRL)

 

 

 

 

 

 

t h(WRH_CSH)

t su(CSL_RDL)

t su(CSL_RDL)

 

 

 

CS

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

t d(CSH_CSTARTL)

t h(RDH_CSH)

 

 

 

 

 

tc

 

tc

 

 

 

 

(10 CLKs)

 

 

 

 

 

 

t (sample)

t(sample)

 

 

 

 

 

 

 

 

 

 

CSTART

 

 

 

 

 

 

RD

 

 

 

 

 

 

 

t su(DAV_WRH)

 

 

 

 

DALLAS,

 

t h(WRH_DAV)

t dis(RDH_DAV)

 

 

 

D[0:7]

Config

ADC

ADC

 

 

TEXAS

 

Data

 

 

 

 

 

 

ten(RDL_DAV)

t en(RDL_DAV)

 

 

75265

 

 

 

 

INT

 

 

 

 

 

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

EOC

 

 

 

 

 

 

 

 

 

Auto Powerdown

 

 

Figure 4. Input Conversion ± Hardware CSTART, External Clock

Texas Instruments TLV571EVM, TLV571IPW, TLV571IPWR, TLV571IDWR, TLV571IDW Datasheet

75265 TEXAS DALLAS, 655303 BOX OFFICE POST

9

internal clock

With CS low and WR low, data is written into the ADC. The sampling begins at the falling edge of CSTART, and conversion begins at the rising edge of CSTART. The internal clock turns on at the rising edge of CSTART. The internal clock is disabled after each conversion.

 

tsu(CSL_WRL)

 

 

 

 

 

th(WRH_CSH)

 

 

tsu(CSL_RDL)

tsu(CSL_RDL)

CS

 

 

 

 

 

 

td(CSH_CSTARTL)

 

 

 

 

WR

 

 

 

 

 

 

 

 

 

 

t(STARTOSC)

 

t(sample)

 

 

th(RDH_CSH)

tc

CSTART

 

 

 

 

 

 

0

1

9

10

 

INTCLK

 

 

 

 

 

 

t(STARTOSC)

 

 

RD

 

 

 

 

 

 

tsu(DAV_WRH)

 

 

 

 

 

th(WRH_DAV)

 

 

tdis(RDH_DAV)

 

D[0:7]

Config

 

 

ADC

ADC

 

Data

 

 

Data

Data

 

 

 

 

ten(RDL_DAV)

ten(RDL_DAV)

INT

 

 

 

 

 

OR

 

 

tc

 

 

 

 

 

 

 

EOC

 

 

 

 

 

 

 

 

 

Auto Powerdown

Auto Powerdown

Figure 5. Input Conversion ± Hardware CSTART, Internal Clock

2000 FEBRUARY REVISED ± 1999 SEPTEMBER ± SLAS239A

TLV571 BIT-8 CHANNEL,-1 V, 5.5 TO V 7.2 CONVERTER DIGITAL-TO-ANALOG PARALLEL

Loading...
+ 18 hidden pages