TEXAS INSTRUMENTS TLV320AIC12, TLV320AIC13, TLV320AIC14, TLV320AIC15, TLV320AIC20 Technical data

...
0 (0)

TLV320AIC12

 

TLV320AIC12, TLV320AIC13

 

TLV320AIC14, TLV320AIC15, TLV320AIC20

www.ti.com

TLV320AIC21, TLV320AIC24, TLV320AIC25

 

OCTOBER 2003

 

PRODUCT NOTIFICATION

DEVICE

LITERATURE NO.

 

 

TLV320AIC12

SLWS115

 

 

TLV320AIC13

SLWS139

 

 

TLV320AIC14

SLWS140

 

 

TLV320AIC15

SLWS141

 

 

TLV320AIC20

SLAS363

 

 

TLV320AIC21

SLAS365

 

 

TLV320AIC24

SLAS366

 

 

TLV320AIC25

SLAS367

 

 

Texas Instruments (TI) has recently identified a problem in the product models listed above related to DLL clock-generation. When a clock-generation mode is used that powers up the delay-locked-loop (DLL), the DLL may not startup properly when initiated, resulting in the audio master clock not functioning. This results in the codec in the products not functioning. This issue does not affect applications that do not enable the product’s DLL.

Since this issue does not affect operation if the DLL is not enabled, customers are recommended to ensure their system does not enable the product’s DLL. The DLL is enabled anytime the P value in control register #4 (pertaining to clock generation) is NOT set equal to 8. The DLL is used whenever the part is in fine sampling mode, as described in Section 3.1 of the data manual, so the recommended mode to use is the coarse sampling mode, which requires P=8.

At present, TI does not have a screening procedure in place to detect product with the DLL issue, but the company also realizes that many customers do not use the DLL in their systems and will be unaffected by this issue.

TI is not confident of the operation of the DLL in this product at this time. To ensure customers have been made aware of this issue, orders for these parts will only be filled upon return of a signed waiver until this issue is resolved. The company has initiated an investigation to fully understand the root cause of this problem and determine what appropriate long-term corrective action should be taken. TI recommends that all customers presently using these parts contact the company immediately, so they can receive updates on this investigation and plans for its resolution.

We apologize for the inconvenience placed upon customers in ordering this product. However, we wish to ensure that our customers are aware of the device shortcomings from the specification. We are working in earnest to remove this waiver requirement.

For further information, please contact

Neeraj Magotra

WW Strategic Marketing Manager for Voice/Audio Systems Office: (214) 480-7486

nmagotra@ti.com

Copyright 2003, Texas Instruments Incorporated

TLV320AIC14

Low Power CMOS, 16 Bit, 26 KSPS Codec With

Smart Time Division Multiplexed (SMARTDM )

Serial Port

Data Manual

May 2002

HPA Data Acquisition

SLWS140A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

Contents

Section

 

Title

Page

1

Introduction . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–1

 

1.1

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–1

 

1.2

Features

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–1

 

1.3

Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1–3

2

Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–1

 

2.1

Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–1

 

2.2

Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–1

 

2.3

Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2–2

3

Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

 

3.1

Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

 

3.2

Internal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

 

 

3.2.1

Antialiasing Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

 

 

3.2.2

Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

 

 

3.2.3

Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–1

 

 

3.2.4

Sigma-Delta DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2

 

 

3.2.5

Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2

 

 

3.2.6

Analog/Digital/Side-Tone Loopback . . . . . . . . . . . . . . . . . . .

3–2

 

 

3.2.7

ADC PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2

 

 

3.2.8

DAC PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2

 

3.3

Analog Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2

 

 

3.3.1

MIC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–2

 

 

3.3.2

INP and INM Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–3

 

 

3.3.3

Single-Ended Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–3

 

 

3.3.4

Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–4

 

3.4

IIR/FIR Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–4

 

 

3.4.1

Overflow Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–4

 

 

3.4.2

IIR/FIR Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–4

 

3.5

System Reset and Power Management . . . . . . . . . . . . . . . . . . . . . . . .

3–4

 

 

3.5.1

Software and Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . .

3–4

 

 

3.5.2

Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–5

 

3.6

Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–5

 

 

3.6.1

Clock Source (MCLK, SCLK) . . . . . . . . . . . . . . . . . . . . . . . . .

3–5

 

 

3.6.2

Serial Data Out (DOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–5

 

 

3.6.3

Serial Data In (DIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–6

 

 

3.6.4

Frame-Sync FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–6

 

 

3.6.5

Cascade Mode and Frame-Sync Delayed (FSD) . . . . . . . .

3–6

 

 

3.6.6

Stand-Alone Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–6

3.6.7Asynchronous Sampling (Codecs in cascade

are sampled at different sampling frequency) . . . . . . . . . . .

3–6

v

3.7 Host Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8

3.7.1 S2C (Start-Stop Communication) . . . . . . . . . . . . . . . . . . . . . 3–9 3.7.2 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9

3.8 Smart Time Division Multiplexed Serial Port (SMARTDM) . . . . . . . . . 3–11 3.8.1 Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11 3.8.2 Continuous Data Transfer Mode . . . . . . . . . . . . . . . . . . . . . . 3–12 3.8.3 Turbo Mode (SCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13

3.9 Control Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14 3.9.1 Data Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15 3.9.2 Control Frame Format (Programming Mode) . . . . . . . . . . . 3–15 3.9.3 Broadcast Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15 3.9.4 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16

4 Control Register Content Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1

4.1 Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1 4.2 Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2 4.3 Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2 4.4 Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3 4.5 Control Register 5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3 4.6 Control Register 5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5 4.7 Control Register 5C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7 4.8 Control Register 5D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7 4.9 Control Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8

5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1

5.1Absolute Maximum Ratings Over Operating Free-Air

 

Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–1

5.2

Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .

5–1

5.3Electrical Characteristics Over Recommended Operating Free-Air Temperature Range, AVDD = 3.3 V,

DVDD = 1.8 V, IOVDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2

5.3.1Digital Inputs and Outputs, fs = 8 kHz,

 

 

Outputs Not Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–2

5.4

ADC Path Digital Filter, fs = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–2

 

5.4.1

FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–2

 

5.4.2

IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–2

5.5

ADC Dynamic Performance, fs = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . .

5–3

 

5.5.1

ADC Signal-to-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–3

 

5.5.2

ADC Signal-to-Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–3

 

5.5.3

ADC Signal-to-Distortion + Noise . . . . . . . . . . . . . . . . . . . . .

5–3

 

5.5.4

ADC Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . . .

5–3

5.6

DAC Path Digital Filter, fs = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–4

 

5.6.1

FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–4

 

5.6.2

IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–4

5.7

DAC Dynamic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–4

 

5.7.1

OUTP/OUTM Signal-to-Noise When Load Is 600 Ω . . . . .

5–4

 

5.7.2

OUTP/OUTM Signal-to-Distortion When Load Is 600 Ω . .

5–4

vi

 

5.7.3

OUTP/OUTM Signal-to-Distortion + Noise When Load

 

 

 

Is 600 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–4

 

5.7.4

DAC Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . . .

5–5

5.8

BIAS Amplifier Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–5

5.9

Power-Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–5

5.10

Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–5

5.11

Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–6

5.12 Layout and Grounding Guidelines for TLV320AIC14 . . . . . . . . . . . . .

5–13

List of Illustrations

Figure

Title

Page

3–1 Microphone Interface . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–3

3–2 INP and INM Internal Self-Biased Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–3

3–3 Single-Ended Input . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–3

3–4 OUTP1/OUTM1 Output . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–4

3–5 Timing Diagram of FS . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–6

3–6 Timing Diagram for FSD Output . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–7

3–7 Cascade Connection (To DSP Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–7

3–8 Master-Slave Frame-Sync Timing in Continuous Data

 

Transfer Mode . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–8

3–9 S2C Programming . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–9

3–10 I2C Write Sequence . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–9

3–11 I2C Read Sequence . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–10

3–12 Index Register Addresses . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–10

3–13 Standard Operation/Programming Mode: Stand-Alone Timing . . . . . . . . .

3–12

3–14 Standard Operation/Programming Mode: Master-Slave Cascade Timing

3–12

3–15 Standard Operation/Continuous Data Transfer Mode:

 

Stand-Alone Timing . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–13

3–16 Standard Operation/Continuous Data Transfer Mode:

 

Master-Slave Cascade Timing . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–13

3–17 Timing Diagram for Turbo Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–14

3–18 Data Frame Format . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–15

3–19 Control Frame Data Format . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–15

3–20 Broadcast Register Write Example

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–16

5–1 Hardware Reset Timing . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–6

5–2 Serial Communication Timing . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–6

5–3 FFT— ADC Channel (–3 dB Input) . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–7

5–4 FFT— ADC Channel (–1 dB Input) . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–7

5–5 FFT— ADC Channel (–3 dB Input) . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5–7

vii

5–6 FFT— DAC Channel (–3 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8 5–7 FFT— DAC Channel (0 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8 5–8 FFT— DAC Channel (–3 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8 5–9 FFT— DAC Channel (0 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9 5–10. FFT— ADC Channel (–1 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9 5–11 ADC FIR Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–10 5–12 ADC IIR Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–10 5–13 DAC IIR Frequency Response (OSR = 512) . . . . . . . . . . . . . . . . . . . . . . . . . 5–10 5–14 DAC IIR Frequency Response (OSR = 256) . . . . . . . . . . . . . . . . . . . . . . . . . 5–10 5–15 DAC IIR Frequency Response (OSR = 128) . . . . . . . . . . . . . . . . . . . . . . . . . 5–11 5–16 DAC FIR Frequency Response (OSR = 512) . . . . . . . . . . . . . . . . . . . . . . . . 5–11 5–17 DAC FIR Frequency Response (OSR = 256) . . . . . . . . . . . . . . . . . . . . . . . . 5–11 5–18 DAC FIR Frequency Response (OSR = 128) . . . . . . . . . . . . . . . . . . . . . . . . 5–11 5–19 Single-Ended Microphone Input (Internal Common Mode) . . . . . . . . . . . . . 5–12 5–20 Pseudo-Differential Microphone Input (External Common Mode) . . . . . . . 5–13

List of Tables

Table

Title

Page

3–1 SMARTDM Device Addresses . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–8

3–2 Serial Interface Configurations . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–11

3–3 Register Map . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–16

3–4 Register Addresses . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3–16

4–1 Control Register 1 Bit Summary . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–1

4–2 Control Register 2 Bit Summary . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–2

4–3 Control Register 3 Bit Summary . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–2

4–4 Control Register 4 Bit Summary . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–3

4–5 Control Register 5A Bit Summary . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–3

4–6 A/D PGA Gain . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–4

4–7 Control Register 5B Bit Summary . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–5

4–8 D/A PGA Gain . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–5

4–9 Digital Sidetone Gain . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–7

4–10 Input Buffer Gain . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–7

4–11 Control Register 6 Bit Summary . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4–8

viii

1 Introduction

The TLV320AIC14 is a true low-cost, low-power, high-performance, highly-integrated voiceband codec designed with new technological advances. The TLV320AIC14 provides high resolution signal conversion from digital-to-analog (D/A) and from analog-to-digital (A/D) using oversampling sigma-delta technology with programmable sampling rate.

1.1 Description

The TLV320AIC14 implements the smart time division multiplexed serial port (SMARTDM ). This is TI’s design innovation to optimize DSP performance with its most advanced synchronous serial port in TDM format for glue-free interface to popular DSPs (i.e., C5x, C6x) and microcontrollers. The SMARTDM supports both continuous data transfer mode and on-the-fly reconfiguration programming mode. SMARTDM maximizes the bandwidth of data transfer between the TLV320AIC14 DSP codec and the DSP. In normal operation, it automatically detects the number of codecs in the serial interface and adjusts the number of time slots to match the number of codecs so that no time slot in the TDM frame is wasted. In the turbo mode, it maintains the same number of time slots but maximizes the bit transferred rate to 25 MHz to give the DSP more bandwidth to process other tasks in the same sampling period. The SMARTDM technology allows up to 16 codecs to share a single 4-wire serial bus.

The TLV320AIC14 also provides a flexible host port. The host port interface is a two-wire serial interface that can be programmed to be either an industrial standard I2C or a simple S2C (start-stop communication protocol).

The TLV320AIC14 also integrates all of the critical functions needed for most voice-band applications including MIC preamp, handset/headset preamps, antialiasing filter (AAF), input/output programmable gain amplifier (PGA), and selectable low-pass IIR/FIR filters.

The TLV320AIC14 implements an extensive power management; including device power-down, independent software control for turning off ADC, DAC, op-amps, and IIR/FIR filter (bypassable) to maximize system power conservation. The TLV320AIC14 consumes only 10 mW at 3 V.

The TLV320AIC14’s low power operation from 2.7 V to 3.6 V for analog and I/O and 1.65 V to 1.95 V for digital core power supplies, along with extensive power management, make it ideal for portable applications including wireless accessories, hands free car kits, VOIP, cable modem, and speech processing. Its low group delay characteristic makes it suitable for single or multichannel active control applications.

The TLV320AIC14 is characterized for commercial operation from 0° C to 70° C and industrial operation from –40° C to 85° C.

1.2Features

C54x Software Driver Available

16-Bit Oversampling Sigma-Delta A/D Converter

16-Bit Oversampling Sigma-Delta D/A Converter

Support Maximum Master Clock of 100 MHz to Allow DSPs Output Clock to Be Used as Master Clock

Selectable FIR/IIR Filter With Bypassing Option

Programmable Sampling Rate up to:

Max 26 KSPS With On-Chip IIR/FIR Filter

Max 104 KSPS With IIR/FIR Bypassed

On-Chip FIR Produced 84-dB SNR for ADC and 91-dB SNR for DAC Over 13-kHz BW

External DSPs IIR/FIR for a Final Sampling Rate of 8 Ksps (IIR/FIR Bypassed) Produced 87-dB SNR for ADC and 92-dB SNR for DAC.

SMARTDM is a trademark of Texas Instruments.

1–1

Smart Time Division Multiplexed Serial Port (SMARTDM)

Glueless 4-Wire Interface to DSP

Automatic Cascade Detection (ACD) Self-Generates Master/Slave Device Addresses

Programming Mode to Allow On-the-Fly Reconfiguration

Continuous Data Transfer Mode to Support DSP’s DMA/Autobuffering Mode

Turbo Mode to Maximize Bit Clock for Faster Data Transfer and Higher Data Bandwidth

Total Number of Time Slots Dynamically Proportional to Number of Codecs in the Cascade to Eliminate Unused Time Slots and Optimize DSP Memory Allocation

Allows up to 16 Codecs to Be Connected to a Single Serial Port

Host Port

2-Wire Interface

Selectable I2C or S2C

Differential and Single-Ended Analog Input/Output

Built-In Functions:

Sidetone

Antialiasing Filter (AAF)

Programmable Input and Output Gain Control (PGA)

Microphone Amplifiers

Power Management With Hardware/Software Power-Down Modes 30 W

Separate Software Control for ADC and DAC Power Down

Fully Compatible With TI C54x DSP Power Supplies

1.65 V–1.95 V Digital Core Power

2.7 V–3.6 V Digital I/O

2.7 V–3.6 V Analog

Power Dissipation (PD) 10 mW at 3 V in Standard Operation

Internal Reference Voltage (Vref)

2s Complement Data Format

Test Mode Which Includes Digital Loopback and Analog Loopback

1–2

TEXAS INSTRUMENTS TLV320AIC12, TLV320AIC13, TLV320AIC14, TLV320AIC15, TLV320AIC20 Technical data

1.3 Functional Block Diagram

MICIN

s2d

INP2

Preamplifier

 

 

24, 12, 6, 0 dB

 

 

 

 

 

INM2

Anti-

 

Sigma-

 

 

MUX

Aliasing

PGA

Delta

INP1

Filter

 

ADC

 

 

 

 

– 42 dB to 20 dB

 

INM1

Step Size = 1 dB

 

Analog

Loopback

OUTP1

 

PGA

Low-Pass

Sigma-

 

Filter

Delta

(600 Ω

Driver)

 

DAC

 

 

OUTM1

 

– 42 dB to 20 dB

 

 

 

 

 

 

 

 

Step Size = 1 dB

 

 

Vref

BIAS

1.35 V/2.35 V @ 5 mA max

Decimation Filter

 

Sinc

FIR Filter

 

Filter

IIR Filter

 

 

Digital Loopback

 

w/ Sidetone Control

 

and Mute

 

–3 dB to –21 dB

Interpolation Filter

 

Sinc

FIR Filter

 

Filter

IIR Filter

 

SMARTDM

M/S

Serial

Port

DOUT

DIN

FS

SCLK

FSD

Host Port

SCL

SDA

 

Internal Clock Circuit

Div

MCLK

16xMxNxP

 

 

1–3

1–4

2 Terminal Descriptions

DBT PACKAGE (TOP VIEW)

IOVSS

 

 

1

30

 

 

 

DVSS

 

 

 

 

 

IOVDD

 

2

29

 

 

 

DVDD

 

 

 

 

 

FSD

 

3

28

 

 

 

SCLK

 

 

 

 

 

FS

 

4

27

 

 

 

SDA

 

 

 

 

 

DOUT

 

5

26

 

 

 

SCL

 

 

 

 

 

 

 

 

 

 

DIN

 

6

25

 

 

 

MCLK

 

 

 

 

 

 

 

 

 

 

M/S

 

7

24

 

 

 

RESET

 

 

 

 

 

 

 

 

 

8

23

 

 

 

INP1

PWRDN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTM1

 

9

22

 

 

 

INM1

 

 

 

 

 

OUTP1

 

10

21

 

 

 

BIAS

 

 

 

 

 

 

 

 

 

 

DRVDD

 

11

20

 

 

 

INM2

 

 

 

 

 

DRVSS

 

12

19

 

 

 

INP2

 

 

 

 

 

NC

 

13

18

 

 

 

MICIN

 

 

 

 

 

 

 

 

 

 

NC

 

14

17

 

 

 

AVDD

 

 

 

 

 

 

 

 

 

 

NC

 

15

16

 

 

 

AVSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Ordering Information

TA

30-TSSOP DBT PACKAGE

0° C to 70° C

TLV320AIC14C

–40° C to 85° C

TLV320AIC14I

2.2 Terminal Functions

TERMINAL

I/O

DESCRIPTION

NAME

NO.

 

 

 

 

 

 

AVDD

17

I

Analog power supply

 

 

 

 

AVSS

16

I

Analog ground

 

 

 

 

BIAS

21

O

Bias output voltage is software selectable between 1.35 V and 2.35 V. Its output current is 5 mA.

 

 

 

 

DIN

6

I

Data input. DIN receives the DAC input data and register data from the external DSP (digital signal processor) and is

 

 

 

synchronized to SCLK and FS. Data is latched at the falling edge of SCLK when FS is low.

 

 

 

 

DOUT

5

O

Data output. DOUT transmits the ADC output bits and registers data, and is synchronized to SCLK and FS. Data is

 

 

 

sent out at the rising edge of SCLK when FS is low. Outside data/control frame, DOUT is put in 3-state.

 

 

 

 

DRVDD

11

I

Analog power supply for the 600-Ω driver

 

 

 

 

DRVSS

12

I

Analog ground for the 600-Ω driver

DVDD

29

I

Digital power supply

 

 

 

 

DVSS

30

I

Digital ground

 

 

 

 

FS

4

I/O

Frame sync. When FS goes low, DIN begins receiving data bits and DOUT begins transmitting data bits. In master

 

 

 

mode, FS is internally generated and is low during the data transmission to DIN and from DOUT. In slave mode, FS is

 

 

 

externally generated.

 

 

 

 

FSD

3

O

Frame sync delayed output. The FSD output synchronizes a slave device to the frame sync of the master device. FSD

 

 

 

is applied to the slave FS input and is the same duration as the master FS signal. This pin must be pulled low if AIC14 is

 

 

 

a stand-alone slave. It may be pulled high if the AIC14 is a stand-alone master or the last slave in the cascade.

 

 

 

 

INM1

22

I

Inverting analog input 1. It must be connected to AVSS if not used.

 

 

 

 

INM2

20

I

Inverting analog input 2. It must be connected to AVSS if not used.

 

 

 

 

INP1

23

I

Noninverting analog input 1. It must be connected to AVSS if not used.

 

 

 

 

INP2

19

I

Noninverting analog input 2. It must be connected to AVSS if not used.

2–1

2.2 Terminal Functions (Continued)

 

TERMINAL

I/O

 

 

DESCRIPTION

 

NAME

NO.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOVDD

2

I

Digital I/O power supply

 

 

 

 

 

 

 

 

 

IOVSS

1

I

Digital I/O ground

 

 

 

 

 

 

 

 

 

MCLK

25

I

Master clock. MCLK derives the internal clocks of the sigma-delta analog interface circuit.

 

 

 

 

 

 

 

 

 

MICIN

18

I

MIC preamplifier input. It must be connected to AVSS if not used.

 

 

 

 

 

 

 

 

 

M/S

7

I

Master/slave select input. When M/S is high, the device is the master, and when low it is a slave.

 

 

 

 

 

 

 

 

 

OUTM1

9

O

Inverting output of the DAC. OUTM1 is functionally identical with and complementary to OUTP1. This differential

 

 

 

 

 

output can drive a minimum load of 600 Ω . This output can also be used alone for single-ended operation.

 

NC

13, 14,

 

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTP1

10

O

Noninverting output of the DAC. This differential output can drive a minimum load of 600 Ω . This output can also be

 

 

 

 

 

used alone for single-ended operation.

 

 

 

 

 

 

 

 

 

 

 

8

I

Power down. When

 

is pulled low, the device goes into a power-down mode, the serial interface is disabled,

 

PWRDN

PWRDN

 

 

 

 

 

and most of the high-speed clocks are disabled. However, all the register values are sustained and the device

 

 

 

 

 

resumes full-power operation without reinitialization when PWRDN is pulled high again. PWRDN resets the

 

 

 

 

 

counters only and preserves the programmed register contents.

 

 

 

 

 

 

 

 

24

I

Hardware reset. The reset function is provided to initialize all of the internal registers to their default values. The

 

RESET

 

 

 

 

 

 

serial port is configured to the default state accordingly.

 

 

 

 

 

 

SCL

26

I

Programmable host port (I2C or S2C) clock input.

 

SCLK

28

I/O

Shift clock. SCLK signal clocks serial data into DIN and out of DOUT during the frame-sync interval. When

 

 

 

 

 

configured as an output (M/S high), SCLK is generated internally by multiplying the frame-sync signal frequency by

 

 

 

 

 

16 and the number of codecs in cascade in standard and continuous mode. When configured as an input (M/S low),

 

 

 

 

 

SCLK is generated externally and must be synchronous with the master clock and frame sync.

 

 

 

 

 

 

SDA

27

I/O

Programmable host port (I2C or S2C) data line.

2.3 Definitions and Terminology

Data Transfer

The time during which data is transferred from DOUT and to DIN. The interval is 16 shift clocks and the data

Interval

transfer is initiated by the falling edge of the FS signal in standard and continuous mode.

Signal Data

This refers to the input signal and all of the converted representations through the ADC channel and the

 

signal through the DAC channel to the analog output. This is contrasted with the purely digital software

 

control data.

Frame Sync

Frame sync refers only to the falling edge of the signal FS that initiates the data transfer interval

Frame Sync and

Frame sync and sampling period is the time between falling edges of successive FS signals.

Sampling Period

 

fs

The sampling frequency

ADC Channel

ADC channel refers to all signal processing circuits between the analog input and the digital

 

conversion result at DOUT.

DAC channel

DAC channel refers to all signal processing circuits between the digital data word applied to DIN and the

 

differential output analog signal available at OUTP1 and OUTM1.

Dxx

Bit position in the primary data word (xx is the bit number)

DSxx

Bit position in the secondary data word (xx is the bit number)

PGA

Programmable gain amplifier

IIR

Infinite impulse response

FIR

Finite impulse response

2–2

3 Functional Description

3.1 Operating Frequencies (see Notes)

The sampling frequency is the frequency of the frame sync (FS) signal whose falling edge starts digital-data transfer for both ADC and DAC. The sampling frequency is derived from the master clock (MCLK) input by the following equations:

Coarse sampling frequency (default):

The coarse sampling is selected by programming P = 8 in the control register 4, which is the default configuration of AIC14 on power-up or reset.

FS = Sampling (conversion) frequency = MCLK / (16 × M × N x 8)

Fine sampling frequency (see Note 5):

FS = Sampling (conversion) frequency = MCLK/ (16 × M × N × P)

NOTES: 1. Use control register 4 to set the following values of M, N, and P

2.M = 1,2, . . . ,128

3.N = 1,2, . . . ,16

4.P = 1,2, . . . ,8

5.The fine sampling rate needs an on-chip DLL to generate internal clocks. The DLL requires the relationship between MCLK and P to meet the following condition: 10 MHz ≤ (MCLK/P) ≤ 25 MHz

6.Both equations of FS require that the following conditions should be met:

S (M × N × P) ≥ (devnum ×

mode) if the FIR/IIR filter is not bypassed.

S [Integer(M/4) × N × P] ≥

(devnum × mode) if the FIR/IIR filter is bypassed.

where

 

devnum is the number of devices connecting in cascade

mode is equal to 1 for continuous data transfer mode and 2 for programming mode

EXAMPLE:

 

The MCLK comes from the DSP C5402’s CLKOUT and equals to 20.48 MHz and the conversion rate of 8 kHz is

desired. First, set P = 1 to satisfy the condition 5 so that (MCLK/P) = 20.48 MHz/1 = 20.48 MHz. Next, pick

M = 10 and N = 16 to satisfy condition 6 and derive 8 kHz for FS. That is,

FS = 20.48 MHz/ (16 × 10 × 16 × 1) = 8 kHz

3.2 Internal Architecture

3.2.1 Antialiasing Filter

The built-in antialiasing filter is a two-pole filter that has a 20-dB attenuation at 1 MHz.

3.2.2Sigma-Delta ADC

The sigma-delta analog-to-digital converter is a sigma-delta modulator with 128-x oversampling. The ADC provides high-resolution, low-noise performance using oversampling techniques. Due to the oversampling employed, only single pole R-C filters are required on the analog inputs.

3.2.3Decimation Filter

The decimation filters are either FIR filters or IIR filters, selected by bit D5 of the control register 1. The FIR filter provides linear-phase output with 17/f group delay, whereas the IIR filter generates nonlinear phase output with negligible group delay. The decimation filters reduce the digital data rate to the sampling rate. This is accomplished by decimating with a ratio of 1:128. The output of the decimation filter is a 16-bit 2s-complement data word clocking at the sample rate selected for that particular data channel. The BW of the filter is (0.45 × FS) and scales linearly with the sample rate.

3–1

3.2.4Sigma-Delta DAC

The sigma-delta digital-to-analog converter is a sigma-delta modulator with 128/256/512 x oversampling. The DAC provides high-resolution, low-noise performance using oversampling techniques. The oversampling ratio in DAC is programmable to 256/512 using bits D4–D3 of control register 3, the default being 128. Oversampling ratio of 512 can be used when FS is a maximum of 8 Ksps and an oversampling ratio of 256 can be used when FS is a maximum of 16 Ksps. M should be a multiple of 2 for an oversampling ratio of 256 and 4 for oversampling ratio of 512.

3.2.5Interpolation Filter

The interpolation filters are either FIR filters or IIR filters selected by bit D5 of the control register 1. The FIR filter provides linear-phase output with 16/f group delay, whereas the IIR filter generates nonlinear phase output with negligible group delay. The interpolation filter resamples the digital data at a rate of 128/256/512 times the incoming sample rate, based on the oversampling rate of DAC. The high-speed data output from the interpolation filter is then used in the sigma-delta DAC. The BW of the filter is (0.45 × FS) and scales linearly with the sample rate.

3.2.6Analog/Digital/Side-Tone Loopback

The analog and digital loopbacks provide a means of testing the data ADC/DAC channels and can be used for in-circuit system level tests. The analog loopback always has the priority to route the DAC low pass filter output into the analog input where it is then converted by the ADC to a digital word. The digital loopback routes the ADC output to the DAC input on the device. Analog loopback is enabled by writing a 1 to bit D2 in the control register 1. Digital loopback is enabled by writing a 1 to bit D1 in control register 1. The side-tone digital loopback attenuates the ADC output and mixes it with the input of the DAC. The level of the side tone is set by DSTG, bits D5–D3 of the control register 5C.

3.2.7ADC PGA

TLV320AIC14 has a built-in PGA for controlling the signal levels at ADC outputs. ADC PGA gain setting can be selected by writing into bits D5–D0 of register 5A. The PGA range of the ADC channel is 20 dB to –42 dB in steps of 1 dB and mute. To avoid sudden jumps in signal levels with PGA changes, the gains are applied internally with zero-crossovers.

3.2.8DAC PGA

TLV320AIC14 has a built-in PGA for controlling the analog output signal levels in DAC channel. DAC PGA gain setting can selected by writing into bits D5–D0 of register 5B. The PGA range of the DAC channel is 20 dB to –42 dB in steps of 1 dB, and mute. To avoid sudden pop-sounds with power-up/down and gain changes the power-up/down and gain changes for DAC channel are applied internally with zero-crossovers.

3.3 Analog Input/Output

The TLV320AIC14 has three programmable analog inputs and three programmable analog outputs. Bits D2–D1 of control register 6 select the analog input source from MICIN, INP1/M1, or INP2/M2. All analog I/O is either single-ended or differential. All analog input signals are self-biased to 1.35 V. The three analog outputs are configured by bits D7, D6, D5, and D4–D3 of control register 6.

3.3.1MIC Input

TLV320AIC14 supports single ended microphone input. This can be used by connecting the external single ended source through ac coupling to the MICIN pin. This channel is selected by writing 01 or 10 into bits D2–D1 in control register 6. The single ended input is supported in two modes.

Writing 01 into bits D2–D1 chooses self biased MICIN mode. In this mode the device internally self-biases the input at 1.35V. For best noise performance the user should bias the microphone circuit using the BIAS voltage generated by the device as shown in Figure 5–19.

3–2

Loading...
+ 35 hidden pages