ANALOG DEVICES AD7142, AD7142-1 Service Manual

0 (0)

AD7142

Programmable Capacitance-to-Digital

Converter with Environmental Compensation

Preliminary Technical Data

AD7142/AD7142-1

 

 

FEATURES

Programmable capacitance-to-digital converter 30 Hz update rate (@ maximum sequence length) Better than one femto Farad resolution

14 capacitance sensor input channels

No external RC tuning components required Automatic conversion sequencer

On-chip automatic calibration logic

Automatic compensation for environmental changes Automatic adaptive threshold and sensitivity levels

On-chip RAM to store calibration data

SPI®- or I2C®- (AD7142-1) compatible serial interface Separate VDRIVE level for serial interface

Interrupt output and GPIO 32-lead, 5 mm x 5 mm LFCSP 2.7 V to 3.3 V supply voltage Low operating current

Full power mode: less than1 mA Low power mode: 50 μA

APPLICATIONS

Personal music and multimedia players

Cell phones

Digital still cameras

Smart hand-held devices

Television, A/V and remote controls

Gaming consoles

FUNCTIONAL BLOCK DIAGRAM

 

 

 

VREF– VREF+

 

TEST

 

 

 

 

 

29

28

 

27

 

 

 

CIN0

30

 

 

 

 

 

POWER-ON

 

 

CIN1

31

 

 

 

 

 

RESET

 

 

 

 

 

 

 

LOGIC

 

 

CIN2

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN3

1

 

 

 

 

 

 

13

AVCC

CIN4

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN5

3

SWITCH MATRIX

 

 

 

 

 

14

AGND

CIN6

4

16-BIT

 

CALIBRATION

 

 

 

CIN7

5

Σ-

 

 

ENGINE

 

 

 

CDC

 

 

 

 

 

CIN8

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN9

7

 

 

 

 

 

 

17

DVCC

CIN10

8

 

AD7142

 

 

 

 

 

CIN11

9

 

 

CALIBRATION

 

18

DGND1

CIN12

10

 

 

 

 

RAM

 

 

 

 

 

 

 

 

 

19

DGND2

CIN13

11

 

CONTROL

 

 

 

 

 

 

AND

 

 

 

 

 

 

 

 

 

DATA

 

 

 

 

 

 

 

 

REGISTERS

 

 

 

 

 

CSHIELD

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

240kHz

 

 

 

 

 

 

 

SRC

15

EXCITATION

 

 

 

 

 

 

 

 

 

SOURCE

 

 

 

 

 

 

 

SRC

16

 

 

 

 

 

 

 

 

VDRIVE

 

SERIAL INTERFACE

INTERRUPT

 

 

20

 

AND GPIO

26

GPIO

 

 

AND CONTROL LOGIC

LOGIC

 

 

 

 

21

22

23

 

24

25

 

-001

 

 

 

 

05702

 

 

SDO/

SDI/

SCLK

CS/

INT

 

 

 

 

 

 

 

SDA

ADD0

ADD1

 

 

 

Figure 1.

GENERAL DESCRIPTION

The AD7142 and AD7142-1 are integrated capacitance-to- digital converters (CDCs) with on-chip environmental calibration for use in systems requiring a novel user input method. The AD7142 and AD7142-1 can interface to external capacitance sensors implementing functions such as capacitive buttons, scroll bars, or joypads.

The CDC has 14 inputs, channeled through a switch matrix to a 16-bit, 240 kHz sigma-delta (∑-Δ) capacitance-to-digital converter. The CDC is capable of sensing changes in the capacitance of the external sensors and uses this information to register a sensor activation. The external sensors can be arranged as a series of buttons, as a scroll bar or wheel, or as a combination of sensor types. By programming the registers, the user has full control over the CDC setup. High resolution scroll bar sensors require software to run on the host processor.

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.

The AD7142 and AD7142-1 have on-chip calibration logic to account for changes in the ambient environment. The calibration sequence is performed automatically and at continuous intervals, while the sensors are not touched. This ensures that there are no false or nonregistering touches on the external sensors due to a changing environment.

The AD7142 has an SPI-compatible serial interface, and the AD7142-1 has an I2C-compatible serial interface. Both versions of AD7142 have an interrupt output, as well as a general-purpose input output (GPIO).

The AD7142 and AD7142-1 are available in a 32-lead, 5 mm × 5 mm LFCSP package and operate from a 2.7 V to 3.3 V supply. The operating current consumption is less than 1 mA, falling to 50 μA in low power mode (conversion interval of 400 ms).

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700

www.analog.com

Fax: 781.461.3113

© 2005 Analog Devices, Inc. All rights reserved.

AD7142/AD7142-1

Preliminary Technical Data

TABLE OF CONTENTS

 

Features ..............................................................................................

1

Applications.......................................................................................

1

Functional Block Diagram ..............................................................

1

General Description.........................................................................

1

Revision History ...............................................................................

2

Specifications.....................................................................................

3

SPI Timing Specifications AD7142............................................

4

I2C Timing Specifications AD7142-1 ........................................

5

Absolute Maximum Ratings............................................................

6

ESD Caution..................................................................................

6

Pin Configuration and Functional Descriptions.........................

7

Typical Performance Characteristics .............................................

8

Theory of Operation ........................................................................

9

Capacitance Sensing Theory.......................................................

9

Operating Modes........................................................................

10

Capacitance Sensor Input Configuration....................................

11

CIN Input Multiplexer Setup ....................................................

11

Capacitiance-to-Digital Converter...............................................

12

Oversampling the CDC Output ...............................................

12

Capacitance Sensor Offset Control..........................................

12

Conversion Sequencer ...............................................................

12

CDC Conversion Time..............................................................

13

CDC Conversion Results...........................................................

14

Non-Contact Proximity Detection...............................................

15

Environmental Calibration ...........................................................

19

REVISION HISTORY

12/05—Preliminary Version D

7/05—Preliminary Version C

2/05—Preliminary Version B

Adaptive Threshold and Sensitivity .............................................

20

Interrupt Output.............................................................................

21

CDC Conversion Complete Interrupt.....................................

21

Sensor Threshold Interrupt ......................................................

21

GPIO INT Output Control .......................................................

22

Outputs ............................................................................................

24

Excitation Source........................................................................

24

CSHIELD Output .............................................................................

24

GPIO ............................................................................................

24

Serial Interface ................................................................................

25

SPI Interface ................................................................................

25

I2C Interface ................................................................................

27

VDRIVE Input .................................................................................

29

PCB Design Guidelines .................................................................

30

Capacitive Sensor Board Mechanical Specifications .............

30

Chip Scale Packages ...................................................................

30

Power-Up Sequence .......................................................................

31

Typical Application Circuits .........................................................

32

Register Map ...................................................................................

33

Detailed Register Descriptions .....................................................

34

Bank 1 Registers .........................................................................

34

Bank 2 Registers .........................................................................

44

Bank 3 Registers .........................................................................

47

Outline Dimensions .......................................................................

62

Ordering Guide ..........................................................................

62

1/05—Preliminary Version A

 

Rev. PrD | Page 2 of 64

Preliminary Technical Data

AD7142/AD7142-1

 

 

SPECIFICATIONS

VCC = 2.7 V to 3.3 V, TA = −40oC to +85°C, unless otherwise noted.

Table 1.

Parameter

Min

Typ

Max

Unit

Test Conditions/Comments

 

 

 

 

 

 

 

 

 

 

CAPACITANCE-TO-DIGITAL CONVERTER

 

 

 

 

 

Update Rate

30

 

 

Hz

Maximum programmed sequence length

Resolution

 

16

 

Bit

 

Range

 

±2

 

pF

 

No Missing Codes

16

 

 

Bit

Guaranteed by design, but not production

 

 

 

 

 

 

 

 

 

tested

Total Unadjusted Error

 

 

TBD

fF

 

Power Supply Rejection

 

500

 

aF/V

 

Output Noise (Peak-to-Peak)

 

10

 

aF/√Hz

 

Parasitic Capacitance

 

 

60

pF

Parasitic capacitance to ground, guaranteed

 

 

 

 

 

 

 

 

 

by characterization

 

 

 

 

 

 

 

 

 

 

EXCITATION SOURCE

 

 

 

 

 

Frequency

TBD

240

TBD

kHz

 

Output Voltage

 

 

AVCC

V

 

Short-Circuit Current

 

10

 

mA

 

Maximum Output Load

 

500

 

pF

Capacitance load on source to ground

CSHIELD Output Drive

 

10

 

μA

 

CSHIELD Bias Level

 

AVCC/2

 

V

 

 

 

 

 

 

 

 

 

LOGIC INPUTS (SDI, SCLK,

 

, SDA, GPI, TEST)

 

 

 

 

 

CS

 

 

 

 

 

VIH Input High Voltage

0.7 x VDRIVE

 

 

V

 

VIL Input Low Voltage

 

 

0.3 x VDRIVE

V

 

IIH Input High Voltage

−1

 

 

μA

 

IIL Input Low Voltage

 

 

1

μA

 

Hysteresis

 

150

 

mV

 

OPEN-DRAIN OUTPUTS (SDO, SDA,

 

 

 

 

 

 

 

INT)

 

 

 

 

 

 

VOL Output Low Voltage

 

 

0.4

V

ISINK = −1 mA

IOH Output High Leakage Current

 

0.1

1

μA

VOUT = VDRIVE

 

 

 

 

 

 

LOGIC OUTPUTS

 

 

 

 

 

VOL Output Low Voltage

 

 

0.4

V

ISINK = 1 mA, VDRIVE = 1.6 V to DVCC + 0.3 V

VOH Output High Voltage

VDRIVE − 0.6

 

 

V

ISOURCE = 1 mA

Floating State Leakage Current

 

 

±10

μA

Pin tri-stated

 

 

 

 

 

 

POWER

 

 

 

 

 

AVCC, DVCC

2.7

 

3.6

V

 

VDRIVE

1.65

 

DVCC + 0.3

V

Serial interface operating voltage

ICC

 

1

TBD

mA

Full power mode

 

 

 

 

 

 

50

TBD

μA

Low power mode (conversion delay = 400 ms)

 

 

 

 

 

 

2

TBD

μA

Full shutdown

 

 

 

 

 

 

 

 

 

 

Rev. PrD | Page 3 of 64

AD7142/AD7142-1

Preliminary Technical Data

 

 

SPI TIMING SPECIFICATIONS AD7142

TA = −40°C to +105°C; VDRIVE = 1.8 V to 3.6 V; AVCC, DVCC = 2.7 V to 3.6 V, unless otherwise noted. Sample tested at 25°C to ensure compliance. All input signals are specified with tR = tF = 5 ns (10% to 90% of VCC) and timed from a voltage level of 1.6 V.

Table 2. SPI Timing Specifications

Parameter

Limit at TMIN, TMAX

Unit

 

Description

fSCLK1

10

kHz min

 

 

 

 

 

 

10

MHz max

 

 

 

 

 

t1

5

ns min

 

 

 

 

 

CS

falling edge to first SCLK falling edge

t2

20

ns min

 

SCLK high pulse width

t3

20

ns min

 

SCLK low pulse width

t4

15

ns min

 

SDI set-up time

t5

15

ns min

 

SDI hold time

t6

20

ns max

 

SDO access time after SCLK falling edge

t7

16

ns max

 

 

 

 

 

CS

rising edge to SDO high impedance

t8

TBD

ns

 

 

 

SCLK rising edge to

CS

high

 

 

 

 

 

 

 

 

1 Mark/space ratio (duty cycle) for the DCLK input is 40/60 to 60/40.

CS

 

t1

t2

 

t3

 

 

 

 

 

t8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCLK

 

1

2

3

15

16

1

2

15

16

 

 

 

 

 

 

 

 

 

 

 

 

t4

 

 

 

 

 

 

 

 

 

 

t5

 

 

 

 

 

 

 

 

SDI

 

MSB

 

 

 

LSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t6

 

t7

SDO

 

 

 

 

 

 

MSB

 

 

LSB

Figure 2. SPI Detailed Timing Diagram

05702-002

Rev. PrD | Page 4 of 64

Preliminary Technical Data

AD7142/AD7142-1

 

 

I2C TIMING SPECIFICATIONS AD7142-1

TA = −40°C to +105°C; VDRIVE = 1.8 V to 3.6 V; AVCC, DVCC = 2.7 V to 3.6 V, unless otherwise noted.

Sample tested at 25°C to ensure compliance. All input signals timed from a voltage level of 1.6 V.

Table 3. I2C Timing Specifications1

Parameter

Limit

Unit

Description

 

 

 

 

fSCLK

400

kHz max

 

t1

0.6

μs min

Start condition hold time, tHD; STA

t2

1.3

μs min

Clock low period, between 10% points, tLOW

t3

0.6

μs min

Clock high period, between 90% points, tHIGH

t4

100

ns min

Data setup time , tSU; DAT

t5

50

ns min

Data hold time, tHD; DAT

t6

0.6

μs min

Stop condition setup time, tSU; STO

t7

0.6

μs min

Start condition setup time, tSU; STA

t8

1.3

μs min

Bus free time between stop and start conditions, tBUF

tR

300

ns max

Clock/data rise time

tF

300

ns max

Clock/data fall time

 

 

 

 

1 Guaranteed by design, but not production tested.

tR

tF

t1

t2

 

SCLK

 

 

t1

t3

t7

t5

 

t4

SDATA

 

 

t8

 

 

STOP START

 

START

Figure 3. I2C Detailed Timing Diagram

t6

STOP

05702-003

Rev. PrD | Page 5 of 64

AD7142/AD7142-1

Preliminary Technical Data

 

 

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter

Rating

 

 

AVCC to AGND, DVCC to DGND

−0.3 V to +3.6 V

Analog Input Voltage to AGND

−0.3 V to AVCC + 0.3 V

Digital Input Voltage to DGND

−0.3 V to VDRIVE + 0.3 V

Digital Output Voltage to DGND

−0.3 V to VDRIVE + 0.3 V

Input Current to Any Pin Except

10 mA

Supplies1

 

ESD Rating

2.5 kV

Operating Temperature Range

−40°C to +105°C

Storage Temperature Range

−65°C to +150°C

Junction Temperature

150°C

LFCSP Package

 

Power Dissipation

450 mW

θJA Thermal Impedance

135.7°C/W

IR Reflow Peak Temperature

260°C (±0.5°C)

Lead Temperature (Soldering 10 sec)

300°C

1 Transient currents of up to 100 mA do not cause SCR latch-up.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 

200μA

IOL

 

TO OUTPUT

 

 

1.6V

PIN

CL

 

 

 

 

 

 

 

50pF

 

05702-004

 

200μA

IOH

 

 

Figure 4. Load Circuit for Digital Output Timing Specifications

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Rev. PrD | Page 6 of 64

Preliminary Technical Data

AD7142/AD7142-1

 

 

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS

 

 

 

 

–FRE F+RE

 

 

 

 

 

 

 

 

 

–FER +FER

 

 

 

2NIC 1NIC 0NIC V V TSET OGIP

NTI

 

 

 

 

 

 

2NIC 1NIC 0NIC V V TSET OGIP

TNI

 

 

23 13 03 92 82 72 62 52

 

 

 

 

 

 

23 13 03 92 82 72 62 52

CIN3

1

 

 

 

 

 

24

 

 

 

CIN3

1

 

 

 

 

 

 

PIN 1

CS

 

 

PIN 1

CIN4

2

 

 

23

SCLK

CIN4

2

 

 

CIN5

3

 

 

INDICATOR

22

SDI

CIN5

3

 

 

INDICATOR

 

 

AD7142

 

 

AD7142-1

CIN6

4

 

 

21

SDO

CIN6

4

 

 

CIN7

5

 

 

TOP VIEW

20

VDRIVE

CIN7

5

 

 

TOP VIEW

CIN8

6

 

(Not to Scale)

19

DGND2

CIN8

6

 

(Not to Scale)

CIN9

7

 

 

 

 

 

18

DGND1

CIN9

7

 

 

 

 

CIN10

8

 

 

 

 

 

17

DVCC

CIN10

8

 

 

 

 

 

 

9 0 1 2 3 4 5 6 1 1 1 1 1 1 1

 

 

 

 

 

 

9 0 1 2 3 4 5 6 1 1 1 1 1 1 1

 

 

11NCI 21NCI 31NCI C AV DNGA CRS CRS

 

-05702005

 

 

 

 

 

 

 

 

11NCI 21NCI 31NCI C AV DNGA CRS

CRS

 

 

 

 

DLEIH CC S

 

 

 

 

 

 

 

 

 

 

DLEIH CC S

 

24 ADD1

23 SCLK

22 ADD0

21 SDA

20 VDRIVE

19 DGND2

18 DGND1

17 DVCC

05702-044

 

Figure 5. AD7142, 32-Lead LFCSP Pin Configuration

Figure 6. AD7142-1, 32-Lead LFCSP Pin Configuration

Table 5. Pin Function Descriptions

 

Pin No.

 

 

Name

Description

 

 

 

 

 

 

 

 

 

 

1

 

CIN3

Capacitance Sensor Input.

 

2

 

CIN4

Capacitance Sensor Input.

 

3

 

CIN5

Capacitance Sensor Input.

 

4

 

CIN6

Capacitance Sensor Input.

 

5

 

CIN7

Capacitance Sensor Input.

 

6

 

CIN8

Capacitance Sensor Input.

 

7

 

CIN9

Capacitance Sensor Input.

 

8

 

 

CIN10

Capacitance Sensor Input.

 

9

 

 

CIN11

Capacitance Sensor Input.

 

10

 

 

CIN12

Capacitance Sensor Input.

 

11

 

 

CIN13

Capacitance Sensor Input.

 

12

 

 

CSHIELD

CDC Shield Potential Output. Requires 10 nF capacitor to ground. Connect to external shield.

13

 

 

AVCC

CDC Supply Voltage.

 

14

 

 

AGND

Analog Ground Reference Point for All CDC Circuitry. Tie to analog ground plane.

15

 

 

SRC

CDC Excitation Source Output.

 

16

 

 

 

 

 

Inverted Excitation Source Output.

 

 

 

SRC

 

 

17

 

 

DVCC

Digital Core Supply Voltage.

 

18

 

DGND1

Digital Ground.

 

19

 

DGND2

Digital Ground.

 

20

 

 

VDRIVE

Serial Interface Operating Voltage Supply.

 

21

 

 

SDO

AD7142 SPI Serial Data Output.

 

 

 

 

SDA

AD7142-1 I2C Serial Data Input/Output. SDA requires pull-up resistor.

22

 

 

SDI

AD7142 SPI Serial Data Input.

 

 

 

 

ADD0

AD7142-1 I2C Address Bit 0.

 

23

 

SCLK

Clock Input for Serial Interface.

 

24

 

 

 

 

AD7142 SPI Chip Select Signal.

 

 

 

CS

 

 

 

 

 

 

ADD1

AD7142-1 I2C Address Bit 1.

 

25

 

 

INT

 

General Purpose Interrupt Output. Programmable polarity. Requires pull-up resistor.

26

 

GPIO

Programmable GPIO.

 

27

 

TEST

Factory Test Pin. Tie to ground.

 

28

 

 

VREF+

CDC Positive Reference Input. Normally tied to analog power.

29

 

 

VREF−

CDC Negative Reference Input. Tie to analog ground.

30

 

CIN0

Capacitance Sensor Input.

 

31

 

CIN1

Capacitance Sensor Input.

 

32

 

CIN2

Capacitance Sensor Input.

 

 

 

 

 

 

 

 

 

 

Rev. PrD | Page 7 of 64

AD7142/AD7142-1

Preliminary Technical Data

 

 

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Supply Current vs. AVDD

Rev. PrD | Page 8 of 64

Preliminary Technical Data

THEORY OF OPERATION

The AD7142 and AD7142-1 are capacitance-to-digital converters (CDCs) with on-chip environmental compensation, intended for use in portable systems requiring high resolution user input. The internal circuitry consists of a 16-bit, ∑- converter that converts a capacitive input signal into a digital value. There are 14 input pins on the AD7142 and AD7142-1, CIN0 to CIN13. A switch matrix routes the input signals to the CDC. The result of each capacitance-to-digital conversion is stored in on-chip registers. The host subsequently reads the results over the serial interface. The AD7142 contains an SPI interface and the AD7142-1 has an I2C interface ensuring that the parts are compatible with a wide range of host processors. Because the AD7142 and AD7142-1 are identical parts, with the exception of the serial interface, AD7142 refers to both the AD7142 and AD7142-1 throughout this data sheet.

The AD7142 interfaces with to up to 14 external capacitance sensors. These sensors can be arranged as buttons, scroll bars, joypads, or as a combination of sensor types. The external sensors consist of electrodes on a 2- or 4-layer PCB that interfaces directly to the AD7142.

The AD7142 can be set up to implement any set of input sensors by programming the on-chip registers. The registers can also be programmed to control features such as averaging, offsets, and gains for each of the external sensors. There is a sequencer on-chip to control how each of the capacitance inputs is polled.

The AD7142 has on-chip digital logic and 528 words of RAM that are used for environmental compensation. The effects of humidity, temperature, and other environmental factors can effect the operation of capacitance sensors. Transparent to the user, the AD7142 performs continuous calibration to compensate for these effects, allowing the AD7142 to give error-free results at all times.

The AD7142 requires some minor companion software that runs on the host or other microcontroller to implement sensor functions such as a scroll bar or joypad. However, no companion software is required to implement buttons, including 8-way button functionality. The algorithms required for button sensors are implemented in digital logic on-chip.

The AD7142 can be programmed to operate in either always powered mode, or in an automatic wake-up mode. The auto wake-up mode is particularly suited for portable devices that require low power operation giving the user significant power savings coupled with full functionality.

AD7142/AD7142-1

The AD7142 has a general interrupt output, INT, to indicate

when new data has been placed into the registers. INT is used to interrupt the host on sensor activation. The AD7142 operates from a 2.7 V to 3.6 V supply, and is available in a 32-lead,

5 mm × 5 mm LFCSP.

CAPACITANCE SENSING THEORY

The AD7142 uses a method of sensing capacitance known as the shunt method. Using this method, an excitation source is connected to a transmitter generating an electric field to a receiver. The field lines measured at the receiver are translated into the digital domain by a ∑- converter. When a finger, or other grounded object, interferes with the electric field, some of the field lines are shunted to ground and do not reach the receiver (see Figure 8). Therefore, the total capacitance measured at the receiver decreases when an object comes close to the induced field.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RX

 

 

 

 

TX

 

 

 

 

 

 

 

 

16-BIT

 

 

 

 

 

 

 

 

 

 

 

 

 

Σ-

DATA

 

 

 

 

 

EXCITATION

 

 

 

 

 

ADC

 

 

 

 

 

 

 

SIGNAL

05702-007

 

 

 

 

 

 

 

 

 

 

 

 

240KHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Sensing Capacitance Method

 

In practice, the excitation source and ∑-

ADC are implemented

on the AD7142, while the transmitter and receiver are constructed on a PCB that makes up the external sensor.

Registering a Sensor Activation

When a sensor is approached, the total capacitance associated with that sensor, measured by the AD7142, changes. When the capacitance changes to such an extent that a set threshold is exceeded, the AD7142 registers this as a sensor touch.

For example, consider the case of two button sensors that are connected to the AD7142 in a differential manner. When one button is activated, the AD7142 registers an increase in capacitance; if the other button is activated, the AD7142 registers a decrease in capacitance. If neither of the buttons are activated, the AD7142 measures the background or ambient capacitance level.

Rev. PrD | Page 9 of 64

AD7142/AD7142-1

Preprogrammed threshold levels are used to determine if a change in capacitance is due to a button being activated. If the capacitance exceeds one of the threshold limits, the AD7142 registers this as a true button activation.

The same thresholds principle is used to determine if other types of sensors, such as sliders or joypads, are activated.

Complete Solution for Capacitance Sensing

Analog Devices provides a complete solution for capacitance sensing. The two main elements to the solution are the sensor PCB and the AD7142.

If the application requires sensors in the shape of a slider or joypad, software is required that runs on the host processor. (No software is required for button sensors.) The software typically requires 3 kB of code and 500 bytes of data memory for a slider sensor.

SENSOR PCB

 

 

SPI or I2C

HOST PROCESSOR

 

 

 

 

AD7142

 

 

 

1 MIPS

 

 

 

 

3kB ROM

05702-008

 

 

 

 

500BYTES RAM

 

 

 

 

 

Figure 9. 3-Part Capacitance Sensing Solution

Analog Devices supplies the sensor PCB design to the customer based on the customer’s specifications, and supplies any necessary software on an open-source basis. Standard sensor designs are also available as PCB library components.

OPERATING MODES

The AD7142 has three operating modes. Full power mode, where the device is always fully powered, is suited for applications where power is not a concern, for example game consoles that have an ac power supply. Low power mode, where the part automatically powers down, is tailored to give significant power savings over full power mode, and is suited for mobile applications where power must be conserved. The AD7142 also has a complete shutdown mode.

The POWER_MODE bits (Bit 0 and Bit 1) of the control register set the operating mode on the AD7142. The control register is at Address 0x000.

Table 6. POWER_MODE Settings

POWER_MODE Bits

Operating Mode

 

 

00

Full power mode

01

Full shutdown mode

10

Low power mode

11

Full shutdown mode

 

 

Table 6 shows the POWER_MODE settings for each operating mode. To put the AD7142 into shutdown mode, set the POWER_MODE bits to either 01 or 11.

Preliminary Technical Data

The power-on default setting of the POWER_MODE bits is 00, full power mode.

Full Power Mode

In full power mode, all sections of the AD7142 remain fully powered at all times. While a sensor is being touched, the AD7142 processes the sensor data. If no sensor is touched, the AD7142 measures the ambient capacitance level and uses this data for the on-chip compensation routines. In full power mode, the AD7142 converts at a constant rate. See the CDC Conversion Time section for more information.

Low Power Mode

When in low power mode, the AD7142 POWER_MODE bits are set to 10 upon device initialization. If the external sensors are not touched, the AD7142 reduces its conversion frequency, thereby greatly reducing its power consumption. The part remains in a low power state while the sensors are not touched. Every 400 ms, the AD7142 performs a conversion and uses this data to update the compensation logic. When an external sensor is touched, the AD7142 begins a conversion sequence every 40 ms to read back data from the sensors. In low power mode, the total current consumption of the AD7142 is an average of the current used during a conversion, and the current used while the AD7142 is waiting for the next conversion to begin. For example, when the low power mode conversion interval is 400 ms, the AD7142 uses typically 0.9 mA current for 40 ms, and 15 μA for 360 ms of the conversion interval. (Note that these conversion timings can be altered through the register settings. See the CDC Conversion Time section for more information.)

 

 

 

AD7142 SETUP

 

 

 

AND INITIALIZATION

 

 

 

POWER_MODE = 10

 

 

 

NO

ANY

 

 

 

SENSOR

 

 

 

 

TOUCHED?

 

 

 

 

YES

 

CONVERSIONS EVERY 400ms

 

 

UPDATE COMPENSATION

 

 

 

LOGIC DATA PATH

SEQUENCER-CONTROLLED

 

 

 

CONVERSIONS ON ALL SENSORS

 

 

 

 

EVERY 40ms

 

 

ANY

YES

 

 

NO

SENSOR

 

 

TOUCHED?

YES

ANY

 

 

 

SENSOR

 

 

 

 

TOUCHED?

 

 

 

 

NO

 

 

 

TIMEOUT

PROXIMITY

05702-009

 

 

 

TIMER

 

 

 

COUNT DOWN

 

Figure 10. Low Power Mode Operation

Rev. PrD | Page 10 of 64

Preliminary Technical Data

AD7142/AD7142-1

 

 

CAPACITANCE SENSOR INPUT CONFIGURATION

Each stage of the AD7142 capacitance sensors can be uniquely configured by using the registers in Table 53 and Table 54. These registers are used to configure input pin connection set ups, sensor offsets, sensor sensitivities, and sensor limits for each stage. Apply this feature to optimize the function of each sensor to the application. For example, a button sensor connected to STAGE0 may require a different sensitivity and offset values than a button with a different function that is connected to a different stage.

CIN INPUT MULTIPLEXER SETUP

The CIN_CONNECTION_SETUP registers in Table 53 list the different options that are provided for connecting the sensor input pin to the CDC converter.

The AD7142 has an on-chip multiplexer to route the input signals from each pin to the input of the converter. Each input pin can be tied to either the negative or the positive input of the CDC, or it can be left floating. Each input can also be internally connected to the CSHIELD signal to help prevent cross coupling. If an input is not used, always connect it to CSHIELD.

For each input pin, CIN0 to CIN13, the multiplexer settings can be set on a per sequencer stage basis. For example, CIN0 is connected to the negative CDC input for conversion STAGE1, left floating for sequencer STAGE1, and so on for all twelve conversion stages.

Two bits in each register control the mux setting for the input pin.

CIN0

CIN_CONNECTION

 

 

CIN1

_SETUP BITS

CIN SETTING

 

CIN2

 

 

 

CIN3

00

CINX FLOATING

 

CIN4

 

CIN5

01

CINX CONNECTED TO

+

CIN6

 

NEGATIVE CDC INPUT

CIN7

10

CINX CONNECTED TO

CDC

CIN8

CIN9

 

POSITIVE CDC INPUT

 

CIN10

 

 

05702-010

CIN11

11

CINX CONNECTED TO

CIN12

 

CSHIELD

CIN13

 

Figure 11. Input Mux Configuration Options

Rev. PrD | Page 11 of 64

AD7142/AD7142-1

CAPACITIANCE-TO-DIGITAL CONVERTER

The capacitance-to-digital converter on the AD7142 has a sigma-delta (Σ-Δ) architecture with 16-bit resolution. There are 14 possible inputs to the CDC that are connected to the input of the converter through a switch matrix. The sampling frequency of the CDC is 240 kHz.

OVERSAMPLING THE CDC OUTPUT

It is possible to sample the result of any CDC conversion at a rate less than 240 kHz. The decimation rate, or over–sampling ratio, is determined by Bits[9:8] of the control register, as listed in Table 7.

Table 7. CDC Decimation Rate

Decimation Bit Value

Decimation Rate

CDC Sample Rate

00

256

312.5 Hz

01

128

625 Hz

10

64

1.25 kHz

11

64

1.25 kHz

The decimation process on the AD7142 is an averaging process where a number of samples are taken and the averaged result is output. The amount of samples taken is set equal to the decimation rate, so 256, 128, or 64 samples are averaged to obtain the CDC output.

The decimation process reduces the amount of noise present in the final CDC result. However, the higher the decimation rate, the lower the sampling frequency, thus, a tradeoff is required between a noise-free signal and speed of sampling.

CAPACITANCE SENSOR OFFSET CONTROL

Apply the STAGE_OFFSET registers to null any capacitance sensor offsets associated with printed circuit board parasitic capacitance, or capacitance due to any other source, such as connectors. This is only required once during the initial capacitance sensor characterization.

A simplified block diagram in Figure 12 shows how to apply the STAGE_OFFSET registers to null the offsets. The 7-bit POS_AFE_OFFSET and NEG_AFE_OFFSET registers provide 0.16 pF resolution offset adjustment over a range of 20 pF. Apply the positive and negative offsets to either the positive or the negative CDC input using the NEG_AFE_OFFSET and POS_AFE_OFFSET registers.

Preliminary Technical Data

 

+DAC

7

POS_AFE_OFFSET

 

(20pF RANGE)

 

REGISTER

 

 

 

 

POS_AFE_OFFSET_SWAP

 

 

REGISTER

CIN

 

+ 16-BIT

16

SENSOR

 

_ CDC

 

NEG_AFE_OFFSET_SWAP

 

 

REGISTER

EXT

–DAC

7

NEG_AFE_OFFSET

 

(20pF RANGE)

 

REGISTER

 

 

 

 

CIN_CONNECTION_SETUP

 

05702-011

 

REGISTER

 

 

 

 

Figure 12. Analog Front End Offset Control

CONVERSION SEQUENCER

The AD7142 has an on-chip sequencer to implement conversion control for the input channels. Up to 12 conversion stages can be performed in sequence. By using the Bank 2 registers, each stage can be uniquely configured to support multiple capacitance sensor interface requirements. For example, a slider sensor can be assigned to STAGE1 with a button sensor assigned to STAGE2.

The AD7142 on-chip sequencer controller provides conversion control beginning with STAGE0. Figure 13 shows a block diagram of the CDC conversion stages and CIN inputs. A conversion sequence is defined as a sequence of CDC conversion starting at STAGE0 and ending at the stage determined by the value programmed in the SEQUENCE_STAGE_NUM register. In Figure 14, the conversion sequence is from STAGE0 through STAGE5. Depending on the number and type of capacitance sensors that are used, not all conversion stages are required. Use the SEQUENCE_STAGE_NUM register to set the number of conversions in one sequence, depending on the sensor interface requirements. For example, this register would be set to 5 if the CIN inputs were mapped to only six stages as shown in Figure 14. In addition, set the STAGE_CAL_EN registers according to the number of stages that are used.

Rev. PrD | Page 12 of 64

ANALOG DEVICES AD7142, AD7142-1 Service Manual

Preliminary Technical Data

 

 

STAGE 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN3

MATRIX

16-BIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN5

 

Σ-

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

 

SWITCH

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN9

ADC

 

 

 

 

 

 

 

 

 

 

 

E

 

CIN7

 

 

 

 

 

 

 

 

 

 

EQ

U

 

 

CIN8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N

 

 

 

 

 

CIN10

 

 

 

 

 

 

RS

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN1 1

 

 

 

 

V

E

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

CIN12

 

 

CO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05702-012

CIN13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. AD7142 CDC Conversion Stages

 

 

 

 

 

 

 

STAGE 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN3

MATRIX

16-BIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN5

 

Σ-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN9

SWITCH

ADC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN7

 

 

 

FF_SKIP_CNT

CIN8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN12

 

 

SEQUENCE_CONV_NUM

CIN13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

 

1. SEQUENCE_STAGE_NUM = 5.

05702-013

2. FF_SKIP_CNT = 3 (VALUE SELECTED FROM TABLE 8

FOR DECIMATION = 128).

Figure 14. Example Using SEQUENCE_CON_NUM and

FF_SKIP_CNT Registers

The number of required conversion stages depends wholly on the number of sensors attached to the AD7142. Figure 15 shows how many conversion stages are required for each sensor, and how many inputs to the AD7142 each sensor requires.

AD7142/AD7142-1

BUTTONS

AD7142 SEQUENCER

STAGE 0

+ CDC

CIN1

STAGE 1

+

 

CIN2

CDC

 

 

STAGE 2

 

SLIDER

+

 

 

CDC

 

CIN3

STAGE 3

 

+ CDC

 

CIN4

 

 

 

8-WAY SWITCH

STAGE 4

 

CIN5

 

 

+

 

CIN6

CDC

 

 

 

 

CIN7

STAGE 5

 

+ CDC

 

CIN8

 

014

 

 

 

05702-

Figure 15. Sequencer Setup for Sensors

A button sensor generally requires one sequencer stage; however, it is possible to configure two button sensors to operate differentially. Only one button from the pair can be activated at a time; pressing both buttons together results in neither button being activated. This configuration requires one conversion stage.

A slider sensor requires two stages: one stage for sensor activation; the other stage for measuring positional data from the slider. In Figure 15, the slider activation uses STAGE2, while the positional data uses STAGE3.

The 8-way switch is made from two pairs of differential buttons. It, therefore, requires two conversion stages, one for each of the differential button pairs. The buttons are orientated so that one pair makes up the top and bottom portions of the 8-way switch; the other pair makes up the left and right portions of the 8-way switch.

CDC CONVERSION TIME

The time required for one complete measurement by the CDC is defined as the CDC conversion time. For optimal system performance, configure the AD7142 CDC conversion time within a range of 35 ms to 40 ms. The SEQUENCE_STAGE_NUM, FF_SKIP_CNT, and DECIMATION registers determine the conversion time as listed in Table 8.

Rev. PrD | Page 13 of 64

AD7142/AD7142-1

 

 

 

Preliminary Technical Data

 

 

 

 

 

 

 

 

Table 8. CDC Conversion Times for Full Power Mode

 

 

 

 

 

 

DECIMATION = 64

DECIMATION = 128

DECIMATION = 256

 

 

 

 

 

 

 

 

SEQUENCE_STAGE_NUM

 

CDC Conversion

 

CDC Conversion

 

CDC Conversion

FF_SKIP_CNT

Time (ms)

FF_SKIP_CNT

Time (ms)

FF_SKIP_CNT

Time (ms)

0

11

9.2

11

18.4

 

11

36.5

1

11

18.4

11

36.8

 

5

36.5

2

11

27.6

7

36.8

 

3

36.5

3

11

36.8

5

36.8

 

2

36.5

4

9

38.4

4

38.4

 

2

46.0

5

7

36.8

3

36.8

 

1

36.8

6

6

37.6

2

32.2

 

1

43.0

7

5

36.8

2

36.8

 

1

49.1

8

4

34.5

2

41.4

 

0

27.6

9

4

38.4

1

30.7

 

0

30.7

10

3

33.8

1

33.8

 

0

33.7

11

3

36.8

1

36.8

 

0

36.8

 

 

 

 

 

 

 

 

For example, while operating with a decimation rate of 128, if the SEQUENCE_STAGE_NUM register is set to 5 for the conversion of six stages in a sequence, the FF_SKIP_CNT register should be set to 3 resulting in a conversion time of 36.8 ms. This example is shown in Figure 14.

Determining the FF_SKIP_CNT value is only required one time during the initial setup of the capacitance sensor interface. This value determines which CDC samples are not used (skipped) in the proximity detection fast FIFO.

Full Power Mode CDC Conversion Time

The full power mode CDC conversion time is set by configuring the SEQUENCE_STAGE_NUM, FF_SKIP_CNT and DECIMATION registers as outlined in Table 8.

Figure 16 shows a simplified timing diagram of the full power CDC conversion time. The full power mode CDC conversion time tCONV_FP is set using Table 8.

 

 

tCONV_FP

 

 

 

CDC

 

CONVERSION

 

CONVERSION CONVERSION

CONVERSION

 

N

 

N + 1

N + 2

 

 

 

 

 

05702-015

 

NOTES

 

 

 

1. tCONV_FP = VALUE SET FROM TABLE 8.

Figure 16. Full Power Mode CDC Conversion Time

Low Power Mode CDC Conversion Time with Delay

The frequency of each CDC conversion while operating in the low power automatic wake up mode is controlled by using the LP_CONV_DELAY register bits (Bits[3:2] in Register 0x00), in addition to the registers listed in Table 8. This feature provides some flexibility for optimizing the conversion time to meet system requirements vs. AD7142 power consumption. For example, maximum power savings is achieved when the

LP_CONV_DELAY is set to 3. With a setting of 3, the AD7142 automatically wakes up, performing a conversion every 400 ms.

Table 9. LP_CONV_DELAY Settings

LP_CONV_DELAY BITS

Delay Between Conversions

 

 

00

100 ms

01

200 ms

10

300 ms

11

400 ms

Figure 17 shows a simplified timing example of the low power CDC conversion time. As shown, the low power CDC conversion time is set by tCONV_FP and the LP_CONV_DELAY register.

CDC

 

 

tCONV_LP

 

 

 

 

 

CONVERSION N

 

CONVERSION N + 1

 

CONVERSION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05702-016

 

1. tCONV_LP = tCONV_FP + LP_CONV_DELAY

 

NOTES

 

 

 

Figure 17. Low Power Mode CDC Conversion Time CDC Conversion Results

CDC CONVERSION RESULTS

Certain applications, such as a slider function, require reading back the CDC conversion results for host processing. The registers required for host processing are located in Register Bank 3. The host processes the data read back from these registers to determine relative position information.

In addition to the results registers in Bank 3, the AD7142 provides the 16-bit CDC output data directly starting at Address 0x00B of Register Bank 1. Reading back the CDC 16-bit conversion data register allows for customer specific application data processing.

Rev. PrD | Page 14 of 64

Preliminary Technical Data

AD7142/AD7142-1

 

 

NON-CONTACT PROXIMITY DETECTION

The AD7142 internal signal processing continuously monitors all capacitance sensors for non-contact proximity detection. This feature provides the ability to detect when a user is approaching a sensor, at which time all internal calibration is immediately disabled while the AD7142 is automatically configured to detect a valid contact.

The proximity control register bits are described in Table 10. The FP_PROXIMITY_CNT and LP_PROXIMITY_CNT register bits control how long the calibration disable period is after proximity is detected. The calibration is disabled during this time and enabled again at the end of this period provided that the user is no longer approaching, or in contact with, the sensor. Figure 18 and Figure 19 show examples of how these registers are used to set the full and low power mode calibration disable periods.

Recalibration

In the event of a very long proximity detection event, such as a user hovering over a sensor for a long period of time, the FP_PROXIMITY_RECAL and LP_PROXIMITY_RECAL bits in register 0x004 can be applied to force a recalibration. This feature ensures that the ambient values are recalibrated regardless of how long the user may be hovering over a sensor. A recalibration ensures maximum AD7142 sensor performance. Figure 20 and Figure 21 show examples of using the FP_PROXIMITY_RECAL and LP_PROXIMITY_RECAL

Table 10. Proximity Control Registers (Refer to Figure 22)

register bits to force a recalibration while operating in the full and low power modes. These figures show a user approaching a sensor followed by the user leaving the sensor while the proximity detection remained active after the user left the sensor. This situation could occur if the user interaction created some moisture on the sensor for example thus causing the new sensor value to be different from the expected value. In this case, the internal recalibration would be applied to automatically recalibrate the sensor. The force calibration event takes two interrupt cycles: nothing should be read from or written to the AD7142 during the recalibration period.

Proximity Sensitivity

There are two conditions that set the internal proximity detection signal as described in Figure 22 with Comparator 1 and Comparator 2. Comparator 1 detects when a user is approaching a sensor. The sensitivity of Comparator 1 is controlled by PROXIMITY_DETECTION_RATE. For example, if PROXIMITY_DETECTION_RATE is set to 4, the Proximity 1 signal is set when the absolute difference between WORD1 and WORD3 exceed four LSB codes. Comparator 2 detects when a user is hovering over a sensor or approaches a sensor very slowly. The sensitivity of Comparator 2 is controlled by the PROXIMITY_RECAL_LVL in Register 0x003. For example, if PROXIMITY_RECAL_LVL is set to 75, the Proximity 2 signal is set when the absolute difference between the fast filter average value and the ambient value exceeds 75 LSB codes.

 

Length

 

 

Register

(Bits)

Register Address

Description

FP_PROXIMITY_CNT

4

0x002

Full power mode proximity control

LP_PROXIMITY_CNT

4

0x002

Low power mode proximity control

FP_PROXIMITY_RECAL

8

0x004

Full power mode proximity recalibration control

LP_PROXIMITY_RECAL

6

0x004

Low power mode proximity recalibration control

PROXIMITY_RECAL_LVL

8

0x003

Proximity recalibration level

PROXIMITY_DETECTION_RATE

6

0x003

Proximity detection rate

 

 

USER APPROCHES

 

USER LEAVES SENSOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSOR HERE

 

 

 

AREA HERE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDC CONVERSIONS

 

 

 

 

 

1

2

3

4

5

6

7

8

9

 

10

11

1213 14 15

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCONV_FP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCALDIS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY DETECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALIBRATION

 

 

 

 

 

 

 

 

CALIBRATION DISABLED

 

 

 

 

 

 

 

 

CALIBRATION ENABLED

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Full Power Mode Proximity Detection Example with FP_PROXIMITY = 1

05702-017

Rev. PrD | Page 15 of 64

AD7142/AD7142-1

Preliminary Technical Data

 

 

 

 

USER APPROCHES

 

USER LEAVES SENSOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSOR HERE

 

 

 

AREA HERE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDC CONVERSIONS

 

 

 

 

 

1

2

3

4

5

6

7

8

9

 

10

11

1213 14 15

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCONV_FP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCALDIS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY DETECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALIBRATION

 

 

 

 

 

 

 

 

CALIBRATION DISABLED

 

 

 

 

 

 

 

 

CALIBRATION ENABLED

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

1.CONVERSION TIME tCONV_LP = (tCONV_FP + LP_CONV_DELAY).

2.PROXIMITY IS SET WHEN USER APPROACHES THE SENSOR AT WHICH TIME THE INTERNAL CALIBRATION IS DISABLED.

3.tCALDIS = (tCONV_LP × LP_PROXIMITY_CNT × 4) + LP_CONV_DELAY.

Figure 19. Low Power Mode Proximity Detection with LP_PROXIMITY = 4 and LP_CONV_DELAY = 0

05702-018

USER APPROCHES

USER LEAVES SENSOR

SENSOR HERE

AREA HERE

 

 

 

 

 

 

 

 

 

 

 

 

 

USER IN CONTACT WITH SENSOR

 

 

 

 

 

 

 

CDC CONVERSION VALUES EXCEED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY_RECALIBRATION _LVL

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

tCONV_FP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDC CONVERSIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tDISCAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY DETECTION (INTERNAL)

CALIBRATION

CALIBRATION DISABLED

RECALIBRATION PERIOD

CALIBRATION ENABLED

(INTERNAL)

 

 

 

RECALIBRATION

 

tRECAL

 

 

 

 

(INTERNAL)

 

 

 

NOTES

1.CONVERSION TIME tCONV_FP DETERMINED FROM TABLE 8

2.tDISCAL = tCONV_FP × FP_PROXIMITY_CNT)

3.tRECAL = (tCONV_FP × FP_PROXIMITY_RECAL)

Figure 20. Full Power Mode Proximity Detection with Forced Recalibration Example with FP_PROXIMITY = 1 and FP_PROXIMITY_RECAL = 40

05702-019

Rev. PrD | Page 16 of 64

Preliminary Technical Data

AD7142/AD7142-1

 

 

USER APPROCHES

USER LEAVES SENSOR

SENSOR HERE

AREA HERE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USER IN CONTACT WITH SENSOR

 

 

 

 

 

 

CDC CONVERSION VALUES EXCEED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY_RECALIBRATION _LVL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCONV_FP

CDC CONVERSIONS

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY DETECTION

 

 

 

 

 

 

tDISCAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALIBRATION

 

 

 

 

 

CALIBRATION DISABLED

 

 

 

 

 

 

 

 

 

RECALIBRATION PERIOD

 

 

 

 

 

 

 

CALIBRATION ENABLED

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tRECAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RECALIBRATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTERNAL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

1.CONVERSION TIME tCONV_LP = tCONV_HP + LP_CONV_DELAY.

2.tDISCAL = tCONV_LP × (16 × LP_PROXIMITY_CNT)

3.tRECAL = (tCONV_LP × LP_PROXIMITY_RECAL × 4)

Figure 21. Low Power Mode Proximity Detection with Forced Recalibration Example with LP_PROXIMITY = 4 and LP_PROXIMITY_RECAL = 10

05702-020

Rev. PrD | Page 17 of 64

AD7142/AD7142-1

Preliminary Technical Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MAX_WORD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MAX_WORD1

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MAX_WORD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Σ-

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MAX_WORD3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16-BIT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAX LEVEL

 

 

 

 

 

 

 

 

STAGE_MAX_AVG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DETECTION

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MAX_TEMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_HIGH_THRESHOLD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MIN_WORD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MIN_WORD1

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MIN_WORD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MIN_WORD3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIN LEVEL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MIN_AVG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DETECTION

 

 

 

 

 

 

 

 

BANK 3 REGISTER3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_MIN_TEMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_LOW_THRESHOLD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SLOW_FILTER_UPDATE_LVL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FP_PROXIMITY_CNT

 

 

LP_PROXIMITY_CNT

 

 

 

 

REGISTER 0x003

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGISTER 0x004

 

 

 

 

REGISTER 0X004

 

 

 

 

COMPARATOR 3

 

 

 

STAGE_FF_WORD0

 

 

 

 

 

 

COMPARATOR 1

 

PROXIMITY 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WORD 0 – WORD 3

 

 

 

 

 

STAGE_FF_WORD1

 

 

 

 

 

 

WORD 0 – WORD 3

 

 

 

PROXIMITY

 

PROXIMITY TIMING

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_FF_WORD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_FF_WORD3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EN

 

 

STAGE_FF_WORD4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY

 

FILTER

 

 

STAGE_FF_WORD5

 

 

PROXIMITY_DETECTION_RATE

 

 

 

 

 

 

 

FP_PROXIMITY_RECAL

 

 

LP_PROXIMITY_RECAL

 

 

 

 

 

 

 

 

 

 

STAGE_FF_WORD6

 

 

 

 

 

 

REGISTER 0x003

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGISTER 0x004

 

 

 

 

 

REGISTER 0X004

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SLOW

 

 

STAGE_FF_WORD7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

PROXIMITY 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Σ7

WORD(N)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SW1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPARATOR 2

 

 

 

 

 

 

 

 

 

 

STAGE_FF_WORDX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVERAGE – AMBIENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_FF_AVG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD0

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROXIMITY_RECAL_LVL

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AMBIENT VALUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGISTER 0x003

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSOR

 

 

 

 

 

 

 

STAGE_SF_WORD5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORDX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDC

 

 

 

 

 

 

 

 

 

CONTACT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_WORD7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_SF_AMBIENT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BANK 3 REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. SLOW FILTER EN IS SET AND SW1 IS CLOSED WHEN /WORD 0–WORD 3/ EXCEEDS THE VALUE PROGRAMMED IN THE SLOW_FILTER_UPDATE REGISTER PROVIDING

 

 

 

PROXIMITY IS NOT SET.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. PROXIMITY 1 IS SET WHEN /WORD 0–WORD 3/ EXCEEDS THE VALUE PROGRAMMED IN THE PROXIMITY_DETECTION_RATE REGISTER.

 

 

 

 

 

 

 

 

 

3. PROXIMITY 2 IS SET WHEN /AVERAGE–AMBIENT/ EXCEEDS THE VALUE PROGRAMMED IN THE PROXIMITY_RECAL_LVL REGISTER.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. DESCRIPTION OF COMPARATOR FUNCTIONS:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPARATOR 1: USED TO DETECT WHEN A USER IS APPROACHING OR LEAVING A SENSOR.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPARATOR 2: USED TO DETECT WHEN A USER IS HOVERING OVER A SENSOR, OR APPROACHING A SENSOR VERY SLOWLY.

 

 

 

 

 

 

 

 

 

 

 

 

 

021-

 

 

 

 

 

 

 

ALSO USED TO DETECT IF THE SENSOR AMBIENT LEVEL HAS CHANGED AS A RESULT OF THE USER INTERACTION.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOR EXAMPLE, HUMIDITY OR DIRT LEFT BEHIND ON SENSOR.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05702

 

 

COMPARATOR 3: USED TO ENABLE THE SLOW FILTER UPDATE RATE. THE SLOW FILTER IS UPDATED WHEN SLOW FILTER EN IS SET AND PROXIMITY IS NOT SET.

Figure 22. AD7142 Proximity Detection and Environmental Calibration

Rev. PrD | Page 18 of 64

Preliminary Technical Data

ENVIRONMENTAL CALIBRATION

The AD7142 provides on-chip capacitance sensor calibration to automatically adjust for environmental conditions that have an effect on the capacitance sensor ambient levels. Capacitance sensor output levels are sensitive to temperature, humidity, and in some cases, dirt. The AD7142 achieves optimal and reliable sensor performance by continuously monitoring the CDC ambient levels and correcting for any changes by adjusting the initial STAGE_OFFSET_HIGH and STAGE_OFFSET_LOW register values. The CDC ambient level is defined as the capacitance sensor output level during periods when the user is not approaching or in contact with the sensor.

The compensation logic runs automatically on every conversion after configuration when the AD7142 is not being touched. This allows the AD7142 to account for rapidly changing environmental conditions.

The ambient compensation control registers give the host access to general setup and controls for the compensation algorithm. The RAM stores the compensation data for each conversion stage, as well as setup information specific to each stage.

Figure 23 shows an example of an ideal capacitance sensor behavior where the CDC ambient level remains constant regardless of the environmental conditions. In this example, the initial settings programmed in the STAGE_OFFSET_HIGH and STAGE_OFFSET_LOW registers are sufficient to detect a sensor contact resulting with the AD7142 asserting the INT output when the offset levels are exceeded.

 

 

 

 

 

SENSOR 1 INT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ASSERTED

 

STAGE_OFFSET_HIGH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODES

 

 

 

 

 

 

 

 

 

 

(INITIAL REGISTER VALUE)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUTCDC

 

 

 

 

 

 

 

 

 

 

CDC AMBIENT VALUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE_OFFSET_LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSOR 2 INT

 

 

 

 

 

 

(INITIAL REGISTER VALUE)

 

 

 

 

 

 

 

 

 

 

 

 

 

ASSERTED

 

 

 

 

 

t

022

 

 

 

 

 

 

 

 

 

 

 

 

 

CHANGING ENVIRONMENTALCONDITIONS

05702-

 

 

 

Figure 23. Ideal Sensor Behavior with a Constant Ambient Level

Capacitance Sensor Behavior Without Calibration

Figure 24 shows the typical behavior of a capacitance sensor with no applied calibration. This figure shows ambient levels drifting over time as environmental conditions change. The ambient level drift has resulted in the detection of a missed user contact on Sensor 2. This is a result of the initial low offset level remaining constant while the ambient levels drifted upward beyond the detection range. The Capacitance Sensor Behavior with Calibration section describes how the AD7142 adaptive

AD7142/AD7142-1

calibration algorithm prevents errors such as this from occurring.

 

 

 

 

 

SENSOR 1 INT

 

 

 

 

 

 

 

ASSERTED

 

STAGE_OFFSET_HIGH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODES

 

 

 

 

 

 

 

 

 

 

(INITIAL REGISTER VALUE)

 

 

 

 

 

 

 

 

 

 

CDC AMBIENT

 

 

 

CDC OUTPUT

 

 

 

 

 

 

 

 

 

 

VALUE DRIFTING

 

 

 

 

 

 

 

 

 

 

STAGE_OFFSET_LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSOR 2 INT

 

 

 

 

 

 

(INITIAL REGISTER VALUE)

 

 

 

 

 

 

 

 

 

 

 

NOT ASSERTED

 

 

 

 

 

t

-023

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05702

 

 

CHANGING ENVIRONMENTALCONDITIONS

 

Figure 24. Typical Sensor Behavior without Calibration Applied

Capacitance Sensor Behavior with Calibration

The AD7142 on-chip adaptive calibration algorithm prevents sensor detection errors such the one shown in Figure 24. This is achieved by monitoring the CDC ambient levels and internally adjusting the initial offset level register values according to the amount of ambient drift measured on each sensor. This closed loop routine ensures the reliability and repeatability operation of every sensor connected to the AD7142 under dynamic environmental conditions. Figure 25 shows a simplified example of how the AD7142 applies the adaptive calibration process resulting in no interrupt errors under changing CDC ambient levels due to environmental conditions.

SENSOR 1 INT

 

ASSERTED

3

 

2

 

 

 

1

 

OUTPUT CODES

5

6

CDC

 

4

 

 

 

 

SENSOR 2 INT

 

 

ASSERTED

 

 

 

t

CHANGING ENVIRONMENTALCONDITIONS

STAGE_OFFSET_HIGH (POST CALIBRATED REGISTER VALUE)

CDC AMBIENT VALUE DRIFTING

STAGE_OFFSET_LOW (POST CALIBRATED REGISTER VALUE)

NOTES

1. INITIAL STAGE_OFFSET_HIGH REGISTER VALUE

2. POST CALIBRATED REGISTER STAGE_OFFSET_HIGH VALUE

3. POST CALIBRATED REGISTER STAGE_OFFSET_HIGH VALUE 024-05702

4. INITIAL STAGE_OFFSET_LOW REGISTER VALUE

5. POST CALIBRATED REGISTER STAGE_OFFSET_LOW VALUE 6. POST CALIBRATED REGISTER STAGE_OFFSET_LOW VALUE

Figure 25. Typical Sensor Behavior with

Calibration Applied on the Data Path

Rev. PrD | Page 19 of 64

AD7142/AD7142-1

Preliminary Technical Data

 

 

ADAPTIVE THRESHOLD AND SENSITIVITY

The AD7142 provides an on-chip self-learning adaptive threshold and sensitivity algorithm. This algorithm continuously monitors the output levels of each sensor and automatically rescales the threshold levels proportionally to the sensor area covered by the user. As a result, the AD7142 maintains optimal threshold and sensitivity levels for all types of users regardless of their finger sizes.

The threshold level is always referenced from the ambient level and is defined as the CDC converter output level that must be exceeded for a valid sensor contact. The sensitivity level is defined as how sensitive the sensor is before a valid contact is registered.

Figure 26 provides an example of how the adaptive threshold and sensitivity algorithm works. In a case where the adaptive threshold and sensitivity algorithm are disabled, the positive and negative sensor threshold levels are set by the

STAGE_OFFSET_HIGH and STAGE_OFFSET_LOW initial values. Reference A in Figure 26 shows that this results in an under sensitive threshold level for a small finger user, demonstrating the disadvantages of a fixed threshold level. By enabling the adaptive threshold and sensitivity algorithm, the positive and negative threshold levels are determined by the POS_THRESHOLD_SENSI TIVITY and NEG_THRESHOLD_SENSITIVITY register values and the most recent average maximum sensor output value. These registers can be used to select 16 different positive and negative sensitivity levels ranging between 25% and 95.32% of the most recent average maximum output level referenced from the ambient value. Reference B shows that the positive adaptive threshold level is set at almost mid sensitivity with a 62.51% threshold level by setting POS_THRESHOLD_SENSITIVITY = 1000. Figure 26 also provides a similar example for the negative threshold level with NEG_THRESHOLD_SENSITIVITY = 0001.

CDC OUTPUT CODES

 

 

AVERAGE MAX VALUE

95.32%

 

 

 

 

A

AVERAGE MAX VALUE

62.51% = POS ADAPTIVE THRESHOLD LEVEL

 

 

 

 

 

 

 

95.32%

STAGE_OFFSET_HIGH

 

 

 

 

 

 

(INITIAL VALUE)

 

 

62.51% = POS ADAPTIVE THRESHOLD LEVEL

25%

 

 

 

B

 

25%

 

 

 

 

AMBIENT LEVEL

25% NEG ADAPTIVE THRESHOLD LEVEL = 39.08%

25%

 

 

STAGE_OFFSET_LOW

NEG ADAPTIVE THRESHOLD LEVEL = 39.08%

(INITIAL VALUE)

95.32%

95.32%

SENSOR CONTACTED

 

 

 

SENSOR CONTACTED

-025

 

 

 

05702

BY SMALL FINGER

 

 

 

 

 

BY LARGE FINGER

 

 

Figure 26. Threshold Sensitivity Example with POS_THRESHOLD_SENSITIVITY = 1000 and NEG_THRESHOLD_SENSITIVITY = 0011

Rev. PrD | Page 20 of 64

Loading...
+ 46 hidden pages