Analog Devices AD5260BRU50, AD5260BRU200-REEL7, AD5260BRU200, AD5260BRU20-REEL7, AD5260BRU20 Datasheet

...
0 (0)
Analog Devices AD5260BRU50, AD5260BRU200-REEL7, AD5260BRU200, AD5260BRU20-REEL7, AD5260BRU20 Datasheet

a 15 V Digital Potentiometers1-/2-Channel

AD5260/AD5262

FEATURES 256 Positions

AD5260 – 1-Channel

AD5262 – 2-Channel (Independently Programmable) Potentiometer Replacement

20 k , 50 k , 200 k

Low Temperature Coefficient 35 ppm/ C

4-Wire SPI-Compatible Serial Data Input

5 V to 15 V Single-Supply; 5.5 V Dual-Supply Operation

Power ON Mid-Scale Preset

APPLICATIONS

Mechanical Potentiometer Replacement Instrumentation: Gain, Offset Adjustment Stereo Channel Audio Level Control Programmable Voltage to Current Conversion Programmable Filters, Delays, Time Constants Line Impedance Matching

Low Resolution DAC Replacement

GENERAL DESCRIPTION

The AD5260/AD5262 provide a singleor dual-channel, 256position, digitally controlled variable resistor (VR) device.* These devices perform the same electronic adjustment function as a potentiometer or variable resistor. Each channel of the AD5260/ AD5262 contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the SPI-compatible serial-input register. The resistance between the wiper and either end point of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. The variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper or the B terminal and the wiper. The fixed A to B terminal resistance of 20 kΩ, 50 kΩ, or 200 kΩ has a nominal temperature coefficient of 35 ppm/∞C. Unlike the majority of the digital potentiometers in the market, these devices can operate up to 15 V or ±5 V provided proper supply voltages are furnished.

Each VR has its own VR latch, which holds its programmed resistance value. These VR latches are updated from an internal serial-to-parallel shift register, which is loaded from a standard 3-wire serial-input digital interface. The AD5260 contains an 8-bit serial register while the AD5262 contains a 9-bit serial register. Each bit is clocked into the register on the positive edge of the CLK. The AD5262 address bit determines the corresponding VR latch to be loaded with the last 8 bits of the data word during the positive edging of CS strobe. A serial data output pin at the opposite end of the serial register enables simple daisy chaining in multiple VR applications without additional external decoding logic. An optional reset pin (PR) forces the wiper to the mid-scale position by loading 80H into the VR latch.

FUNCTIONAL BLOCK DIAGRAMS

 

A

W B

 

SHDN

 

AD5260

 

 

 

 

VDD

 

RDAC

 

VSS

REGISTER

 

 

 

 

VL

 

POWER-ON

 

 

 

PR

CS

LOGIC

RESET

 

8

CLK

SERIAL INPUT REGISTER SDO

SDI

GND

 

 

 

A1

W1

B1

A2

W2

B2

 

SHDN

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

VSS

RDAC1 REGISTER

RDAC2 REGISTER

 

 

 

 

 

 

 

 

 

 

 

VL

 

 

 

 

 

 

 

 

 

CS

 

 

 

 

POWER-ON

PR

 

 

LOGIC

 

 

 

RESET

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

CLK

 

SERIAL INPUT REGISTER

 

 

SDO

 

 

SDI

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

 

 

AD5262

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

RWA

 

 

 

 

RWB

 

 

AB

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

PERCENT OF NOMINAL

END-TO-END RESISTANCE – %

75

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

 

64

128

 

192

256

CODE – Decimal

Figure 1. RWA and RWB vs. Code

*The terms digital potentiometers, VR, and RDAC are used interchangeably.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

The AD5260/AD5262 are available in thin surface-mount TSSOP-14 and TSSOP-16 packages. All parts are guaranteed to operate over the extended industrial temperature range of Ð40∞C to +85∞C.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2002

 

 

(VDD = +15 V, VSS = 0 V or, VDD = +5 V, VSS = –5 V, VL = +5 V, VA = +5 V,

AD5260/AD5262–SPECIFICATIONS VB = 0 V, – 40 C < TA < +85 C unless otherwise noted.)

 

ELECTRICAL CHARACTERISTICS 20 kΩ, 50 kΩ, 200 kΩ VERSIONS

 

 

 

 

 

 

 

 

 

 

Parameter

Symbol

Conditions

Min

Typ1

Max

Unit

DC CHARACTERISTICS RHEOSTAT

MODE Specifications apply to all VRs

 

±1/4

 

 

Resistor Differential NL2

R-DNL

RWB, VA = NC

Ð1

+1

LSB

Resistor Nonlinearity2

R-INL

RWB, VA = NC

Ð1

±1/2

+1

LSB

Nominal Resistor Tolerance3

RAB

TA = 25∞C

Ð30

 

30

%

Resistance Temperature Coefficient

RAB/ T

Wiper = No Connect

 

35

 

ppm/∞C

Wiper Resistance

RW

IW = 1 V/RAB

 

60

150

Ω

Channel Resistance Matching (AD5262 only)

RWB/RWB

Ch 1 and 2 RWB, DX = 80H

 

0.1

 

%

Resistance Drift

RAB

 

 

0.05

 

%

DC CHARACTERISTICS POTENTIOMETER DIVIDER

MODE Specifications apply to all VRs

 

 

 

Resolution

N

 

8

±1/4

 

Bits

Differential Nonlinearity4

DNL

 

Ð1

+1

LSB

Integral Nonlinearity4

INL

 

Ð1

±1/2

+1

LSB

Voltage Divider Temperature Coefficient

VW/ T

Code = 80H

 

5

 

ppm/∞C

Full-Scale Error

VWFSE

Code = FFH

Ð2

Ð1

+0

LSB

Zero-Scale Error

VWZSE

Code = 00H

0

1

2

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

Voltage Range5

VA, B, W

 

VSS

 

VDD

V

Capacitance6 Ax, Bx

CA,B

f = 5 MHz,

 

25

 

pF

Capacitance6 Wx

 

measured to GND, Code = 80H

 

 

 

 

CW

f = 1 MHz,

 

55

 

pF

 

 

measured to GND, Code = 80H

 

 

 

 

Common-Mode Leakage Current

ICM

VA =VB = VDD /2

 

1

 

nA

Shut Down Current7

ISHDN

 

 

 

5

μA

DIGITAL INPUTS and OUTPUTS

 

 

 

 

 

 

Input Logic High

VIH

 

2.4

 

 

V

Input Logic Low

VIL

 

 

 

0.8

V

Input Logic High

VIH

VL = 3 V, VSS = 0 V

2.1

 

 

V

Input Logic Low

VIL

VL = 3 V, VSS = 0 V

 

 

0.6

V

Output Logic High (SDO)

VOH

RPULL-UP = 2 kΩ to 5 V

4.9

 

 

V

Output Logic Low (SDO)

VOL

IOL = 1.6 mA, VLOGIC = 5 V

 

 

0.4

V

Input Current8

IIL

VIN = 0 V or 5 V

 

 

±1

μA

Input Capacitance6

CIL

 

 

5

 

pF

POWER SUPPLIES

 

 

 

 

 

 

Logic Supply

VL

 

2.7

 

5.5

V

Power Single-Supply Range

VDD RANGE

VSS = 0 V

4.5

 

16.5

V

Power Dual-Supply Range

VDD/SS RANGE

 

±4.5

 

±5.5

V

Logic Supply Current

IL

VL = 5 V

 

 

60

μA

Positive Supply Current

IDD

VIH = 5 V or VIL = 0 V

 

 

1

μA

Negative Supply Current

ISS

VSS = Ð5 V

 

 

1

μA

Power Dissipation9

PDISS

VIH = 5 V or VIL = 0 V,

 

 

0.3

mW

 

 

VDD = +5 V, VSS = Ð5 V

 

 

 

 

Power Supply Sensitivity

PSS

VDD = +5 V, ±10%

 

0.003

0.01

%/%

DYNAMIC CHARACTERISTICS6, 10

 

RAB = 20 kΩ/50 kΩ/200 kΩ

 

 

 

 

Bandwidth Ð3 dB

BW

 

310/130/30

kHz

Total Harmonic Distortion

THDW

VA = 1 VRMS, VB = 0 V,

 

0.014

 

%

VW Settling Time

 

f = 1 kHz, RAB = 20 kΩ

 

 

 

μs

tS

VA = +5 V, VB = Ð5 V,

 

5

 

Crosstalk11

 

±1 LSB error band, RAB = 20 kΩ

 

 

 

 

CT

VA = VDD, VB = 0 V,

 

 

 

 

 

 

Measure VW with Adjacent

 

 

 

 

 

 

RDAC Making Full-Scale

 

1

 

nVÐs

 

 

Code Change (AD5262 only)

 

 

 

 

Analog Crosstalk

CTA

VA1 = VDD, VB1 = 0V,

 

 

 

 

 

 

Measure VW1 with

 

 

 

 

 

 

VW2 = 5 V p-p @ f = 10 kHz,

 

Ð64

 

dB

 

 

RAB = 20 kΩ/200 kΩ (AD5262 only)

 

 

 

nV/ Hz

Resistor Noise Voltage

eN_WB

RWB = 20 kΩ

 

13

 

 

 

f = 1 kHz

 

 

 

 

 

 

 

 

 

 

 

–2–

REV. 0

AD5260/AD5262

Parameter

 

Symbol

 

Conditions

Min Typ

Max

Unit

 

 

 

 

 

 

 

 

INTERFACE TIMING CHARACTERISTICS

 

apply to

 

all parts6, 12

 

 

 

 

 

 

 

 

Clock Frequency

 

fCLK

 

 

 

25

MHz

Input Clock Pulsewidth

 

tCH, tCL

 

Clock level high or low

20

 

ns

Data Setup Time

 

tDS

 

 

10

 

ns

Data Hold Time

 

tDH

 

RL = 1 kΩ, CL < 20pF

10

 

ns

CLK to SDO Propagation Delay13

 

tPD

 

1

160

ns

CS Setup Time

 

tCSS

 

 

5

 

ns

CS High Pulsewidth

 

tCSW

 

 

20

 

ns

Reset Pulsewidth

 

tRS

 

 

50

 

ns

CLK Fall to CS Rise Hold Time

 

tCSH

 

 

0

 

ns

CS Rise to Clock Rise Setup

 

tCS1

 

 

10

 

ns

NOTES

The AD5260/AD5262 contains 1,968 transistors. Die Size: 89 mil. × 105 mil. 9,345 sq. mil. 1 Typicals represent average readings at 25°C and VDD = +5 V, VSS = –5 V.

2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = +5 V, VSS = –5 V.

3 VAB = VDD, Wiper (VW) = No connect.

4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = V DD and VB = 0V. DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions.

5 Resistor terminals A, B, W have no limitations on polarity with respect to each other. 6 Guaranteed by design and not subject to production test.

7 Measured at the Ax terminals. All Ax terminals are open-circuit in shutdown mode.

8 Worst-case supply current consumed when input all logic-input levels set at 2.4 V, standard characteristic of CMOS logic. 9 PDISS is calculated from (IDD VDD). CMOS logic level inputs result in minimum power dissipation.

10All dynamic characteristics use VDD = +5 V, VSS = –5 V, VL = +5 V.

11Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.

12See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 2ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using VL = 5 V.

13Propagation delay depends on value of VDD, RL, and CL.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS1

(TA = 25°C, unless otherwise noted.)

 

VDD to GND . . . . . . . . . . . . . . . . . . . . . . . .

. . –0.3 V, +15 V

VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 0 V, –7 V

VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 15 V

VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . .

. . . . . . VSS, VDD

AX – BX, AX – WX, BX – WX

±20 mA

Intermittent2 . . . . . . . . . . . . . . . . . . . . . . .

Continuous . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . ±5 mA

Digital Inputs and Output Voltage to GND .

. . . . . . 0 V, 7 V

Operating Temperature Range . . . . . . . . . . . .

–40°C to +85°C

Maximum Junction Temperature (TJ MAX) . . .

. . . . . . . . 150°C

Storage Temperature . . . . . . . . . . . . . . . . . .

–65°C to +150°C

Lead Temperature (Soldering, 10 sec) . . . . . . . . . . .

. 300°C

Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . .

. 215°C

Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . .

. 220°C

Thermal Resistance3 θJA

206°C/W

TSSOP-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TSSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C/W

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for

extended periods may affect device reliability.

2Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance setting. 3Package Power Dissipation = (TJ MAX – TA)/ θJA

REV. 0

–3–

AD5260/AD5262

ORDERING GUIDE

 

RAB (kΩ)

 

Package

Package

No. of Parts

Branding

Model

Temperature

Description

Option

per Container

Information*

 

 

 

 

 

 

 

AD5260BRU20

20

Ð40∞C to +85∞C

TSSOP-14

RU-14

96

AD5260B20

AD5260BRU20-REEL7

20

Ð40∞C to +85∞C

TSSOP-14

RU-14

1000

AD5260B20

AD5260BRU50

50

Ð40∞C to +85∞C

TSSOP-14

RU-14

96

AD5260B50

AD5260BRU50-REEL7

50

Ð40∞C to +85∞C

TSSOP-14

RU-14

1000

AD5260B50

AD5260BRU200

200

Ð40∞C to +85∞C

TSSOP-14

RU-14

96

AD5260B200

AD5260BRU200-REEL7

200

Ð40∞C to +85∞C

TSSOP-14

RU-14

1000

AD5260B200

AD5262BRU20

20

Ð40∞C to +85∞C

TSSOP-16

RU-16

96

AD5262B20

AD5262BRU20-REEL7

20

Ð40∞C to +85∞C

TSSOP-16

RU-16

1000

AD5262B20

AD5262BRU50

50

Ð40∞C to +85∞C

TSSOP-16

RU-16

96

AD5262B50

AD5262BRU50-REEL7

50

Ð40∞C to +85∞C

TSSOP-16

RU-16

1000

AD5262B50

AD5262BRU200

200

Ð40∞C to +85∞C

TSSOP-16

RU-16

96

AD5262B200

AD5262BRU200-REEL7

200

Ð40∞C to +85∞C

TSSOP-16

RU-16

1000

AD5262B200

*Line 1 contains part number, line 2 contains differentiating detail by part type and ADI logo symbol, line 3 contains date code YWW.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5260/AD5262 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–4–

REV. 0

AD5260/AD5262

Table I. AD5260 8-Bit Serial-Data Word Format

DATA

B7

B6

B5

B4

B3

B2

B1

B0

D7

D6

D5

D4

D3

D2

D1

D0

MSB

 

 

 

 

 

 

LSB

27

 

 

 

 

 

 

20

SDI

1

 

 

 

 

 

 

 

D7

D6

D5

D4

D3

D2

D1

D0

 

0

 

 

 

 

 

 

 

1

CLK

0

1

CS RDAC REGISTER LOAD 0

1 VOUT 0

Figure 2a. AD5260 Timing Diagram

SDI

1

 

 

 

 

 

 

 

 

A0

D7

D6

D5

D4

D3

D2

D1

D0

0

1

CLK

0

1

CS RDAC REGISTER LOAD 0

1 VOUT 0

Figure 2b. AD5262 Timing Diagram

Table II. AD5262 9-Bit Serial-Data Word Format

ADDR

 

 

 

DATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B8

 

B7

 

B6

 

B5

B4

B3

B2

 

B1

B0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A0

 

D7

 

D6

 

D5

D4

D3

D2

 

D1

D0

 

 

MSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LSB

28

 

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

SDI

1

Ax OR Dx

 

 

 

Dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(DATA IN)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

tDS

 

 

 

tDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDO

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A x OR D x

 

D x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(DATA OUT)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tPD_MAX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSH

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

tCSS

 

 

tCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tS

 

 

 

 

 

 

 

VOUT

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 LSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 LSB ERROR BAND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2c. Detail Timing Diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PR

 

 

 

 

 

 

tRS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

tS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

VDD

 

 

 

 

 

 

 

 

 

 

1 LSB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT

0V 1 LSB ERROR BAND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2d. Preset Timing Diagram

REV. 0

–5–

AD5260/AD5262

AD5260 PIN CONFIGURATION

A

 

 

14

SDO

1

 

W

 

 

13

NC

2

 

B

 

 

12

VL

3

 

VDD

 

AD5260

11

VSS

4

SHDN

 

TOP VIEW

10

GND

5

(Not to Scale)

CLK

 

9

PR

6

 

SDI

 

 

8

CS

7

 

 

 

 

 

 

AD5260 PIN FUNCTION DESCRIPTIONS

Pin

 

 

Number

Mnemonic

Description

 

 

 

1

A

A Terminal

2

W

Wiper Terminal

3

B

B Terminal

4

VDD

Positive power supply, specified

 

 

for operation at both 5 V or 15 V.

 

 

(Sum of |VDD| + |VSS| 15 V)

5

SHDN

Active low input. Terminal A

 

 

open-circuit. Shutdown controls.

 

 

Variable Resistors of RDAC.

6

CLK

Serial Clock Input, positive edge

 

 

triggered.

7

SDI

Serial Data Input

8

CS

Chip Select Input, Active Low.

 

 

When CS returns high, data will

 

 

be loaded into the RDAC register.

9

PR

Active low preset to mid-scale; sets

 

 

RDAC registers to 80H.

10

GND

Ground

11

VSS

Negative Power Supply, specified

 

 

for operation from 0 V to Ð5 V.

12

VL

Logic Supply Voltage, needs to be

 

 

same voltage as the digital logic

 

 

controlling the AD5260.

13

NC

No Connect (Users should not

 

 

connect anything other than dummy

 

 

pad on this pin)

14

SDO

Serial Data Output, Open Drain

 

 

transistor requires pull-up resistor.

 

 

 

AD5262 PIN CONFIGURATION

SDO

 

 

16

A2

1

 

A1

 

 

15

W2

2

 

W1

 

 

14

B2

3

 

B1

 

AD5262

13

VL

4

VDD

 

TOP VIEW

12

V

5

 

 

(Not to Scale)

 

SS

SHDN

 

11

GND

6

 

CLK

 

 

10

PR

7

 

SDI

8

 

9

CS

 

 

 

 

 

AD5262 PIN FUNCTION DESCRIPTIONS

Pin

 

 

Number

Mnemonic

Description

 

 

 

1

SDO

Serial Data Output, Open Drain

 

 

transistor requires pull-up resistor.

2

A1

A Terminal RDAC #1

3

W1

Wiper RDAC #1, address A0 = 02

4

B1

B Terminal RDAC #1

5

VDD

Positive power supply, specified for

 

 

operation at both 5 V or 15 V.

 

 

(Sum of |VDD|+|VSS|15 V)

6

SHDN

Active low input. Terminal A

 

 

open-circuit. Shutdown controls

 

 

Variable Resistors #1 through #2.

7

CLK

Serial Clock Input, positive edge

 

 

triggered.

8

SDI

Serial Data Input.

9

CS

Chip Select Input, Active Low.

 

 

When CS returns high, data in

 

 

the serial input register is decoded,

 

 

based on the address Bit A0, and

 

 

loaded into the target RDAC register.

10

PR

Active low preset to mid-scale sets

 

 

RDAC registers to 80H.

11

GND

Ground

12

VSS

Negative Power Supply, specified

 

 

for operation at both 0 V or Ð5 V

 

 

(Sum of |VDD| + |VSS| <15 V).

13

VL

Logic Supply Voltage, needs to be

 

 

same voltage as the digital logic

 

 

controlling the AD5262.

14

B2

B Terminal RDAC #2

15

W2

Wiper RDAC #2, address A0 = 12

16

A2

A Terminal RDAC #2

 

 

 

–6–

REV. 0

Loading...
+ 14 hidden pages