Analog Devices AD5207BRU50-REEL7, AD5207BRU100-REEL7, AD5207BRU10-REEL7 Datasheet

0 (0)

a

2-Channel, 256-Position

Digital Potentiometer

 

 

 

 

 

AD5207

 

 

 

FEATURES 256-Position, 2-Channel

Potentiometer Replacement 10 k , 50 k , 100 k

Power Shut-Down, Less than 5 A

2.7 V to 5.5 V Single Supply2.7 V Dual Supply

3-Wire SPI-Compatible Serial Data Input Midscale Preset During Power-On

APPLICATIONS

Mechanical Potentiometer Replacement

Stereo Channel Audio Level Control

Instrumentation: Gain, Offset Adjustment

Programmable Voltage-to-Current Conversion

Programmable Filters, Delays, Time Constants

Line Impedance Matching

Automotive Electronics Adjustment

FUNCTIONAL BLOCK DIAGRAM

A1

W1

B1

A2

W2

B2

SHDN

 

 

 

 

 

RDAC1 REGISTER

RDAC2 REGISTER

VDD

 

R

 

 

R

 

 

 

 

VSS

 

 

 

 

 

LOGIC

 

 

 

POWER-

CS

 

 

 

 

ON

 

AD5207

8

 

RESET

 

 

 

CLK

SERIAL INPUT REGISTER

SDO

SDI

 

 

 

 

 

DGND

 

 

 

 

 

GENERAL DESCRIPTION

The AD5207 provides dual channel, 256-position, digitally controlled variable resistor (VR) devices that perform the same electronic adjustment function as a potentiometer or variable resistor. Each channel of the AD5207 contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the SPI-compatible serial-input register. The resistance between the wiper and either end point of the fixed resistor varies linearly with respect to the digital code transferred into the VR latch. The variable resistor offers a completely programmable value of resistance, between the A Terminal and the wiper or the B Terminal and the wiper. The fixed A-to-B terminal resistance of 10 k, 50 kor 100 khas a ± 1% channel-to-channel matching tolerance with a nominal temperature coefficient of 500 ppm/°C. A unique switching circuit minimizes the high glitch inherent in traditional switched resistor designs and avoids any make-before-break or break- before-make operation.

Each VR has its own VR latch, which holds its programmed resistance value. These VR latches are updated from an internal serial-to-parallel shift register, which is loaded from a standard 3-wire serial-input digital interface. Ten bits, to make up the data word, are required and clocked into the serial input register.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

The first two bits are address bits. The following eight bits are the data bits that represent the 256 steps of the resistance value. The reason for two address bits instead of one is to be compatible with similar products such as AD8402 so that drop-in replacement is possible. The address bit determines the corresponding VR latch to be loaded with the data bits during the returned positive edge of CS strobe. A serial data output pin at the opposite end of the serial register allows simple daisy chaining in multiple VR applications without additional external decoding logic.

An internal reset block will force the wiper to the midscale position during every power-up condition. The SHDN pin forces an open circuit on the A Terminal and at the same time shorts the wiper to the B Terminal, achieving a microwatt power shutdown state. When SHDN is returned to logic high, the previous latch settings put the wiper in the same resistance setting prior to shutdown. The digital interface remains active during shutdown; code changes can be made to produce new wiper positions when the device is resumed from shutdown.

The AD5207 is available in 1.1 mm thin TSSOP-14 package, which is suitable for PCMCIA applications. All parts are guaranteed to operate over the extended industrial temperature range of –40°C to +125°C.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD5207–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS 10 k , 50 k , 100 k VERSION (VDD = 5 V, VSS = 0, VA = 5 V,

VB = 0, –40 C < TA < +125 C unless otherwise noted.)

Parameter

Symbol

Conditions

Min

Typ1

Max

Unit

DC CHARACTERISTICS

 

 

 

 

 

 

RHEOSTAT MODE

 

 

 

 

 

 

Specifications Apply to All VRs

 

 

 

 

 

 

Resistor Differential Nonlinearity2

R-DNL

RWB, VA = NC

–1

 

+1

LSB

Resistor Nonlinearity2

R-INL

RWB, VA = NC

–1.5

 

+1.5

LSB

Nominal Resistor Tolerance3

R

 

–30

 

+30

%

Resistance Temperature Coefficient

RAB/T

VAB = VDD, Wiper = No Connect

 

500

 

ppm/°C

Wiper Resistance

RW

IW = 1 V/R, VDD = 5 V

 

50

100

Nominal Resistance Match

R/RO

Ch 1 to 2, VAB = VDD, TA = 25°C

 

0.2

1

%

DC CHARACTERISTICS

 

 

 

 

 

 

POTENTIOMETER DIVIDER MODE

 

 

 

 

 

 

Specifications Apply to All VRs

 

 

 

 

 

 

Resolution

N

 

8

 

 

Bits

Integral Nonlinearity4

INL

 

–1.5

 

+1.5

LSB

Differential Nonlinearity4

DNL

VDD = 5 V, VSS = 0 V

–1

 

+1

LSB

Voltage Divider Temperature

VW/T

Code = 80H

 

15

 

ppm/°C

Coefficient

 

 

 

 

 

 

Full-Scale Error

VWFSE

Code = FFH

–1.5

 

 

LSB

Zero-Scale Error

VWZSE

Code = 00H

 

 

+1.5

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

Voltage Range5

VA, B, W

|VDD| + |VSS| 5.5 V

VSS

 

VDD

V

Capacitance6 AX, BX

CA,B

f = 1 MHz, Measured to GND, Code = 80H

 

45

 

pF

Capacitance6 WX

CW

f = 1 MHz, Measured to GND, Code = 80H

 

70

 

pF

Shutdown Current7

IA_SD

VA = VDD, VB = 0 V, SHDN = 0

 

 

5

µA

Shutdown Wiper Resistance

RW_SD

VA = VDD, VB = 0 V, SHDN = 0, VDD = 5 V

 

 

200

Common-Mode Leakage

ICM

VA = VB = VDD/2

 

1

 

nA

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

Input Logic High

VIH

VDD = 5 V, VSS = 0 V

2.4

 

 

V

Input Logic Low

VIL

VDD = 5 V, VSS = 0 V

 

 

0.8

V

Input Logic High

VIH

VDD = 3 V, VSS = 0 V

2.1

 

 

V

Input Logic Low

VIL

VDD = 3 V, VSS = 0 V

 

 

0.6

V

Output Logic High

VOH

RL = 1 kto VDD

VDD – 0.1

 

 

V

Output Logic Low

VOL

IOL = 1.6 mA, VDD = 5 V

 

 

0.4

V

Input Current

IIL

VIN = 0 V or 5 V

 

 

±10

µA

Input Capacitance6

CIL

 

 

10

 

pF

POWER SUPPLIES

 

 

 

 

 

 

Power Single-Supply Range

VDD RANGE

VSS = 0 V

2.7

 

5.5

V

Power Dual-Supply Range

VDD/SS RANGE

 

±2.2

 

±2.7

V

Positive Supply Current

IDD

VIH = VDD or VIL = GND, VSS = 0 V

 

 

40

µA

Negative Supply Current

ISS

VIH = VDD or VIL = GND VSS = –2.5 V

 

 

40

µA

Power Dissipation8

PDISS

VIH = 5 V or VIL = 0 V, VDD = 5 V

 

 

0.2

mW

Power Supply Sensitivity, VDD

PSS

VDD = 5 V ± 10%, VSS = 0 V, Code = 80H

 

 

0.01

%/%

Power Supply Sensitivity, VSS

PSS

VSS = –2.5 V ± 10%, VDD = 2.5 V, Code = 80H

 

 

0.03

%/%

DYNAMIC CHARACTERISTICS6, 9

 

 

 

 

 

 

Bandwidth –3 dB

BW_10 k

RAB = 10 k

 

600

 

kHz

Bandwidth –3 dB

BW_50 k

RAB = 50 k

 

125

 

kHz

Bandwidth –3 dB

BW_100 k

RAB = 100 k

 

71

 

kHz

Total Harmonic Distortion

THDW

VA = 1 V rms, VB = 0 V, f = 1 kHz, RAB = 10 k

 

0.003

 

%

VW Settling Time

tS

RAB = 10 k/50 k/100 k, ±1 LSB Error Band

 

2/9/18

 

µs

Resistor Noise Voltage

eN_WB

RWB = 5 k, f = 1 kHz, RS = 0

 

9

 

nVHz

Crosstalk10

CT

VA = 5 V, VB = 0 V

 

–65

 

dB

–2–

REV. 0

 

 

 

 

 

 

AD5207

 

 

 

 

 

 

 

 

Parameter

Symbol

Conditions

Min

Typ1

Max

 

Unit

INTERFACE TIMING

 

 

 

 

 

 

 

CHARACTERISTICS

 

 

 

 

 

 

 

Applies to All Parts6, 11

 

 

 

 

 

 

 

Input Clock Pulsewidth

tCH, tCL

Clock Level High or Low

10

 

 

 

ns

Data Setup Time

tDS

 

5

 

 

 

ns

Data Hold Time

tDH

RL = 1 kto 5 V, CL < 20 pF

5

 

 

 

ns

CLK to SDO Propagation Delay12

tPD

1

 

25

 

ns

CS Setup Time

tCSS

 

10

 

 

 

ns

CS High Pulsewidth

tCSW

 

10

 

 

 

ns

CLK Fall to CS Fall Hold Time

tCSH0

 

0

 

 

 

ns

CLK Fall to CS Rise Hold Time

tCSH1

 

0

 

 

 

ns

CS Rise to Clock Rise Setup

tCS1

 

10

 

 

 

ns

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = 5 V, VSS = 0 V.

3VAB = VDD, Wiper (VW) = No connect.

4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = 0 V. DNL specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions.

5Resistor Terminals A, B, W have no limitations on polarity with respect to each other.

6Guaranteed by design and not subject to production test.

7Measured at the AX terminals. All AX terminals are open-circuited in shut-down mode.

8PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.

9All dynamic characteristics use VDD = 5 V, VSS = 0 V.

10Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.

11 See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using VDD = 5 V.

12 Propagation delay depends on value of VDD, RL, and CL; see applications text.

The AD5207 contains 474 transistors. Die Size: 67 mil × 69 mil, 4623 sq. mil. Specifications subject to change without notice.

 

1

 

 

 

 

 

 

 

 

 

SDI

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

 

0

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

CLK

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

CS

 

 

 

 

RDAC REGISTER LOAD

 

 

0

 

 

 

 

 

 

 

 

 

VOUT

Figure 1a. Timing Diagram

SDI 1 (DATA IN) 0

SDO 1 (DATA OUT) 0

1

CLK

0

1

CS

0

VDD

VOUT

0V

Ax OR Dx

Ax OR Dx

 

 

 

tDS

tDH

 

 

 

 

A'x OR D'x

A'x OR D'x

 

tCH

 

 

tPD_MAX

 

 

tCS1

 

 

 

tCSH0

tCL

 

tCSH1

 

 

tCSS

 

 

 

 

 

 

tCSW

tS

1LSB ERROR BAND

1LSB

Figure 1b. Detail Timing Diagram

REV. 0

–3–

AD5207

ABSOLUTE MAXIMUM RATINGS1

(TA = 25°C, unless otherwise noted)

VDD to GND . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . –0.3, +7 V

VSS to GND . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 0, –3 V

VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 7 V

VA, VB, VW to GND . . . . . . . . . . . . . . . . . .

. . . . . . . . VSS, VDD

IMAX2 (A, B, W) . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . ±20 mA

Digital Inputs and Output Voltage to GND

. . 0 V, VDD + 0.3 V

Operating Temperature Range . . . . . . . . .

. –40°C to +125°C

Maximum Junction Temperature (TJ Max)

. . . . . . . . . . 150°C

Storage Temperature . . . . . . . . . . . . . . . . .

. –65°C to +150°C

Lead Temperature (Soldering, 10 sec) . . . .

. . . . . . . . . 300°C

Thermal Resistance3 θJA, TSSOP-14 . . . . . .

. . . . . . . 206°C/W

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2Max current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W Terminals at a given resistance. Please refer to TPC 22 for detail.

3Package Power Dissipation = (TJ Max–TA)/θJA.

PIN CONFIGURATION

VSS

 

 

 

B1

1

 

14

B2

 

 

 

A1

2

 

13

A2

 

 

 

W1

3

AD5207

12

W2

 

 

VDD

4

TOP VIEW

11

DGND

 

(Not to Scale)

 

 

5

10

CLK

 

 

 

 

 

SHDN

6

 

9

SDO

 

 

 

 

SDI

CS

7

 

8

 

 

 

 

 

PIN FUNCTION DESCRIPTIONS

Pin

Mnemonic

Description

 

 

 

 

 

 

 

 

 

1

VSS

 

Negative Power Supply, specified for opera-

 

 

 

 

tion from 0 V to –2.7 V.

 

 

 

2

B2

 

Terminal B of RDAC#2.

 

 

 

3

A2

 

Terminal A of RDAC#2.

 

 

 

4

W2

 

Wiper, RDAC#2, addr = 12

 

 

5

DGND

Digital Ground.

 

 

 

 

6

SHDN

 

Active Low Input. Terminal A open-circuit

 

 

 

 

and Terminal B shorted to Wiper. Shut-

 

 

 

 

down controls both RDACs #1 and #2.

7

CS

 

Chip Select Input, Active Low. When CS

 

 

 

 

returns high, data in the serial input register

 

 

 

 

is decoded, based on the address bit, and

 

 

 

 

loaded into the corresponding RDAC register.

8

SDI

 

Serial Data Input. MSB is loaded first.

 

9

SDO

 

Serial Data Output. Open Drain transistor

 

 

 

 

requires pull-up resistor.

 

 

 

10

CLK

 

Serial Clock Input. Positive Edge Triggered.

11

VDD

 

Positive Power Supply. Specified for opera-

 

 

 

 

tion at 2.7 V to 5.5 V.

 

 

 

12

W1

 

Wiper, RDAC #1, addr = 02.

 

 

13

A1

 

Terminal A of RDAC #1.

 

 

 

14

B1

 

Terminal B of RDAC #1.

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I. Serial-Data Word Format

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDR

 

 

 

 

DATA

 

 

 

 

B9

B8

 

B7

B6

B5

B4

B3

B2

B1

B0

 

 

 

 

 

 

 

 

 

 

 

A1

A0

 

D7

D6

D5

D4

D3

D2

D1

D0

 

 

 

MSB

 

 

 

 

 

 

LSB

29

28

 

27

 

 

 

 

 

 

20

NOTES

ADDR(RDAC1) = 00; ADDR(RDAC2 = 01).

Data loads B9 first into SDI pin.

ORDERING GUIDE

 

 

Temperature

Package

Package

Qty Per

Branding

Model

k

Range

Description

Option

Container

Information*

 

 

 

 

 

 

 

AD5207BRU10-REEL7

10

–40°C to +125°C

TSSOP-14

RU-14

1,000

B10

AD5207BRU50-REEL7

50

–40°C to +125°C

TSSOP-14

RU-14

1,000

B50

AD5207BRU100-REEL7

100

–40°C to +125°C

TSSOP-14

RU-14

1,000

B100

 

 

 

 

 

 

 

*Three lines of information appear on the device. Line 1 lists the part number; Line 2 includes branding information and the ADI logo, and Line 3 contains the date code YYWW.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5207 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–4–

REV. 0

Analog Devices AD5207BRU50-REEL7, AD5207BRU100-REEL7, AD5207BRU10-REEL7 Datasheet

Typical Performance Characteristics–AD5207

 

0.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD = 5.5V,V SS = 0V

 

0.15

 

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

– LSB

0.05

 

 

 

 

 

 

 

 

0.00

 

 

 

 

 

 

 

 

RDNL

 

 

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

 

0.15

 

 

 

 

 

 

 

 

 

0.20

32

64

96

128

160

192

224

256

 

0

CODE – Decimal

TPC 1. 10 kRDNL vs. Code

 

0.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD = 5.5V,V SS = 0V

 

0.15

 

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

– LSB

0.05

 

 

 

 

 

 

 

 

0.00

 

 

 

 

 

 

 

 

RINL

 

 

 

 

 

 

 

 

–0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.10

 

 

 

 

 

 

 

 

 

–0.15

 

 

 

 

 

 

 

 

 

–0.20

 

 

 

 

 

 

 

 

 

0

32

64

96

128

160

192

224

256

CODE – Decimal

TPC 2. 10 kRINL vs. Code

0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD = 5.5V,V SS = 0V

 

0.2

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

–LSB

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

DNL

 

 

 

 

 

 

 

 

–0.1

 

 

 

 

 

 

 

 

–0.2

 

 

 

 

 

 

 

 

–0.3

 

 

 

 

 

 

 

 

0

32

64

96

128

160

192

224

256

CODE – Decimal

TPC 3. 10 kDNL vs. Code

 

0.4

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

VDD = 5.5V,V SS = 0V

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

– LSB

0.1

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

INL

–0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.2

 

 

 

 

 

 

 

 

 

–0.3

 

 

 

 

 

 

 

 

 

–0.4

 

 

 

 

 

 

 

 

 

0

32

64

96

128

160

192

224

256

CODE – Decimal

TPC 4. 10 kINL vs. Code

1.0

 

 

 

 

 

 

 

 

IDD @ VDD/VSS = 5V/0V

 

0.1

 

 

 

 

 

– mA

 

IDD @ VDD/VSS = 2.5V

 

 

SS

 

 

 

/I

 

 

 

 

 

DD

 

 

 

 

 

I

 

 

 

 

 

0.01

 

 

 

 

 

 

ISS @ VDD/VSS = 2.5V

IDD @ V DD/VSS = 3V/0V

 

 

 

 

 

0.001

 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

5.0

 

 

VIH – V

 

 

TPC 5. Supply Current vs. Logic Input Voltage

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL = VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIH = VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– A

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

= 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPPLY

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

VDD = 2.7V

 

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–40

–20

0

20

40

 

60

80

100

TEMPERATURE – C

TPC 6. Supply Current vs. Temperature

REV. 0

–5–

Loading...
+ 11 hidden pages