Analog Devices AD532SH, AD532SD, AD532SCHIPS, AD532KH, AD532KD Datasheet

...
0 (0)

a

Internally Trimmed

Integrated Circuit Multiplier

FEATURES

Pretrimmed to 1.0% (AD532K)

No External Components Required

Guaranteed 1.0% max 4-Quadrant Error (AD532K)

Diff Inputs for (X1 – X2) (Y1 – Y2)/10 V Transfer Function Monolithic Construction, Low Cost

APPLICATIONS

Multiplication, Division, Squaring, Square Rooting

Algebraic Computation

Power Measurements

Instrumentation Applications

Available in Chip Form

PRODUCT DESCRIPTION

The AD532 is the first pretrimmed single chip monolithic multiplier/divider. It guarantees a maximum multiplying error of

± 1.0% and a ± 10 V output voltage without the need for any external trimming resistors or output op amp. Because the AD532 is internally trimmed, its simplicity of use provides design engineers with an attractive alternative to modular multipliers, and its monolithic construction provides significant advantages in size, reliability and economy. Further, the AD532 can be used as a direct replacement for other IC multipliers that require external trim networks.

FLEXIBILITY OF OPERATION

The AD532 multiplies in four quadrants with a transfer function of (X1 – X2)(Y1 – Y2)/10 V, divides in two quadrants with a 10 V Z/(X1 – X2) transfer function, and square roots in one quadrant with a transfer function of ±√ 10 V Z. In addition to these basic functions, the differential X and Y inputs provide significant operating flexibility both for algebraic computation and transducer instrumentation applications. Transfer functions, such as XY/10 V, (X2 – Y2)/10 V, ±X2/10 V, and 10 V Z/(X1 – X2), are easily attained and are extremely useful in many modulation and function generation applications, as well as in trigonometric calculations for airborne navigation and guidance applications, where the monolithic construction and small size of the AD532 offer considerable system advantages. In addition, the high CMRR (75 dB) of the differential inputs makes the AD532 especially well qualified for instrumentation applications, as it can provide an output signal that is the product of two transducergenerated input signals.

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD532

PIN CONFIGURATIONS

 

Y2

 

 

 

 

 

 

 

 

 

Y1

 

VOS

 

 

 

Z

1

 

14

+VS

 

 

 

 

 

 

OUT

2

 

13

Y1

+VS

AD532

 

GND

 

–VS

3

 

12

Y2

 

 

 

 

 

NC

 

 

AD532

VOS

 

TOP VIEW

 

 

 

 

4

 

TOP VIEW 11

Z

(Not to Scale)

 

X2

 

 

NC

5

(Not to Scale) 10

GND

 

 

 

 

 

 

NC

6

 

9

X2

OUT

 

X1

 

 

 

X1

7

 

8

NC

 

–VS

OUT

 

NC

+V

 

NC = NO CONNECT

 

 

 

Z

Y

 

 

 

 

 

 

 

 

 

S

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

1

20

19

 

 

 

 

 

–VS 4

 

 

 

 

 

18

Y2

 

 

NC 5

 

AD532

 

17

NC

 

 

NC 6

 

 

16

VOS

 

 

 

TOP VIEW

 

 

 

NC 7

(Not to Scale)

15

NC

 

 

NC 8

 

 

 

 

 

14

GND

 

 

 

9

10

11

12

13

 

 

 

 

 

 

NC

1

NC

NC

2

 

 

 

 

 

 

X

X

 

 

 

 

NC = NO CONNECT

GUARANTEED PERFORMANCE OVER TEMPERATURE

The AD532J and AD532K are specified for maximum multiplying errors of ± 2% and ± 1% of full scale, respectively at 25°C, and are rated for operation from 0°C to 70°C. The AD532S has a maximum multiplying error of ± 1% of full scale at 25°C; it is also 100% tested to guarantee a maximum error of ± 4% at the extended operating temperature limits of –55°C and +125°C. All devices are available in either the hermetically-sealed TO-100 metal can, TO-116 ceramic DIP or LCC packages. J, K, and S grade chips are also available.

ADVANTAGES OF ON-THE-CHIP TRIMMING OF THE MONOLITHIC AD532

1.True ratiometric trim for improved power supply rejection.

2.Reduced power requirements since no networks across supplies are required.

3.More reliable since standard monolithic assembly techniques can be used rather than more complex hybrid approaches.

4.High impedance X and Y inputs with negligible circuit loading.

5.Differential X and Y inputs for noise rejection and additional computational flexibility.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD532–SPECIFICATIONS (@ 25 C, VS = 15 V, R 2 k VOS grounded, unless otherwise noted.)

 

 

 

 

AD532J

 

 

 

 

 

AD532K

 

 

 

 

 

AD532S

 

 

 

Model

Min

Typ

Max

Min

 

Typ

Max

Min

 

Typ

Max

Unit

MULTIPLIER PERFORMANCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer Function

 

(X1 X2 )(Y1 Y2 )

 

(X1 X2 )(Y1 Y2 )

 

(X1 X2 )(Y1 Y2 )

 

 

 

 

10V

 

 

 

 

 

 

10V

 

 

 

 

 

 

10V

 

 

 

Total Error (–10 V X, Y +10 V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±1.5

2.0

 

 

 

 

±

0.7

1.0

 

 

 

 

±0.5

1.0

%

TA = Min to Max

 

 

 

±2.5

 

 

 

 

 

 

±

1.5

 

 

 

 

 

 

±0.01

4.0

%

Total Error vs. Temperature

 

 

 

±0.04

 

 

 

 

 

 

±

0.03

 

 

 

 

 

 

0.04

%/°C

Supply Rejection (±15 V ± 10%)

 

 

 

±0.05

 

 

 

 

 

 

±

0.05

 

 

 

 

 

 

±0.05

 

 

%/%

Nonlinearity, X (X = 20 V p-p, Y = 10 V)

 

 

 

±0.8

 

 

 

 

 

 

±

0.5

 

 

 

 

 

 

±0.5

 

 

%

Nonlinearity, Y (Y = 20 V p-p, X = 10 V)

 

 

 

±0.3

 

 

 

 

 

 

±

0.2

 

 

 

 

 

 

±0.2

 

 

%

Feedthrough, X (Y Nulled,

 

 

 

 

 

200

 

 

 

 

 

 

 

100

 

 

 

 

 

 

100

 

X = 20 V p-p 50 Hz)

 

 

 

50

 

 

 

 

30

 

 

 

 

30

mV

Feedthrough, Y (X Nulled,

 

 

 

 

 

150

 

 

 

 

 

 

 

80

 

 

 

 

 

 

80

 

Y = 20 V p-p 50 Hz)

 

 

 

30

 

 

 

 

25

 

 

 

 

25

mV

Feedthrough vs. Temperature

 

 

 

2.0

 

 

 

 

 

 

1.0

 

 

 

 

 

 

1.0

 

 

mV p-p/°C

Feedthrough vs. Power Supply

 

 

 

±0.25

 

 

 

 

 

 

±

0.25

 

 

 

 

 

 

±0.25

 

 

mV/%

DYNAMICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small Signal BW (VOUT = 0.1 rms)

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

MHz

1% Amplitude Error

 

 

 

75

 

 

 

 

 

 

75

 

 

 

 

 

 

75

 

 

kHz

Slew Rate (VOUT 20 p-p)

 

 

 

45

 

 

 

 

 

 

45

 

 

 

 

 

 

45

 

 

V/µs

Settling Time (to 2%, VOUT = 20 V)

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

µs

NOISE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wideband Noise f = 5 Hz to 10 kHz

 

 

 

0.6

 

 

 

 

 

 

0.6

 

 

 

 

 

 

0.6

 

 

mV (rms)

f = 5 Hz to 5 MHz

 

 

 

3.0

 

 

 

 

 

 

3.0

 

 

 

 

 

 

3.0

 

 

mV (rms)

OUTPUT

±10

±13

 

 

±10

 

±

 

 

 

±10

 

±13

 

 

 

Output Voltage Swing

 

 

 

13

 

 

 

 

 

V

Output Impedance (f 1 kHz)

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

Output Offset Voltage

 

 

 

±40

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

30

mV

Output Offset Voltage vs. Temperature

 

 

 

0.7

 

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

2.0

mV/°C

Output Offset Voltage vs. Supply

 

 

 

±2.5

 

 

 

 

 

 

±

2.5

 

 

 

 

 

 

±2.5

 

 

mV/%

INPUT AMPLIFIERS (X, Y, and Z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal Voltage Range (Diff. or CM

 

 

 

±10

 

 

 

 

 

 

±

 

 

 

 

 

 

 

±10

 

 

 

Operating Diff)

40

 

 

 

50

 

 

10

 

 

50

 

 

 

 

V

CMRR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dB

Input Bias Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

4

 

µA

X, Y Inputs

 

 

 

3

 

 

 

 

 

 

1.5

 

 

 

 

 

1.5

 

X, Y Inputs TMIN to TMAX

 

 

 

10

 

 

 

 

 

 

8

 

 

 

 

 

 

 

8

 

 

µA

Z Input

 

 

 

±10

 

 

 

 

 

 

±

5

15

 

 

 

 

±5

15

µA

Z Input TMIN to TMAX

 

 

 

±30

 

 

 

 

 

 

±

25

 

 

 

 

 

 

±25

 

 

µA

Offset Current

 

 

 

±0.3

 

 

 

 

 

 

±

0.1

 

 

 

 

 

 

±0.1

 

 

µA

Differential Resistance

 

 

 

10

 

 

 

 

 

 

10

 

 

 

 

 

 

10

 

 

M

DIVIDER PERFORMANCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer Function (Xl > X2)

 

 

10 V Z/(X1 – X2)

 

10 V Z/(X1 – X2)

 

 

 

 

10 V Z/(X1 – X2)

 

Total Error

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(VX = –10 V, –10 V VZ +10 V)

 

 

 

±2

 

 

 

 

 

 

±

1

 

 

 

 

 

 

±1

 

 

%

(VX = –1 V, –10 V VZ +10 V)

 

 

 

±4

 

 

 

 

 

 

±

3

 

 

 

 

 

 

±3

 

 

%

SQUARE PERFORMANCE

(X1 X2 )2

 

 

(X1 X2 )2

 

 

 

(X1 X2 )2

 

 

 

Transfer Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10V

±0.8

 

 

 

10V

±

 

 

 

 

10V

±0.4

 

 

 

Total Error

 

 

 

 

0.4

 

 

 

 

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SQUARE ROOTER PERFORMANCE

 

 

 

10 V Z

 

 

 

 

 

 

10 V Z

 

 

 

 

 

 

10 V Z

 

 

 

Transfer Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Error (0 V VZ 10 V)

 

 

 

±1.5

 

 

 

 

 

 

±

1.0

 

 

 

 

 

 

±1.0

 

 

%

POWER SUPPLY SPECIFICATIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supply Voltage

 

 

 

±15

 

 

 

 

 

 

±

 

 

 

 

 

 

 

±15

 

 

 

Rated Performance

±10

18

±10

 

15

18

±10

 

±22

V

Operating

 

 

 

 

 

 

 

 

 

V

Supply Current

 

 

 

4

6

 

 

 

 

 

4

 

6

 

 

 

 

 

4

6

 

 

Quiescent

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mA

PACKAGE OPTIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO-116 (D-14)

AD532JD

 

 

AD532KD

 

 

 

AD532SD

 

 

 

TO-100 (H-10A)

AD532JH

 

 

AD532KH

 

 

 

AD532SH

 

 

 

LCC (E-20A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532SE/883B

 

 

 

Specifications subject to change without notice.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

THERMAL CHARACTERISTICS

H-10A: θJC = 25°C/W; θJA = 150°C/W E-20A: θJC = 22°C/W; θJA = 85°C/W D-14: θJC = 22°C/W; θJA = 85°C/W

–2–

REV. C

Analog Devices AD532SH, AD532SD, AD532SCHIPS, AD532KH, AD532KD Datasheet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORDERING GUIDE

 

 

 

CHIP DIMENSIONS AND BONDING DIAGRAM

 

 

 

 

 

 

 

 

 

 

Contact factory for latest dimensions.

 

Temperature

 

Package

 

Package

 

 

 

 

 

 

 

 

 

Dimensions shown in inches and (mm).

Model

Ranges

 

Descriptions

 

Options

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532JD

0°C to 70°C

 

Side Brazed DIP

 

D-14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532JD/+

0°C to 70°C

 

Side Brazed DIP

 

D-14

 

 

 

 

 

 

 

 

0.107

VS

OUTPUT

AD532KD

0°C to 70°C

 

Side Brazed DIP

 

D-14

 

 

 

 

 

 

 

 

(2.718)

AD532KD/+

0°C to 70°C

 

Side Brazed DIP

 

D-14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532JH

0°C to 70°C

 

Header

 

H-10A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532KH

0°C to 70°C

 

Header

 

H-10A

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532JCHIPS

0°C to 70°C

 

Chip

 

 

 

X1

 

 

 

 

 

 

 

 

 

 

 

AD532SD

–55°C to +125°C

 

Side Brazed DIP

 

D-14

 

0.062

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.575)

 

 

 

 

 

 

 

 

 

 

 

 

AD532SD/883B

–55°C to +125°C

 

Side Brazed DIP

 

D-14

 

 

 

 

 

 

 

 

 

 

 

 

 

VS

JM38510/13903BCA

–55°C to +125°C

 

Side Brazed DIP

 

D-14

 

 

 

 

 

 

 

 

 

 

 

 

 

Y1

AD532SE/883B

–55°C to +125°C

 

LCC

 

E-20A

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532SH

–55°C to +125°C

 

Header

 

H-10A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532SH/883B

–55°C to +125°C

 

Header

 

H-10A

 

 

 

 

 

X2

GND

VOS

Y2

JM38510/13903BIA

–55°C to +125°C

 

Header

 

H-10A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD532SCHIPS

–55°C to +125°C

 

Chip

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUNCTIONAL DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The functional block diagram for the AD532 is shown in Figure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1, and the complete schematic in Figure 2. In the multiplying

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and squaring modes, Z is connected to the output to close the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

feedback around the output op amp. (In the divide mode, it is

 

 

 

X1

 

 

 

 

 

 

 

 

 

 

 

used as an input terminal.)

 

 

 

 

VX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The X and Y inputs are fed to high impedance differential

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

R

 

 

 

amplifiers featuring low distortion and good common-mode

 

 

 

 

 

 

X

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rejection. The amplifier voltage offsets are actively laser trimmed

 

 

 

Y1

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

to zero during production. The product of the two inputs is

 

 

VY

Y2

 

 

 

 

 

 

 

 

 

 

 

resolved in the multiplier cell using Gilbert’s linearized trans-

 

 

 

 

 

 

 

 

 

 

10R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOS

conductance technique. The cell is laser trimmed to obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(X1 – X2) (Y1 – Y2)

 

R

 

 

 

VOUT = (X1 – X2)(Y1 – Y2)/10 volts. The built-in op amp is used

 

 

 

VOUT =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10V

 

 

 

 

 

 

to obtain low output impedance and make possible self-contained

(WITH Z TIED TO OUTPUT)

 

operation. The residual output voltage offset can be zeroed at

Figure 1. Functional Block Diagram

VOS in critical applications . . . otherwise the VOS pin should

 

be grounded.

 

X2

 

 

 

 

 

 

 

 

 

VS

 

 

 

 

 

 

 

 

 

 

 

R2

R6

R8

 

R16

R23

 

R27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

Z

 

Q1

Q2

 

 

 

 

 

 

 

 

 

 

Q7

Q8

 

Q14 Q15

Q16 Q17

Q21

R33

 

R34

 

 

 

 

 

R20

 

 

Q25

 

 

 

 

 

 

R22

 

 

 

 

 

 

 

 

 

 

 

 

VOS

Y1

R9

 

Q9

 

Q10

 

 

 

R1

 

 

 

 

 

R30

X1

Q4

 

R13

 

R21

 

 

Q3

 

 

 

Q22

R31

 

R3

 

 

 

 

 

 

 

Q26

 

 

 

 

 

 

 

 

 

 

COM

 

 

 

 

 

 

 

 

 

R28

 

 

 

 

 

 

Q18

 

Q23

OUTPUT

 

 

R10

 

 

 

 

 

 

 

 

 

 

 

 

R29

 

Q5

Q6

Q11

 

Q12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q24

Q27

 

 

R32

 

R11

 

R19

Q20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R14

Q19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

Q28

 

R12

 

Q13

 

 

 

 

 

R5

 

R15

R24

R25

R26

 

 

 

 

 

Y2

R18

 

 

 

 

 

 

 

 

VS CAN

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic Diagram

REV. C

–3–

Loading...
+ 5 hidden pages