ANALOG DEVICES AD5251, AD5252 Service Manual

0 (0)

Dual 64-/256-Position I2C® Nonvolatile

Memory Digital Potentiometers

AD5251/AD5252

FEATURES

 

 

 

 

FUNCTIONAL BLOCK DIAGRAM

 

AD5251: Dual 64-position resolution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD5252: Dual 256-position resolution

VDD

 

 

 

 

RDAC EEMEM

 

 

 

 

 

 

RDAC1

 

 

A1

 

 

 

RDAC1

 

 

 

 

 

VSS

 

 

 

 

EEMEM

 

 

RAB

 

 

 

 

 

 

 

 

 

 

 

 

1 kΩ, 10 kΩ, 50 kΩ, 100 kΩ

 

 

 

 

 

 

 

 

 

 

 

REGIS-

 

 

 

 

 

 

 

W1

 

 

 

 

POWER-ON

 

 

TOL

 

 

 

 

 

 

 

 

 

 

 

 

DGND

 

 

 

 

 

 

 

 

 

 

 

 

TER

 

 

 

 

 

 

 

 

Nonvolatile memory1 stores wiper setting w/write protection

 

 

 

 

 

 

 

REFRESH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

WP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-on refreshed with EEMEM settings in 300 μs typ

SCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDAC3

 

 

A3

 

I2C

 

 

 

 

 

 

 

 

 

 

 

 

RDAC3

 

 

 

 

 

EEMEM rewrite time = 540 μs typ

SDA

 

 

 

 

 

 

 

 

 

 

 

 

 

REGIS-

 

 

 

 

 

 

 

W3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SERIAL

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

TER

 

 

 

 

 

 

 

B3

Resistance tolerance stored in nonvolatile memory

AD0

 

INTERFACE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMMAND

 

 

 

 

 

 

 

 

 

 

12 extra bytes in EEMEM for user-defined information

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD1

 

 

 

 

 

 

DECODE LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I2C-compatible serial interface

 

 

 

 

 

 

 

 

 

 

ADDRESS

 

AD5251/

 

 

Direct read/write access of RDAC2 and EEMEM registers

 

 

 

 

POWER-

 

 

 

 

DECODE LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD5252

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predefined linear increment/decrement commands

 

 

 

 

ON RESET

 

 

 

 

CONTROL LOGIC

 

03823-0-001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predefined ±6 dB step change commands

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.

 

 

 

 

 

 

 

 

 

 

Synchronous or asynchronous dual-channel update

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wiper setting readback

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 MHz bandwidth—1 kΩ version

The AD5251/AD5252 allow the host I2C controllers to write

 

Single supply 2.7 V to 5.5 V

 

Dual supply ±2.25 V to ±2.75 V

any of the 64-/256-step wiper settings in the RDAC registers

 

2 slave address decoding bits allow operation of 4 devices

and store them in the EEMEM. Once the settings are stored,

 

100-year typical data retention, TA = 55°C

they are restored automatically to t e RDAC registers at system

Operating temperature: –40°C to +85°C

power-on; the settings can also be restored dynamically.

 

APPLICATIONS

The AD5251/AD5252 provide additional increment,

 

MacshbM

Mechanical potentiometer replacement

decrement, +6 dB step change, and –6 dB step change in

 

synchronous or asynchronous channel update mode. The

 

General-purpose DAC replacement

 

increment and decrement functions allow stepwise linear

 

LCD panel VCOM adjustment

 

adjustments, with a ± 6 dB step change equivalent to doubling

White LED brightness adjustment

or halving the RDAC wiper setting. These functions are useful

RF base station power amp bias control

for steep-slope, nonlinear adjustments, such as white LED

 

Programmable gain and offset control

 

brightness and audio volume control.

 

 

 

 

 

 

 

 

 

 

Programmable voltage-to-current conversion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programmable power supply

The AD5251/AD5252 have a patented resistance-tolerance

 

Sensor calibrations

storing function that allows the user to access the EEMEM and

GENERAL DESCRIPTION

obtain the absolute end-to-end resistance values of the RDACs

for precision applications.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AD5251/AD5252 are dual-channel, I2C, nonvolatile mem-

The AD5251/AD5252 are available in TSSOP-14 packages in

 

ory, digitally controlled potentiometers with 64/256 positions,

 

1 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ options. All parts are

 

respectively. These devices perform the same electronic adjust-

 

guaranteed to operate over the –40°C to +85°C extended

 

ment functions as mechanical potentiometers, trimmers, and

 

industrial temperature range.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variable resistors. The parts’ versatile programmability allows

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

multiple modes of operation, including read/write access in the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDAC and EEMEM registers, increment/decrement of resistance,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resistance changes in ±6 dB scales, wiper setting readback, and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extra EEMEM for storing user-defined information, such as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

memory data for other components, look-up table, or system

1 The terms nonvolatile memory and EEMEM are used interchangeably.

 

identification information.

 

2 The terms digital potentiometer and RDAC are used interchangeably.

 

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700

www.analog.com

Fax: 781.461.3113

© 2005 Analog Devices, Inc. All rights reserved.

AD5251/AD5252

TABLE OF CONTENTS

Features ..............................................................................................

 

1

Theory of Operation ......................................................................

21

Applications.......................................................................................

 

1

Linear Increment/Decrement Commands .............................

21

General Description .........................................................................

 

1

±6 dB Adjustments (Doubling/Halving Wiper Setting) .......

21

Functional Block Diagram ..............................................................

 

1

Digital Input/Output Configuration........................................

22

Revision History ...............................................................................

 

2

Multiple Devices on One Bus ...................................................

22

Electrical Characteristics .................................................................

 

3

Terminal Voltage Operation Range .........................................

22

1 kΩ Version..................................................................................

 

3

Power-Up and Power-Down Sequences..................................

22

10 kΩ, 50 kΩ, 100 kΩ Versions ..................................................

 

5

Layout and Power Supply Biasing ............................................

23

Interface Timing Characteristics................................................

 

7

Digital Potentiometer Operation .............................................

23

Absolute Maximum Ratings............................................................

 

8

Programmable Rheostat Operation.........................................

23

ESD Caution..................................................................................

 

8

Programmable Potentiometer Operation ...............................

24

Pin Configuration and Function Descriptions.............................

 

9

Applications.....................................................................................

25

Typical Performance Characteristics ...........................................

 

10

LCD Panel VCOM Adjustment....................................................

25

I2C Interface.....................................................................................

 

14

Current-Sensing Amplifier .......................................................

25

I C Interface Detail Description MacshbM

I2C Interface General Description............................................

 

14

Adjustable High Power LED Driver ........................................

25

2

 

15

Outline Dimensions

26

...............................................

 

I2C-Compatible 2-Wire Serial Bus ...........................................

 

20

Ordering Guide ..........................................................................

27

REVISION HISTORY

 

 

 

 

9/05—Rev. 0 to Rev. A

 

 

 

 

Updated Format..................................................................

Universal

 

 

Change to Figure 6 .........................................................................

 

10

 

 

Changes to Figure 28......................................................................

 

15

 

 

Changes to Figure 29......................................................................

 

17

 

 

Changes to RDAC/EEMEM Quick Commands Section ..........

18

 

 

Changes to EEMEM Write Protection Section...........................

 

18

 

 

Changes to Figure 37......................................................................

 

22

 

 

Deleted Table 13 and Table 14 ......................................................

 

23

 

 

Change to Figure 42 .......................................................................

 

24

 

 

Change to Figure 46 .......................................................................

 

25

 

 

Changes to Ordering Guide ..........................................................

 

27

 

 

6/04—Revision 0: Initial Version

Rev. A | Page 2 of 28

AD5251/AD5252

ELECTRICAL CHARACTERISTICS

1 kΩ VERSION

VDD = 3 V ± 10% or 5 V ± 10%, VSS = 0 V or VDD/VSS = ±2.5 V ± 10%, VA = VDD, VB = 0 V, –40°C < TA < +85°C, unless otherwise noted.

Table 1.

Parameter

Symbol

Conditions

Min

Typ1

Max

Unit

 

DC CHARACTERISTICS—

 

 

 

 

 

 

 

RHEOSTAT MODE

 

 

 

 

 

 

 

Resolution

N

AD5251

 

 

6

Bits

 

 

AD5252

 

 

8

Bits

Resistor Differential Nonlinearity2

R-DNL

RWB, RWA = NC, VDD = 5.5 V, AD5251

–0.5

±0.2

+0.5

LSB

 

 

RWB, RWA = NC, VDD = 5.5 V, AD5252

–1.00

±0.25

+1.00

LSB

 

 

RWB, RWA = NC, VDD = 2.7 V, AD5251

–0.75

±0.30

+0.75

LSB

 

 

RWB, RWA = NC, VDD = 2.7 V, AD5252

–1.5

±0.3

+1.5

LSB

Resistor Nonlinearity2

R-INL

RWB, RWA = NC, VDD = 5.5 V, AD5251

–0.5

±0.2

+0.5

LSB

 

 

RWB, RWA = NC, VDD = 5.5 V, AD5252

–2.0

±0.5

+2.0

LSB

 

 

RWB, RWA = NC, VDD = 2.7 V, AD5251

–1.0

+2.5

+4.0

LSB

 

 

RWB, RWA = NC, VDD = 2.7 V, AD5252

–2

+9

+14

LSB

Nominal Resistor Tolerance

ΔRAB/RAB

TA = 25°C

–30

 

+30

%

 

Resistance Temperature Coefficient

(ΔRAB/RAB) × 106/ΔT

 

 

650

 

ppm/°C

Wiper Resistance

RW

IW = 1 V/R, VDD = 5 V

 

75

130

Ω

 

 

IW = 1 V/R, VDD = 3 V

 

200

300

Ω

Channel-Resistance Matching

ΔRAB1/ΔRAB3

 

 

0.15

 

%

 

DC CHARACTERISTICS—

 

MacshbM

 

 

3

 

 

POTENTIOMETER DIVIDER MODE

 

 

 

 

 

 

 

Differential Nonlinearity3

DNL

AD5251

–0.5

±0.1

+0.5

LSB

 

 

AD5252

–1.00

±0.25

+1.00

LSB

Integral Nonlinearity

INL

AD5251

–0.5

±0.2

+0.5

LSB

 

 

AD5252

–2.0

±0.5

+2.0

LSB

Voltage Divider Tempco

(ΔVW/VW) × 106/ΔT

Code = half scale

 

25

 

ppm/°C

Full-Scale Error

VWFSE

Code = full scale, VDD = 5.5 V, AD5251

–5

–3

0

LSB

 

 

Code = full scale, VDD = 5.5 V, AD5252

–16

–11

0

LSB

 

 

Code = full scale, VDD = 2.7 V, AD5251

−6

–4

0

LSB

 

 

Code = full scale, VDD = 2.7 V, AD5252

–23

–16

0

LSB

Zero-Scale Error

VWZSE

Code = zero scale, VDD = 5.5 V, AD5251

0

3

5

LSB

 

 

Code = zero scale, VDD = 5.5 V, AD5252

0

11

16

LSB

 

 

Code = zero scale, VDD = 2.7 V, AD5251

0

4

6

LSB

 

 

Code = zero scale, VDD = 2.7 V, AD5252

0

15

20

LSB

 

 

 

 

 

 

 

 

RESISTOR TERMINALS

 

 

 

 

 

 

 

Voltage Range4

VA, VB, VW

 

VSS

 

VDD

V

Capacitance5 A, B

CA, CB

f = 1 kHz, measured to GND,

 

85

 

pF

 

 

code = half scale

 

 

 

 

 

Capacitance5 W

CW

f = 1 kHz, measured to GND,

 

95

 

pF

 

 

code = half scale

 

 

 

 

 

Common-Mode Leakage Current

ICM

VA = VB = VDD/2

 

0.01

1

μA

 

Rev. A | Page 3 of 28

AD5251/AD5252

Parameter

Symbol

 

Conditions

Min

Typ1

Max

Unit

 

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

 

 

Input Logic High

VIH

 

VDD = 5 V, VSS = 0 V

2.4

 

 

V

 

 

 

 

 

VDD/VSS = 2.7 V/0 V or VDD/VSS = ± 2.5 V

2.1

 

 

V

 

Input Logic Low

VIL

 

VDD = 5 V, VSS = 0 V

 

 

0.8

V

 

Output Logic High (SDA)

VOH

 

RPULL-UP = 2.2 kΩ to VDD = 5 V, VSS = 0 V

4.9

 

 

V

 

Output Logic Low (SDA)

VOL

 

RPULL-UP = 2.2 kΩ to VDD = 5 V, VSS = 0 V

 

 

0.4

V

 

 

IWP

 

 

= VDD

 

 

5

μA

 

WP

Leakage Current

 

WP

 

 

 

A0 Leakage Current

IA0

 

A0 = GND

 

 

3

μA

 

Input Leakage Current

II

 

VIN = 0 V or VDD

 

 

±1

μA

 

(Other than WP and A0)

 

 

 

 

 

 

 

 

 

 

Input Capacitance5

CI

 

 

 

 

5

 

pF

POWER SUPPLIES

 

 

 

 

 

 

 

 

 

 

Single-Supply Power Range

VDD

 

VSS = 0 V

2.7

 

5.5

V

 

Dual-Supply Power Range

VDD/VSS

 

 

 

±2.25

 

±2.75

V

 

Positive Supply Current

IDD

 

VIH = VDD or VIL = GND

 

5

15

μA

 

Negative Supply Current

ISS

 

VIH = VDD or VIL = GND, VDD = 2.5 V,

 

–5

–15

μA

 

 

 

 

 

VSS = –2.5 V

 

 

 

 

 

 

EEMEM Data Storing Mode Current

IDD_STORE

 

VIH = VDD or VIL = GND

 

35

 

mA

 

EEMEM Data Restoring Mode

IDD_RESTORE

 

VIH = VDD or VIL = GND

 

2.5

 

mA

 

Current6

 

 

 

 

 

 

 

 

 

 

Power Dissipation7

PDISS

 

VIH = VDD = 5 V or VIL = GND

 

 

0.075

mW

 

Power Supply Sensitivity

PSS

 

ΔVDD = 5 V ± 10%

−0.025

+0.010

+0.025

%/%

 

 

 

 

 

 

ΔVDD = 3 V ± 10%

–0.04

+0.02

+0.04

%/%

 

 

 

 

 

 

 

 

 

 

 

DYNAMIC CHARACTERISTICS5, 8

 

 

 

 

 

 

 

 

 

 

Bandwidth –3 dB

BW

 

RAB = 1 kΩ

 

4

 

MHz

 

Total Harmonic Distortion

THD

VA = 1 V rms, VB = 0 V, f = 1 kHz

 

0.05

 

%

 

 

VW Settling Time

tS

MacshbMVA = VDD, VB = 0 V 0.2

μs

 

Resistor Noise Voltage

eN_WB

 

RWB = 500 Ω, f = 1 kHz

 

3

 

nV/√Hz

 

 

 

 

 

(thermal noise only)

 

 

 

 

 

 

Digital Crosstalk

CT

 

VA = VDD, VB = 0 V, measure VW with

 

–80

 

dB

 

 

 

 

 

adjacent RDAC making full-scale

 

 

 

 

 

 

 

 

 

 

change

 

 

 

 

 

 

Analog Coupling

CAT

 

Signal input at A1 and measure the

 

–72

 

dB

 

 

 

 

 

output at W3, f = 1 kHz

 

 

 

 

 

1 Typical values represent average readings at 25°C and VDD = 5 V.

2Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum and minimum resistance wiper positions. R-DNL is the relative step change from an ideal value measured between successive tap positions. Parts are guaranteed monotonic, except R-DNL of AD5252 1 kΩ version at VDD =

2.7 V, IW = VDD/R for both VDD = 3 V and VDD = 5 V.

3 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider, similar to a voltage output digital-to-analog converter. VA = VDD and VB = 0 V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.

4 Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other. 5 Guaranteed by design and not subject to production test.

6 Command 0 NOP should be activated after Command 1 to minimize IDD_READ current consumption. 7 PDISS is calculated from IDD × VDD = 5 V.

8 All dynamic characteristics use VDD = 5 V.

Rev. A | Page 4 of 28

AD5251/AD5252

10 kΩ, 50 kΩ, 100 kΩ VERSIONS

VDD = +3 V ± 10% or +5 V ± 10%, VSS = 0 V or VDD/VSS = ± 2.5 V ± 10%, VA = VDD, VB = 0 V, –40°C < TA < +85°C, unless otherwise noted.

Table 2.

Parameter

Symbol

 

Conditions

Min

Typ1

Max

Unit

 

DC CHARACTERISTICS—

 

 

 

 

 

 

 

 

 

 

RHEOSTAT MODE

 

 

 

 

 

 

 

 

 

 

Resolution

N

 

AD5251

 

 

6

Bits

 

 

 

 

 

AD5252

 

 

8

Bits

 

Resistor Differential

R-DNL

 

RWB, RWA = NC, AD5251

−0.75

±0.10

+0.75

LSB

 

Nonlinearity2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RWB, RWA = NC, AD5252

−1.00

±0.25

+1.00

LSB

 

Resistor Nonlinearity2

R-INL

 

RWB, RWA = NC, AD5251

−0.75

±0.25

+0.75

LSB

 

 

 

 

 

RWB, RWA = NC, AD5252

−2.5

±1.0

+2.5

LSB

 

Nominal Resistor Tolerance

ΔRAB/RAB

 

TA = 25°C

−20

 

+20

%

 

 

Resistance Temperature

(ΔRAB/RAB) × 106/ΔT

 

 

 

 

650

 

ppm/°C

 

Coefficient

 

 

 

 

 

 

 

 

 

 

Wiper Resistance

RW

 

IW = 1 V/R, VDD = 5 V

 

75

130

Ω

 

 

 

 

 

IW = 1 V/R, VDD = 3 V

 

200

300

Ω

 

Channel-Resistance Matching

ΔRAB1/ΔRAB2

 

RAB = 10 kΩ, 50 kΩ

 

0.15

 

%

 

 

 

 

 

 

RAB = 100 kΩ

 

0.05

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

DC CHARACTERISTICS—

 

 

 

 

 

 

 

 

 

 

POTENTIOMETER DIVIDER MODE

 

 

 

 

 

 

 

 

 

 

Differential Nonlinearity3

DNL

AD5251

−0.5

±0.1

+0.5

LSB

 

 

 

 

 

AD5252

−1.0

±0.3

+1.0

LSB

 

Integral Nonlinearity3

INL

AD5251

−0.50

±0.15

+0.50

LSB

 

 

 

 

 

AD5252

−1.5

±0.5

+1.5

LSB

 

Voltage Divider

(ΔVW/VW) × 106/ΔT

 

Code = lf sc le

 

15

 

ppm/°C

 

Temperature Coefficient

 

MacshbM

 

 

 

Full-Scale Error

VWFSE

 

Code = full scale, AD5251

−1.0

−0.3

0

LSB

 

 

 

 

 

Code = full scale, AD5252

−3

−1

0

LSB

 

Zero-Scale Error

VWZSE

 

Code = zero scale, AD5251

0

0.3

1.0

LSB

 

 

 

 

 

Code = zero scale, AD5252

0

1.2

3.0

LSB

 

 

 

 

 

 

 

 

 

 

 

 

RESISTOR TERMINALS

 

 

 

 

 

 

 

 

 

 

Voltage Range4

VA, VB, VW

 

 

 

VSS

 

VDD

V

 

Capacitance5 A, B

CA, CB

 

f = 1 kHz, measured to GND,

 

85

 

pF

 

 

 

 

 

code = half scale

 

 

 

 

 

 

Capacitance5 W

CW

 

f = 1 kHz, measured to GND,

 

95

 

pF

 

 

 

 

 

code = half scale

 

 

 

 

 

 

Common-Mode Leakage Current

ICM

 

VA = VB = VDD/2

 

0.01

1.00

μA

 

 

 

 

 

 

 

 

 

 

 

 

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

 

 

Input Logic High

VIH

 

VDD = 5 V, VSS = 0 V

2.4

 

 

V

 

 

 

 

 

VDD/VSS = +2.7 V/0 V or VDD/VSS = ±2.5 V

2.1

 

 

V

 

Input Logic Low

VIL

 

VDD = 5 V, VSS = 0 V

 

 

0.8

V

 

 

 

 

 

VDD/VSS = +2.7 V/0 V or VDD/VSS = ±2.5 V

 

 

0.6

V

 

Output Logic High (SDA)

VOH

 

RPULL-UP = 2.2 kΩ to VDD = 5 V, VSS = 0 V

4.9

 

 

V

 

Output Logic Low (SDA)

VOL

 

RPULL-UP = 2.2 kΩ to VDD = 5 V, VSS = 0 V

 

 

0.4

V

 

 

IWP

 

 

= VDD

 

 

5

μA

 

WP

Leakage Current

 

WP

 

 

 

A0 Leakage Current

IA0

 

A0 = GND

 

 

3

μA

 

Input Leakage Current

II

 

VIN = 0 V or VDD

 

 

±1

μA

 

(Other than WP and A0)

 

 

 

 

 

 

 

 

 

 

Input Capacitance5

CI

 

 

 

 

5

 

pF

 

Rev. A | Page 5 of 28

AD5251/AD5252

Parameter

 

Symbol

Conditions

Min

Typ1

Max

Unit

 

POWER SUPPLIES

 

 

 

 

 

 

 

 

 

 

 

Single-Supply Power Range

 

VDD

VSS = 0 V

2.7

 

5.5

V

 

Dual-Supply Power Range

 

VDD/VSS

 

±2.25

 

±2.75

V

 

Positive Supply Current

 

IDD

VIH = VDD or VIL = GND

 

5

15

μA

 

Negative Supply Current

 

ISS

VIH = VDD or VIL = GND, VDD = 2.5 V,

 

−5

−15

μA

 

 

 

 

VSS = −2.5 V

 

 

 

 

 

 

 

 

EEMEM Data Storing Mode

 

IDD_STORE

VIH = VDD or VIL = GND, TA = 0°C to 85°C

 

35

 

mA

 

Current

 

 

 

 

 

 

 

 

 

 

 

EEMEM Data Restoring Mode

 

IDD_RESTORE

VIH = VDD or VIL = GND, TA = 0°C to 85°C

 

2.5

 

mA

 

Current6

 

 

 

 

 

 

 

 

 

 

 

Power Dissipation7

 

PDISS

VIH = VDD = 5 V or VIL = GND

 

 

0.075

mW

 

Power Supply Sensitivity

 

PSS

ΔVDD = 5 V ± 10%

−0.005

+0.002

+0.005

%/%

 

 

 

 

 

 

 

ΔVDD = 3 V ± 10%

−0.010

+0.002

+0.010

%/%

 

 

 

DYNAMIC CHARACTERISTICS5, 8

 

 

 

 

 

 

 

 

 

 

 

–3 dB Bandwidth

 

BW

RAB = 10 kΩ/50 kΩ/100 kΩ

 

400/80/40

 

kHz

 

Total Harmonic Distortion

 

THDW

VA = 1 V rms, VB = 0 V, f = 1 kHz

 

0.05

 

%

 

 

 

 

VW Settling Time

 

tS

VA = VDD, VB = 0 V,

 

1.5/7/14

 

μs

 

 

 

 

RAB = 10 kΩ/50 kΩ/100 kΩ

 

 

 

 

 

 

 

 

Resistor Noise Voltage

 

eN_WB

RAB = 10 kΩ/50 kΩ/100 kΩ,

 

9/20/29

 

 

 

 

 

 

 

 

 

nV/√Hz

 

 

 

 

 

 

code = midscale, f = 1 kHz

 

 

 

 

 

 

 

 

 

 

 

(thermal noise only)

 

 

 

 

 

 

 

 

Digital Crosstalk

 

CT

VA = VDD, VB = 0 V, measure VW with

 

−80

 

dB

 

 

 

 

adjacent RDAC making full-scale

 

 

 

 

 

 

 

 

 

 

 

change

 

 

 

 

 

 

 

 

Analog Coupling

 

CAT

Signal input t A1 nd measure

 

−72

 

dB

 

nonlinearity error (R-INL)

is the deviation from an

MacshbMideal value measured between the maximum and minimum resistance wiper positions. R

-DNL is the

 

 

 

 

output t W3, f = 1 kHz

 

 

 

 

 

 

 

1 Typical values represent average readings at 25°C and VDD = 5 V.

 

 

 

 

 

 

 

 

2

Resistor position

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relative step change from an ideal value measured between successive tap positions. Parts are guaranteed monotonic, except R-DNL of AD5252 1 kΩ version at VDD = 2.7 V,

 

IW = VDD/R for both VDD = 3 V and VDD = 5 V.

 

 

 

 

 

 

 

 

 

3INL and DNL are measured at VW with the RDAC configured as a potentiometer divider, similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.

4 Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other. 5 Guaranteed by design and not subject to production test.

6 Command 0 NOP should be activated after Command 1 to minimize IDD_READ current consumption. 7 PDISS is calculated from IDD × VDD = 5 V.

8 All dynamic characteristics use VDD = 5 V.

Rev. A | Page 6 of 28

AD5251/AD5252

INTERFACE TIMING CHARACTERISTICS

All input control voltages are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using both VDD = 3 V and 5 V.

Table 3. Interface Timing and EEMEM Reliability Characteristics (All Parts)1

Parameter

Symbol

Conditions

Min

Typ Max

Unit

 

INTERFACE TIMING

 

 

 

 

 

 

 

SCL Clock Frequency

fSCL

 

 

 

400

kHz

tBUF Bus-Free Time Between Stop and Start

t1

 

 

1.3

 

μs

tHD;STA Hold Time (Repeated Start)

t2

 

After this period, the first clock pulse is

0.6

 

μs

 

 

 

generated.

 

 

 

 

tLOW Low Period of SCL Clock

t3

 

 

1.3

 

μs

tHIGH High Period of SCL Clock

t4

 

 

0.6

 

μs

tSU;STA Set-up Time for Start Condition

t5

 

 

0.6

 

μs

tHD;DAT Data Hold Time

t6

 

 

0

0.9

μs

tSU;DAT Data Set-up Time

t7

 

 

100

 

ns

tF Fall Time of Both SDA and SCL Signals

t8

 

 

 

300

ns

tR Rise Time of Both SDA and SCL Signals

t9

 

 

 

300

ns

tSU;STO Set-up Time for Stop Condition

t10

 

 

0.6

 

μs

EEMEM Data Storing Time

tEEMEM_STORE

 

 

26

ms

EEMEM Data Restoring Time at Power-On2

tEEMEM_RESTORE1

VDD rise time dependent. Measure

 

300

μs

 

 

 

without decoupling capacitors at VDD

 

 

 

 

 

 

 

and VSS.

 

 

 

 

EEMEM Data Restoring Time upon Restore

tEE

EM RESTORE2

VDD = 5 V.

 

300

μs

 

 

MacshbM

 

 

Command or Reset Operation2

 

 

 

 

 

 

 

EEMEM Data Rewritable Time (Delay Time

tEE

EM REWRITE

 

 

540

μs

After Power-On or Reset Before EEMEM

 

 

 

 

 

 

 

Can Be Written)

 

 

 

 

 

 

 

FLASH/EE MEMORY RELIABILITY

 

 

 

 

 

 

 

Endurance3

 

 

 

100

 

k cycles

Data Retention4

 

 

 

 

100

Years

 

1 Guaranteed by design; not subject to production test. See Figure 23 for location of measured values.

2 During power-up, all outputs are preset to midscale before restoring the EEMEM contents. RDAC0 has the shortest EEMEM data restoring time, whereas RDAC3 has the longest.

3 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, and +85°C; typical endurance at +25°C is 700,000 cycles.

4Retention lifetime equivalent at junction temperature TJ = 55°C per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6 eV derates with junction temperature in Flash/EE memory.

Rev. A | Page 7 of 28

AD5251/AD5252

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.

Table 4.

Parameter

Rating

 

 

VDD to GND

−0.3 V, +7 V

VSS to GND

+0.3 V, −7 V

VDD to VSS

7 V

VA, VB, VW to GND

VSS, VDD

Maximum Current

 

IWB, IWA Pulsed

±20 mA

IWB Continuous (RWB ≤ 1 kΩ, A Open)1

±5 mA

IWA Continuous (RWA ≤ 1 kΩ, B Open)1

±5 mA

IAB Continuous

±5 mA/±500 μA/

(RAB = 1 kΩ/10 kΩ/50 kΩ/100 kΩ)1

±100 μA/±50 μA

Digital Inputs and Output Voltage to GND

0 V, 7 V

Operating Temperature Range

−40°C to +85°C

Maximum Junction Temperature (TJMAX)

150°C

Storage Temperature Range

−65°C to +150°C

Lead Temperature (Soldering, 10 sec)

300°C

Vapor Phase (60 sec)

215°C

Infrared (15 sec)

220°C

TSSOP-14 Thermal Resistance2 θJA

136°C/W

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1 Maximum terminal current is bound by the maximum applied voltageMacshbMacross any two of the A, B, and W terminals at a given resistance, the maximum

current handling of the switches, and the maximum power dissipation of the package. VDD = 5 V.

2 Package power dissipation = (TJMAX − TA)/θJA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Rev. A | Page 8 of 28

ANALOG DEVICES AD5251, AD5252 Service Manual

AD5251/AD5252

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

VDD

1

 

14

W3

AD0

2

AD5251/

13

B3

 

 

 

3

12

A3

 

WP

 

W1

4

AD5252

11

AD1

 

TOP VIEW

 

 

 

 

 

 

 

B1

5

(Not to Scale)

10

DGND

 

A1

6

 

9

SCL

SDA

7

 

8

VSS

Figure 2. Pin Configuration

03823-0-002

Table 5. Pin Function Descriptions

Pin No.

 

Mnemonic

Description

1

 

VDD

Positive Power Supply Pin. Connect +2.7 V to +5 V for single supply or ±2.7 V for dual supply, where

 

 

 

 

VDD – VSS ≤ 5.5 V. VDD must be able to source 35 mA for 26 ms when storing data to EEMEM.

2

 

AD0

I2C Device Address 0. AD0 and AD1 allow four AD5251/AD5252 devices to be addressed.

3

 

WP

 

Write Protect, Active Low. VWP ≤ VDD + 0.3 V.

4

W1

Wiper Terminal of RDAC1. VSS ≤ VW1 ≤ VDD.1

5

B1

B Terminal of RDAC1. VSS ≤ VB1 ≤ VDD.1

6

 

A1

A Terminal of RDAC1. VSS ≤ VA1 ≤ VDD.1

7

 

SDA

Serial Data Input/Output Pin. Shifts in one bit at a time upon positive clock edges. MSB loaded first.

 

 

 

 

Open-drain MOSFET requires pull-up resistor.

8

 

VSS

Negative Supply. Connect to 0 V for single supply or –2.7 V for dual supply, where VDD – VSS ≤ +5.5 V. If

 

MacshbM

 

 

 

 

VSS is used in dual supply, VSS must be ble to sink 35 mA for 26 ms w en storing data to EEMEM.

9

 

SCL

Serial Input Register Clock Pin. Shifts in one bit at time upon po itive clock edges. VSCL ≤ (VDD + 0.3 V).

 

 

 

 

Pull-up resistor is recommended for SCL to ensure minimum power.

10

DGND

Digital Ground. Connect to system analog ground at a single point.

11

 

AD1

I2C Device Address 1. AD0 and AD1 allow four AD5251/AD5252 devices to be addressed.

12

 

A3

A Terminal of RDAC3. VSS ≤ VA3 ≤ VDD.1

13

B3

B Terminal of RDAC3. VSS ≤ VB3 ≤ VDD.1

14

W3

Wiper Terminal of RDAC3. VSS ≤ VW3 ≤ VDD.1

1 For quad-channel device software compatibility, the dual potentiometers in the parts are designated as RDAC1 and RDAC3.

Rev. A | Page 9 of 28

Loading...
+ 19 hidden pages