Analog Devices AD5232BRU50-REEL7, AD5232BRU50, AD5232BRU100-REEL7, AD5232BRU100, AD5232BRU10-REEL7 Datasheet

...
0 (0)

a

8-Bit Dual Nonvolatile Memory

Digital Potentiometer

FEATURES

Nonvolatile Memory Preset Maintains Wiper Settings Dual Channel, 256-Position Resolution

Full Monotonic Operation DNL < 1 LSB

10 k , 50 k , 100 k Terminal Resistance

Linear or Log Taper Settings

Push-Button Increment/Decrement Compatible SPI-Compatible Serial Data Input with Readback

Function

3 V to 5 V Single Supply or 2.5 V Dual Supply

Operation

14 Bytes of User EEMEM Nonvolatile Memory for Constant Storage

Permanent Memory Write Protection 100-Year Typical Data Retention TA = 55 C

APPLICATIONS

Mechanical Potentiometer Replacement

Instrumentation: Gain, Offset Adjustment

Programmable Voltage-to-Current Conversion

Programmable Filters, Delays, Time Constants

Line Impedance Matching

Power Supply Adjustment

DIP Switch Setting

GENERAL DESCRIPTION

The AD5232 device provides a nonvolatile, dual-channel, digitally controlled variable resistor (VR) with 256-position resolution. These devices perform the same electronic adjustment function as a potentiometer or variable resistor. The AD5232’s versatile programming via a microcontroller allows multiple modes of operation and adjustment.

In the direct program mode a predetermined setting of the RDAC register can be loaded directly from the microcontroller. Another key mode of operation allows the RDAC register to be refreshed with the setting previously stored in the EEMEM register. When changes are made to the RDAC register to establish a new wiper position, the value of the setting can be saved into the EEMEM by executing an EEMEM save operation. Once the settings are saved in the EEMEM register these values will be automatically transferred to the RDAC register to set the wiper position at system power ON. Such operation is enabled by the internal preset strobe and the preset can also be accessed externally.

All internal register contents can be read out of the serial data output (SDO). This includes the RDAC1 and RDAC2 registers, the corresponding nonvolatile EEMEM1 and EEMEM2 registers, and the 14 spare USER EEMEM registers available for constant storage.

*Patent pending.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD5232*

FUNCTIONAL BLOCK DIAGRAM

CS

 

 

AD5232

 

RDAC1

VDD

CLK

ADDR

RDAC1

DECODE

REGISTER

 

 

A1

SDI

SDI

 

 

 

 

 

 

W1

GND

SERIAL

EEMEM1

B1

INTERFACE

SDO

SDO

RDAC2

RDAC2

 

 

REGISTER

A2

WP

EEMEM

 

W2

 

 

RDY

CONTROL

 

B2

 

EEMEM2

 

 

PR

14 BYTES

 

 

VSS

USER EEMEM

 

 

 

The basic mode of adjustment is the increment and decrement command controlling the present setting of the Wiper position setting (RDAC) register. An internal scratch pad RDAC register can be moved UP or DOWN one step of the nominal terminal resistance between terminals A and B. This linearly changes the wiper to B terminal resistance (RWB) by one position segment of the devices’ end-to-end resistance (RAB). For exponential/logarithmic changes in wiper setting, a left/right shift command adjusts levels in ± 6 dB steps, which can be useful for audio and light alarm applications.

The AD5232 is available in a thin TSSOP-16 package. All parts are guaranteed to operate over the extended industrial temperature range of –40° C to +85° C. An evaluation board is available, Part Number: AD5232EVAL.

AB

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

75

 

 

 

 

 

 

 

 

OFPERCENTNOMINAL RESISTANCEEND-TO-END – %

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

RWB

 

 

 

 

RWA

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

64

128

192

256

 

0

CODE – Decimal

Figure 1. Symmetrical RDAC Operation

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD5232–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS, 10 k , 50 k , 100 k VERSIONS

( VDD = 3 V 10% or 5 V 10% and VSS = 0 V, VA = +VDD, VB = 0 V, –40 C < TA < +85 C unless otherwise noted.)

Parameter

Symbol

 

Conditions

Min

Typ1

Max

Unit

DC CHARACTERISTICS

 

 

 

 

 

 

 

RHEOSTAT MODE – Specifications Apply to All VRs

 

 

± 1/2

 

 

Resistor Differential Nonlinearity2

R-DNL

 

RWB, VA = NC

–1

+1

LSB

Resistor Nonlinearity2

R-INL

 

RWB, VA = NC

–0.4

 

+0.4

% FS

Nominal Resistor Tolerance

RAB

 

 

–40

 

+20

%

Resistance Temperature Coefficient

RAB/ T

 

 

 

600

 

ppm/° C

Wiper Resistance

RW

 

IW = 100 µ A, VDD = 5.5 V, Code = 1EH

 

5

100

 

RW

 

IW = 100 µ A, VDD = 3 V, Code = 1EH

 

200

 

POTENTIOMETER DIVIDER MODE — Specifications Apply to All VRs

 

 

 

 

Resolution

N

 

 

8

± 1/2

 

Bits

Differential Nonlinearity3

DNL

 

 

–1

+1

LSB

Integral Nonlinearity3

INL

 

 

–0.4

 

+0.4

% FS

Voltage Divider Temperature Coefficient

VW/ T

 

Code = Half-Scale

 

15

 

ppm/° C

Full-Scale Error

VWFSE

 

Code = Full-Scale

–3

 

0

% FS

Zero-Scale Error

VWZSE

 

Code = Zero-Scale

0

 

+3

% FS

RESISTOR TERMINALS

 

 

 

 

 

 

 

Terminal Voltage Range4

VA,B,W

 

 

VSS

 

VDD

V

Capacitance5 Ax, Bx

CA,B

 

f = 1 MHz, Measured to GND,

 

 

 

 

Capacitance5 Wx

 

 

Code = Half-Scale

 

45

 

pF

CW

 

f = 1 MHz, Measured to GND,

 

 

 

 

 

 

 

Code = Half-Scale

 

60

 

pF

Common-Mode Leakage Current5, 6

ICM

 

VW = VDD/2

 

0.01

1

µ A

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

Input Logic High

VIH

 

With Respect to GND, VDD = 5 V

2.4

 

 

V

Input Logic Low

VIL

 

With Respect to GND, VDD = 5 V

 

 

0.8

V

Input Logic High

VIH

 

With Respect to GND, VDD= 3 V

2.1

 

 

V

Input Logic Low

VIL

 

With Respect to GND, VDD = 3 V

 

 

0.6

V

Input Logic High

VIH

 

With Respect to GND, VDD = +2.5 V,

2.0

 

 

V

Input Logic Low

VIL

 

VSS = –2.5 V

 

 

 

 

 

With Respect to GND, VDD = +2.5 V,

 

0.5

 

V

 

 

 

VSS = –2.5 V

 

 

 

 

Output Logic High (SDO and RDY)

VOH

 

RPULL-UP = 2.2 kto 5 V

4.9

 

 

V

Output Logic Low

VOL

 

IOL = 1.6 mA, VLOGIC = 5 V

 

 

0.4

V

Input Current

IIL

 

VIN = 0 V or VDD

 

 

± 2.5

µ A

Input Capacitance5

CIL

 

 

 

4

 

pF

POWER SUPPLIES

 

 

 

 

 

 

 

Single-Supply Power Range

VDD

 

VSS = 0 V

2.7

 

5.5

V

Dual-Supply Power Range

VDD/VSS

 

 

± 2.25

 

± 2.75

V

Positive Supply Current

IDD

 

VIH = VDD or VIL = GND

 

3.5

10

µ A

Programming Mode Current

IDD(PG)

 

VIH = VDD or VIL = GND

 

35

 

mA

Read Mode Current7

IDD(XFR)

 

VIH = VDD or VIL = GND

0.9

3

9

mA

Negative Supply Current

ISS

 

VIH = VDD or VIL = GND,

 

 

 

µ A

Power Dissipation8

 

 

VDD = +2.5 V, VSS = –2.5 V

 

3.5

10

PDISS

 

VIH = VDD or VIL = GND

 

0.018

0.05

mW

Power Supply Sensitivity5

PSS

 

VDD = 5 V ± 10%

 

0.002

0.01

%/%

–2–

REV. 0

AD5232

Parameter

Symbol

Conditions

 

Min Typ1

Max

Unit

DYNAMIC CHARACTERISTICS5, 9

 

–3 dB, BW_10 k, R = 10 k

 

 

 

Bandwidth

 

500

 

kHz

Total Harmonic Distortion

THDW

VA = 1 V rms, VB = 0 V, f = 1 kHz,

 

 

 

 

THDW

RAB = 10 k

 

0.022

 

%

 

VA =1 V rms, VB = 0 V, f = 1 kHz,

 

 

 

 

 

RAB = 50 k, 100 k

 

0.045

 

%

VW Settling Time

tS

VDD = 5 V, VSS = 0 V, VA = VDD, VB = 0 V,

 

 

 

 

 

VW = 0.50% Error Band, Code 00H to 80H

 

 

 

 

 

For RAB = 10 k/50 k

/100 k

0.65/3/6

 

µ s

Resistor Noise Voltage

eN_WB

RWB = 5 k, f = 1 kHz

 

9

 

nV/Hz

 

 

Crosstalk (CW1/CW2)

CT

 

 

 

 

 

VA = VDD, VB = 0 V, Measure VW with

 

 

 

 

 

Adjacent VR Making Full-Scale Code Change

–5

 

nV-s

Analog Crosstalk (CW1/CW2)

CTA

VA1 = VDD, VB1 = 0 V, Measure VW1

 

 

 

 

 

with VW2 = 5 V p-p @ f = 10 kHz,

 

 

 

 

 

Code1 = 80H; Code2 = FFH

–70

 

dB

INTERFACE TIMING CHARACTERISTICS – Applies to All Parts5, 10

 

 

 

 

Clock Cycle Time (tCYC)

t1

 

 

20

 

ns

CS Setup Time

t2

 

 

10

 

ns

CLK Shutdown Time to CS Rise

t3

 

 

1

 

tCYC

Input Clock Pulsewidth

t 4 , t 5

Clock Level High or Low

10

 

ns

Data Setup Time

t6

From Positive CLK Transition

5

 

ns

Data Hold Time

t7

From Positive CLK Transition

5

 

ns

CS to SDO-SPI Line Acquire

t8

 

 

 

40

ns

CS to SDO-SPI Line Release

t 9

RP = 2.2 k, CL < 20 pF

 

50

ns

CLK to SDO Propagation Delay11

t10

 

50

ns

CLK to SDO Data Hold Time

t11

RP = 2.2 k, CL < 20 pF

0

 

ns

CS High Pulsewidth12

t12

 

 

10

 

ns

CS High to CS High12

t 13

 

 

4

 

tCYC

RDY Rise to CS Fall

t 14

 

 

0

 

ns

CS Rise to RDY Fall Time

t 15

 

 

0.1

0.15

ms

Read/Store to Nonvolatile EEMEM13

t 16

Applies to Command 2H, 3H, 9H

 

25

ms

CS Rise to Clock Rise/Fall Setup

t17

 

 

10

 

ns

Preset Pulsewidth (Asynchronous)

tPRW

Not Shown in Timing Diagram

50

 

ns

Preset Response Time to RDY High

tPRESP

PR Pulsed Low to Refreshed

 

 

µ s

 

 

Wiper Positions

 

70

 

FLASH/EE MEMORY RELIABILITY CHARACTERISTICS

 

 

 

 

Endurance14

 

 

 

100

 

K Cycles

 

 

 

 

Data Retention15

 

 

 

100

 

Years

NOTES

1Typical parameters represent average readings at 25° C and VDD = 5 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper postions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W ~ 50 µ A @ VDD = 2.7 V and

IW ~ 400 µ A @ VDD = 5 V for the RAB = 10 kversion, IW ~ 50 µ A for the RAB = 50 kand IW ~ 25 µ A for the RAB = 100 kversion. See Figure 13.

3INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = VSS. DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 14.

4Resistor terminals A, B, W have no limitations on polarity with respect to each other. Dual Supply Operation enables ground-referenced bipolar signal adjustment. 5Guaranteed by design and not subject to production test.

6Common-mode leakage current is a measure of the dc leakage from any terminal A, B, W to a common-mode bias level of VDD/2.

7Transfer (XFR) Mode current is not continuous. Current consumed while EEMEM locations are read and transferred to the RDAC register. See TPC 9.

8PDISS is calculated from (IDD VDD) + (ISS VSS).

9All dynamic characteristics use VDD = +2.5 V and VSS = –2.5 V unless otherwise noted.

10See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using both VDD = 3 V or 5 V.

11Propagation delay depends on value of VDD, RPULL_UP, and CL. See applications text. 12Valid for commands that do not activate the RDY pin.

13RDY pin low only for instruction commands 8, 9, 10, 2, 3, and the PR hardware pulse: CMD_8 ~ 1 ms; CMD_9,10 ~ 0.12 ms; CMD_2,3 ~ 20 ms. Device operation at TA = –40° C and VDD < 3 V extends the save time to 35 ms.

14Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A117 and measured at V DD = 2.7 V, TA = –40° C to +85° C, typical endurance at 25° C is 700,000 cycles.

15Retention lifetime equivalent at junction temperature (TJ) = 55° C as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV will derate with junction temperature as shown in Figure 23 in the Flash/EE Memory description section of this data sheet. The AD5232 contains 9,646 transistors. Die size: 69 mil 115 mil, 7,993 sq. mil.

Specifications subject to change without notice

REV. 0

–3–

Analog Devices AD5232BRU50-REEL7, AD5232BRU50, AD5232BRU100-REEL7, AD5232BRU100, AD5232BRU10-REEL7 Datasheet

AD5232

 

 

 

CPHA = 1

 

CS

 

 

 

 

 

 

 

 

t12

 

 

t1

t3

t13

 

t2

 

 

 

 

 

 

CLK

 

t5

 

 

CPOL = 1

 

 

t17

 

t4

 

 

 

 

 

 

t8

 

t10

t9

 

 

t11

SDO

*

MSB

LSB OUT

 

 

 

 

t7

 

 

 

 

t6

 

SDI

 

MSB

LSB

 

 

t14

 

 

t15

RDY

 

 

 

t16

 

 

 

 

*NOT DEFINED, BUT NORMALLY LSB OF CHARACTER PREVIOUSLY TRANSMITTED.

THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 2a. CPHA = 1 Timing Diagram

CS

 

CPHA = 0

 

 

 

 

 

 

 

 

 

 

t12

 

 

t1

t3

t13

 

 

 

 

t2

t5

 

t17

 

 

 

CLK

 

t4

 

CPOL = 0

 

 

 

 

 

t8

t10

t11

 

 

 

 

 

t9

SDO

MSB OUT

LSB

 

*

 

 

t7

 

 

 

 

t6

 

 

SDI

MSB IN

LSB

 

 

 

t14

 

 

t15

 

 

 

 

t16

RDY

 

 

 

 

*NOT DEFINED, BUT NORMALLY MSB OF CHARACTER JUST RECEIVED.

THE CPOL = 0 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 2b. CPHA = 0 Timing Diagram

–4–

REV. 0

AD5232

ABSOLUTE MAXIMUM RATINGS1

(TA = 25° C, unless otherwise noted)

 

 

VDD to GND . . . . . . . . . . . . . . . . . .

. . . . .

. . . . . –0.3 V, +7 V

VSS to GND . . . . . . . . . . . . . . . . . . . .

. . . .

. . . . +0.3 V, –7 V

VDD to VSS . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . . . . . . . . . . 7 V

VA, VB, VW to GND . . . . . . . . . . . . .

VSS – 0.3 V, VDD + 0.3 V

AX – BX, AX – WX, BX – WX

 

± 20 mA

Intermittent2 . . . . . . . . . . . . . . . . .

. . . .

Continuous . . . . . . . . . . . . . . . . . .

. . . .

. . . . . . . . . ± 2 mA

Digital Inputs and Output Voltage to

 

–0.3 V, VDD +0.3 V

GND . . . . . . . . . . . . . . . . . . . . . . .

. . .

Operating Temperature Range3 . . . . .

. . . .

. . –40° C to +85° C

Maximum Junction Temperature (TJ

Max)

. . . . . . . . 150° C

Storage Temperature . . . . . . . . . . . . .

. . . .

. –65° C to +150° C

Lead Temperature, Soldering

 

215° C

Vapor Phase (60 sec) . . . . . . . . . . .

. . . .

Infrared (15 sec) . . . . . . . . . . . . . .

. . . .

. . . . . . . . . 220° C

Package Power Dissipation . . . . . . . . . . . . .

(TJ Max – TA)/ JA

Thermal Resistance Junction-to-Ambient JA,

150° C/W

TSSOP-16 . . . . . . . . . . . . . . . . . . . . . . . .

Thermal Resistance Junction-to-Case JC,

28° C/W

TSSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . .

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

3Includes programming of nonvolatile memory.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5232 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

WARNING!

ESD SENSITIVE DEVICE

 

 

 

 

 

 

Number of

 

 

Number of

End-to-End

Temperature

Package

Package

Devices per

Branding*

Model

Channels

R AB (k )

Range (° C)

Description

Option

Container

Information

AD5232BRU10

2

10

–40 to +85

TSSOP-16

RU-16

96

5232B10

AD5232BRU10-REEL7

2

10

–40 to +85

TSSOP-16

RU-16

1,000

5232B10

AD5232BRU50

2

50

–40 to +85

TSSOP-16

RU-16

96

5232B50

AD5232BRU50-REEL7

2

50

–40 to +85

TSSOP-16

RU-16

1,000

5232B50

AD5232BRU100

2

100

–40 to +85

TSSOP-16

RU-16

96

5232BC

AD5232BRU100-REEL7

2

100

–40 to +85

TSSOP-16

RU-16

1,000

5232BC

 

 

 

 

 

 

 

 

*Line 1 contains ADI logo symbol and the data code YYWW, line 2 contains detail model number listed in this column.

REV. 0

–5–

AD5232

PIN CONFIGURATION

CLK

 

 

 

RDY

1

 

16

SDI

 

 

 

CS

2

 

15

SDO

 

 

 

PR

3

 

14

GND

 

AD5232

 

 

4

13

WP

VSS

 

TOP VIEW

 

VDD

5

(Not to Scale)

12

A1

 

 

 

A2

6

 

11

W1

 

 

 

W2

7

 

10

B1

 

 

 

B2

8

 

9

 

 

 

 

 

 

 

PIN FUNCTION DESCRIPTIONS

Pin

 

 

Number

Mnemonic

Description

 

 

 

1

CLK

Serial Input Register Clock Pin. Shifts in one bit at a time on positive clock edges.

2

SDI

Serial Data Input Pin. MSB Loaded First.

3

SDO

Serial Data Output Pin. Open Drain Output requires external pull-up resistor. Commands 9 and 10

 

 

activate the SDO output. See Table II. Other commands shift out the previously loaded SDI bit

 

 

pattern delayed by 16 clock pulses. This allows daisy-chain operation of multiple packages.

4

GND

Ground Pin, Logic Ground Reference.

5

VSS

Negative Supply. Connect to zero volts for single supply applications.

6

A1

A Terminal of RDAC1

7

W1

Wiper Terminal of RDAC1, ADDR(RDAC1) = 0H

8

B1

B Terminal of RDAC1

9

B2

B Terminal of RDAC2

10

W2

Wiper Terminal of RDAC2, ADDR(RDAC2) = 1H

11

A2

A Terminal of RDAC2

12

VDD

Positive Power Supply Pin

13

WP

Write Protect Pin. When active low, WP prevents any changes to the present register contents, except

 

 

PR and CMD 1 and 8 will refresh RDAC register from EEMEM. Execute a NOP instruction before

 

 

returning WP to logic high.

14

PR

Hardware Override Preset Pin. Refreshes the scratch pad register with current contents of the EEMEM

 

 

register. Factory default loads midscale 80H until EEMEM is loaded with a new value by the user

 

 

(PR is activated at the logic high transition).

15

CS

Serial Register Chip Select Active Low. Serial register operation takes place when CS returns to logic high.

16

RDY

Ready. Active-high open drain output, requires pull-up resistor. Identifies completion of commands

 

 

2, 3, 8, 9, 10, and PR.

 

 

 

–6–

REV. 0

Loading...
+ 14 hidden pages