Analog Devices AD568SQ, AD568KQ, AD568JQ Datasheet

0 (0)

a

12-Bit Ultrahigh Speed

Monolithic D/A Converter

 

 

 

 

 

AD568

 

 

 

 

FEATURES

FUNCTIONAL BLOCK DIAGRAM

 

Ultrahigh Speed: Current Settling to 1 LSB in 35 ns

 

 

High Stability Buried Zener Reference on Chip

 

 

Monotonicity Guaranteed Over Temperature

 

 

10.24 mA Full-Scale Output Suitable for Video

 

 

Applications

 

 

Integral and Differential Linearity Guaranteed Over

 

 

Temperature

 

 

0.3" “Skinny DIP” Packaging

 

 

Variable Threshold Allows TTL and CMOS

 

 

Interface

 

 

MIL-STD-883 Compliant Versions Available

 

PRODUCT DESCRIPTION

The AD568 is an ultrahigh-speed, 12-bit digital-to-analog converter (DAC) settling to 0.025% in 35 ns. The monolithic device is fabricated using Analog Devices’ Complementary Bipolar (CB) Process. This is a proprietary process featuring high-speed NPN and PNP devices on the same chip without the use of dielectric isolation or multichip hybrid techniques. The high speed of the AD568 is maintained by keeping impedance levels low enough to minimize the effects of parasitic circuit capacitances.

The DAC consists of 16 current sources configured to deliver a 10.24 mA full-scale current. Multiple matched current sources and thin-film ladder techniques are combined to produce bit weighting. The DAC’s output is a 10.24 mA full scale (FS) for current output applications or a 1.024 V FS unbuffered voltage output. Additionally, a 10.24 V FS buffered output may be generated using an onboard 1 kΩ span resistor with an external op amp. Bipolar ranges are accomplished by pin strapping.

Laser wafer trimming insures full 12-bit linearity. All grades of the AD568 are guaranteed monotonic over their full operating temperature range. Furthermore, the output resistance of the DAC is trimmed to 100 Ω ± 1.0%. The gain temperature coefficient of the voltage output is 30 ppm/°C max (K).

The AD568 is available in three performance grades. The AD568JQ and KQ are available in 24-pin cerdip (0.3") packages and are specified for operation from 0°C to +70°C. The AD568SQ features operation from –55°C to +125°C and is also packaged in the hermetic 0.3" cerdip.

PRODUCT HIGHLIGHTS

1.The ultrafast settling time of the AD568 allows leading edge performance in waveform generation, graphics display and high speed A/D conversion applications.

2.Pin strapping provides a variety of voltage and current output ranges for application versatility. Tight control of the absolute output current reduces trim requirements in externallyscaled applications.

3.Matched on-chip resistors can be used for precision scaling in high speed A/D conversion circuits.

4.The digital inputs are compatible with TTL and +5 V CMOS logic families.

5.Skinny DIP (0.3") packaging minimizes board space requirements and eases layout considerations.

6.The AD568 is available in versions compliant with MIL- STD-883. Refer to the Analog Devices Military Products Databook or current AD568/883B data sheet for detailed specifications.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

AD568–SPECIFICATIONS (@ = +258C, VCC, VEE = 615 V unless otherwise noted)

Model

 

AD568J

 

 

 

AD568K

 

 

 

AD568S

 

 

 

Min

Typ

Max

 

Min

Typ

Max

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

RESOLUTION

12

 

 

 

12

 

 

 

12

 

 

Bits

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCURACY1

–1/2

 

+1/2

 

–1/4

 

+1/4

 

–1/2

 

+1/2

 

Linearity

 

 

 

 

 

LSB

TMIN to TMAX

–3/4

 

+3/4

 

–1/2

 

+1/2

 

–3/4

 

+3/4

LSB

Differential Nonlinearity

–1

 

+1

 

–1/2

 

+1/2

 

–1

 

+1

LSB

TMIN to TMAX

–1

 

+1

 

–1

 

+ 1

 

–1

 

–1

LSB

 

 

 

 

Monotonicity

GUARANTEED OVER RATED SPECIFICATION TEMPERATURE RANGE

 

Unipolar Offset

–0.2

 

+0.2

*

 

*

 

*

 

*

% of FSR

 

 

 

 

Bipolar Offset

–1.0

 

+1.0

*

 

*

 

*

 

*

% of FSR

Bipolar Zero

–0.2

 

+0.2

*

 

*

 

*

 

*

% of FSR

Gain Error

–1.0

 

+1.0

*

 

*

 

*

 

*

% of FSR

 

 

 

 

 

 

 

 

 

 

 

 

 

TEMPERATURE COEFFICIENTS2

–5

 

+5

 

–3

 

+3

 

–5

 

+5

ppm of FSR/°C

Unipolar Offset

 

 

 

 

 

Bipolar Offset

–30

 

+30

 

–20

 

+20

 

–30

 

+30

ppm of FSR/°C

Bipolar Zero

–15

 

+15

 

 

 

 

ppm of FSR/°C

Gain Drift

–50

 

+50

 

–30

 

+30

 

–50

 

+50

ppm of FSR/°C

Gain Drift (IOUT)

–150

 

+150

*

 

*

 

*

 

*

ppm of FSR/°C

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA INPUTS

 

 

 

 

 

 

 

 

 

 

 

 

Logic Levels (TMIN to TMAX)

2.0

 

 

 

 

 

 

 

 

 

 

 

VIH

 

7.0

*

 

*

 

*

 

*

V

VIL

0.0

 

0.8

*

 

*

 

*

 

*

V

Logic Currents (TMIN to TMAX)

–10

0

+10

 

 

 

 

 

 

 

 

μA

IIH

*

*

*

 

*

*

*

IIL

–0.5

–60

–100

*

*

*

 

*

–100

–200

μA

VTH Pin Voltage

 

1.4

 

 

 

*

 

 

 

*

 

V

CODING

 

 

 

 

BINARY, OFFSET BINARY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT OUTPUT RANGES

 

 

 

 

0 to 10.24, ±5.12

 

 

 

 

 

mA

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE OUTPUT RANGES

 

 

 

 

0 to 1.024, ±0.512

 

 

 

 

 

V

COMPLIANCE VOLTAGE

–2

 

+1.2

 

*

 

*

 

*

 

*

V

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT RESISTANCE

 

 

 

 

 

 

 

 

 

 

 

Ω

Exclusive of RL

160

200

240

 

 

*

 

 

 

*

 

Inclusive of RL

99

100

101

 

 

*

 

 

 

*

 

Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

SETTLING TIME

 

 

 

 

 

 

 

 

 

 

 

 

Current to

 

 

 

 

 

 

 

 

 

 

 

 

± 0.025%

 

35

 

 

 

*

 

 

 

*

 

ns to 0.025% of FSR

± 0.1%

 

23

 

 

 

*

 

 

 

*

 

ns to 0.1% of FSR

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

50 Ω Load3, 0.512 V p-p,

 

 

 

 

 

 

 

 

 

 

 

 

to 0.025%

 

37

 

 

 

*

 

 

 

*

 

ns to 0.025% of FSR

to 0.1%

 

25

 

 

 

*

 

 

 

*

 

ns to 0.1% of FSR

to 1%

 

18

 

 

 

*

 

 

 

*

 

ns to 1% of FSR

75 Ω Load3, 0.768 V p-p,

 

 

 

 

 

 

 

 

 

 

 

 

to 0.025%

 

40

 

 

 

*

 

 

 

*

 

ns to 0.025% of FSR

to 0.1%

 

25

 

 

 

*

 

 

 

*

 

ns to 0.1% of FSR

to 1%

 

20

 

 

 

*

 

 

 

*

 

ns to 1% of FSR

100 Ω (Internal RL)3, 1.024 V p-p,

 

 

 

 

 

 

 

 

 

 

 

 

to 0.025%

 

50

 

 

 

*

 

 

 

*

 

ns to 0.025% of FSR

to 0.1%

 

38

 

 

 

*

 

 

 

*

 

ns to 0.1% of FSR

to 1%

 

24

 

 

 

*

 

 

 

*

 

ns to 1% of FSR

Glitch Impulse4

 

350

 

 

 

*

 

 

 

*

 

pV-sec

Peak Amplitude

 

15

 

 

 

*

 

 

 

*

 

% of FSR

 

 

 

 

 

 

 

 

 

 

 

 

 

FULL-SCALE TRANSlTlON5

 

 

 

 

 

 

 

 

 

 

 

 

10% to 90% Rise Time

 

11

 

 

 

*

 

 

 

*

 

ns

90% to 10% Fall Time

 

11

 

 

 

*

 

 

 

*

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER REQUIREMENTS

 

 

32

 

 

 

 

 

 

 

 

 

+13.5 V to +16.5 V

 

27

 

 

*

*

 

 

*

*

mA

–13.5 V to –16.5 V

 

–7

–8

 

 

*

*

 

 

*

*

mA

Power Dissipation

 

525

625

 

 

*

*

 

 

*

*

mW

PSRR

 

 

0.05

 

 

 

*

 

 

 

*

% of FSR/V

 

 

 

 

 

 

 

 

 

 

 

 

 

TEMPERATURE RANGE

 

 

 

 

 

 

 

 

 

 

 

°C

Rated Specification2

0

 

+70

 

0

 

+70

 

–55

 

+125

Storage

–65

 

+150

 

*

 

*

 

*

 

*

°C

NOTES

*Same as AD568J. 1Measured in IOUT mode.

2Measured in VOUT mode, unless otherwise specified. See text for further information. 3Total Resistance. Refer to Figure 3,

4At the major carry, driven by HCMOS logic. See text for further explanation. 5Measured in VOUT mode.

Specifications shown in boldface are tested on all production units at final electrical test. Specifications subject to change without notice.

–2–

REV. A

AD568

 

LSB

 

 

 

 

 

 

 

 

 

 

MSB

 

 

PIN CONFIGURATION

 

12

11

10

9

8

7

6

5

4

3

2

1

 

 

 

PNP

 

 

 

 

 

 

 

 

 

 

 

 

24

VCC

 

CURRENT

 

 

 

 

 

 

 

 

 

2X

4X

 

 

SOURCES

 

 

 

 

 

 

 

 

 

BURIED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PNP

 

 

 

 

 

 

 

 

 

 

 

ZENER

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCE

 

 

 

SWITCHES

 

 

 

 

 

 

 

 

 

 

 

 

THRESHOLD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCE

CONTROL

1.4V

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

 

 

 

 

 

 

 

 

 

IOUT

 

COMMON

 

BAND-

 

THIN-FILM R-2R LADDER

 

 

 

 

 

20

IOUT

 

GAP

 

 

 

 

 

 

 

 

REF

 

 

(100 - 200Ω)

 

 

 

 

 

 

200Ω

LOAD RESISTOR

THRESHOLD

 

 

 

 

 

 

 

 

 

 

 

 

 

19

(RL)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMMON 14

 

 

 

 

 

 

 

 

 

 

 

 

21

BIPOLAR

LADDER

17

 

DIFFUSED R-2R LADDER

 

 

 

 

BIPOLAR

 

 

OFFSET (IBPO)

COMMON

 

 

 

(10 - 20Ω)

 

 

 

 

IOUT

 

15

10V SPAN

 

 

 

 

 

 

 

 

 

 

CURRENT

 

1kΩ

RESISTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERATOR

10V SPAN

 

AD568

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

18

22

 

RESISTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALOG

VEE

 

 

 

 

 

 

 

 

 

 

 

 

 

COMMON

 

 

 

Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS1

 

VCC to REFCOM . . . . . . . . . . . . . . . . . . .

. . . . . 0 V to +18 V

VEE to REFCOM . . . . . . . . . . . . . . . . . . . . .

. . . . 0 V to –18 V

REFCOM to LCOM . . . . . . . . . . . . . . . . .

+100 mV to –10 V

ACOM to LCOM . . . . . . . . . . . . . . . . . . . .

. . . . . . . ±100 mV

THCOM to LCOM . . . . . . . . . . . . . . . . . . .

. . . . . . . ±500 mV

SPANs to LCOM . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . ±12 V

IBPO to LCOM . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . ±5 V

IOUT to LCOM . . . . . . . . . . . . . . . . . . . . . .

. . . . . –5 V to VTH

Digital Inputs to THCOM . . . . . . . . . . . . .

–500 mV to +7.0 V

Voltage Across Span Resistor . . . . . . . . . . . .

. . . . . . . . . . 12 V

VTH to THCOM . . . . . . . . . . . . . . . . . . . . .

. –0.7 V to +1.4 V

Logic Threshold Control Input Current . . .

. . . . . . . . . . 5 mA

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mW

Storage Temperature Range

Q (Cerdip) Package . . . . . . . . . . . . . . . . . –65°C to +150°C

Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 175°C

Thermal Resistance

θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75°C/W

θJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25°C/W

1Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

 

 

 

Linearity

Voltage

Modell

Package Option2

Temperature

Error Max

Gain T.C.

Range 8C

@ 258C

Max ppm/8C

 

 

 

 

 

AD568JQ

24-Lead Cerdip (Q-24)

0 to +70

±1/2

±50

AD568KQ

24-Lead Cerdip (Q-24)

0 to +70

±1/4

±30

AD568SQ

24-Lead Cerdip (Q-24)

–55 to +125

±1/2

±50

NOTES

1For details on grade and package offerings screened in accordance with MIL-STD-883, refer to the Analog Devices Military Products Databook or current AD568/883B data sheet.

2Q = Cerdip.

Definitions

LINEARITY ERROR (also called INTEGRAL NONLINEARITY OR INL): Analog Devices defines linearity error as the maximum deviation of the actual analog output from the ideal output (a straight line drawn from 0 to FS) for any bit combination expressed in multiples of 1 LSB. The AD568 is laser trimmed to 1/4 LSB (0.006% of FS) maximum linearity error at +25°C for the K version and 1/2 LSB for the J and S versions.

DIFFERENTIAL LINEARITY ERROR (also called DIFFERENTIAL NONLINEARITY or DNL): DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code. Monotonic behavior

requires that the differential linearity error not exceed 1 LSB in the negative direction.

MONOTONICITY: A DAC is said to be monotonic if the output either increases or remains constant as the digital input increases.

UNIPOLAR OFFSET ERROR: The deviation of the analog output from the ideal (0 V or 0 mA) when the inputs are set to all 0s is called unipolar offset error.

BIPOLAR OFFSET ERROR: The deviation of the analog output from the ideal (negative half-scale) when the inputs are set to all 0s is called bipolar offset error.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD568 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. A

–3–

AD568

BIPOLAR ZERO ERROR: The deviation of the analog output from the ideal half-scale output of 0 V (or 0 mA) for bipolar mode when only the MSB is on (100 . . .00) is called bipolar zero error.

GAIN ERROR: The difference between the ideal and actual output span of FS –1 LSB, expressed in % of FS, or LSB, when all bits are on.

GLITCH IMPULSE: Asymmetrical switching times in a DAC give rise to undesired output transients which are quantified by

their glitch impulse. It is specified as the net area of the glitch in nV-sec or pA-sec.

COMPLIANCE VOLTAGE: The range of allowable voltage at the output of a current-output DAC which will not degrade the accuracy of the output current.

SETTLING TIME: The time required for the output to reach and remain within a specified error band about its final value, measured from the digital input transition.

 

0.8

 

 

 

 

 

OUTPUT – VOLTS

0.6

 

 

 

 

 

0.4

 

 

 

 

 

 

0

50

100

150

200

250

TIME – ns

Figure 2. Glitch Impulse

Connecting the AD568

 

 

 

+15V

–15V

 

 

 

 

 

0.2µF

 

 

 

 

 

0.1µF

 

 

1

+15V 24

FERRITE BEADS

 

 

 

0.1µF

STACKPOLE 57-1392

 

2

REFCOM 23

OR

 

 

3

–15V

0.1µF

AMIDON FB-43B-101

 

22

OR EQUIVALENT

 

 

 

 

 

4

IBPO 21

 

 

 

5

IOUT 20

ANALOG

REXT

 

6

AD568 RL

 

DIGITAL

19

OUTPUT

(OPTIONAL)

INPUTS

7

ACOM 18

ANALOG

 

 

 

 

 

 

8

LCOM 17

SUPPLY GROUND

 

9

SPAN 16 NC

ANALOG

 

 

GND PLANE

 

 

10

SPAN 15 NC

DIGITAL

DIGITAL

 

11

THCOM 14

GND PLANE

 

 

SUPPLY

 

 

 

100pF

 

GROUND

 

12

VTH 13

 

 

 

 

 

 

 

RTH

 

 

 

 

 

1kΩ

 

 

 

 

 

+5V

 

 

Figure 3. Unipolar Output Unbuffered 0 V to +1.024 V

UNBUFFERED VOLTAGE OUTPUT

Unipolar Configuration

Figure 3 shows the AD568 configured to provide a unipolar 0 to +1.024 V output range. In this mode, the bipolar offset terminal, Pin 21, should be grounded if not used for offset trimming.

The nominal output impedance of the AD568 with Pin 19 grounded has been trimmed to 100 Ω, ±1%. Other output impedances can be generated with an external resistor, REXT, between Pins 19 and 20. An REXT equalling 300 Ω will yield a total output resistance of 75 Ω, while an REXT of 100 Ω will provide 50 Ω of output resistance. Note that since the full-scale output current of the DAC remains 10.24 mA, changing the load impedance changes the unbuffered output voltage accordingly. Settling time and full-scale range characteristics for these load impedances are provided in the specifications table.

Bipolar Configuration

Figure 4 shows the connection scheme used to provide a bipolar output voltage range of 1.024 V. The bipolar offset (–0.512 V) occurs when all bits are OFF (00 . . . 00), bipolar zero (0 V) occurs when the MSB is ON with all other bits OFF (10 . . . 00), and full-scale minus 1 LSB (0.51175 V) is generated when all bits are ON (11 . . . 11). Figure 5 shows an optional bipolar mode with a 2.048 V range. The scale factor in this mode will not be as accurate as the configuration shown in Figure 4, because the laser-trimmed resistor RL is not used.

 

 

 

 

+15V

–15V

 

 

 

 

 

 

0.2µF

 

 

 

 

 

 

0.1µF

 

 

1

+15V

24

0.1µF

 

 

 

2

REFCOM 23

 

 

 

0.1µF

 

 

 

3

–15V

22

 

 

 

 

 

 

 

4

IBPO 21

 

 

 

 

5

IOUT 20

 

ANALOG

DIGITAL

6

AD568 RL

19

 

OUTPUT

INPUTS

7

ACOM 18

 

 

ANALOG

 

8

LCOM 17

 

ANALOG

SUPPLY

 

 

GROUND

 

9

SPAN 16

 

GND PLANE

 

 

100pF

 

 

 

 

 

 

 

 

 

10

SPAN 15

 

DIGITAL

 

 

11

THCOM 14

 

GND PLANE

DIGITAL

 

 

 

SUPPLY

 

 

 

 

 

 

 

12

VTH 13

 

 

GROUND

 

 

 

 

 

+5V

 

Figure 4. Bipolar Output Unbuffered ±0.512 V

Figure 4 also demonstrates how the internal span resistor may be used to bias the VTH pin (Pin 13) from a 5 V supply. This eliminates the requirement for an external RTH in applications that do not require the precision span resistor.

–4–

REV. A

Analog Devices AD568SQ, AD568KQ, AD568JQ Datasheet

AD568

 

 

 

+15V

–15V

 

 

 

 

 

0.2µF

 

 

 

 

 

0.1µF

 

 

1

+15V

24

 

 

 

 

 

0.1µF

 

 

 

2

REFCOM 23

 

 

 

3

–15V

0.1µF

 

 

 

22

 

 

 

4

IBPO 21

 

 

 

5

IOUT 20

ANALOG

 

 

AD568 RL

 

DIGITAL

6

19

OUTPUT

INPUTS

7

ACOM 18

 

ANALOG

 

 

 

8

LCOM 17

 

SUPPLY

 

ANALOG

GROUND

 

 

 

 

 

9

SPAN 16 NC

 

 

GND PLANE

 

 

10

SPAN 15 NC

DIGITAL

DIGITAL

 

11

THCOM 14

GND PLANE

 

 

SUPPLY

 

 

 

100pF

 

GROUND

 

12

VTH 13

 

 

 

 

 

 

 

RTH

 

 

 

 

 

1kΩ

 

 

 

 

 

+5V

 

 

Figure 5. Bipolar Output Unbuffered ±1.024 V

Optional Gan and Zero Adjustment

The gain and offset are laser trimmed to minimize their effects on circuit performance. However, in some applications, it may be desirable to externally reduce these errors further. In those cases, the following procedures are suggested.

UNIPOLAR MODE: (Refer to Figure 6)

Step 1 – Set all bits (BIT 1–BIT 12) to Logic “0” (OFF)—note the output voltage. This is the offset error.

Step 2 – Set all bits to Logic “1” (ON). Adjust the gain trim resistor so that the output voltage is equal to the desired full scale minus 1 LSB plus the offset error measured in step 1.

Step 3 – Reset all bits to Logic “0” (OFF). Adjust the offset trim resistor for 0 V output.

 

1

BIT 1

24

 

 

 

2

MSB

23

 

 

 

 

 

 

 

3

AD568

22

 

 

 

4

IBPO 21

 

 

 

5

IOUT 20

 

 

 

6

RL

GAIN

5.11kΩ

ANALOG

DIGITAL

19

 

 

20Ω

100Ω

OUTPUT

INPUTS

 

 

7

ACOM 18

(0 TO 1.024V)

 

8

LCOM 17

OFFSET

 

 

 

 

 

9

 

16

 

 

 

10

 

15

 

 

 

11

 

14

 

 

 

12

BIT 12

13

 

 

 

 

LSB

 

 

 

Figure 6. Unbuffered Unipolar Gain and Zero Adjust

full scale at the DAC output. Note: this may slightly compromise the bipolar zero trim.

1

BIT 1

24

2

MSB

23

 

 

3

AD568

22

 

VCC

 

 

4

IBPO 21

 

 

 

 

 

 

 

5

IOUT 20

GAIN

 

 

 

 

 

 

 

ANALOG

DIGITAL

6

RL

19

5.11kΩ

ZERO

 

 

 

 

20Ω

20kΩ OUTPUT

INPUTS

7

ACOM

18

75Ω

 

(–0.512 TO

 

 

0.512V)

 

8

LCOM 17

 

 

 

 

 

 

9

 

16

 

VEE

 

 

10

 

15

 

 

 

 

 

 

 

 

11

 

14

 

 

 

 

12

BIT 12

13

 

 

 

 

 

LSB

 

 

 

 

Figure 7. Bipolar Unbuffered Gain and Zero Adjust

BUFFERED VOLTAGE OUTPUT

For full-scale outputs of greater than 1 V, some type of external buffer amplifier is required. The AD840 fills this requirement perfectly, settling to 0.025% from a 10 V full-scale step in less than 100 ns.

A 1 kΩ span resistor has been provided on chip for use as a feedback resistor in buffered applications. Using RSPAN (Pins 15, 16) introduces a 100 mW code-dependent power source onto the chip which may generate a slight degradation in linearity. Maximum linearity performance can be realized by using an external span resistor.

 

 

 

+15V

–15V

 

 

 

 

 

0.2µF

 

 

 

 

 

0.1µF

 

 

1

+15V

24

 

 

 

 

 

0.1µF

 

 

 

2

REFCOM 23

–VS

+VS

 

3

–15V

0.1µF

 

22

 

 

 

4

IBPO 21

 

AD840

 

5

IOUT 20

100Ω

ANALOG

 

 

AD568 RL

 

 

DIGITAL

6

19

 

OUTPUT

INPUTS

7

ACOM 18

 

 

 

 

 

 

8

LCOM 17

ANALOG

 

 

9

SPAN 16

GND PLANE

ANALOG

 

 

SUPPLY

 

 

 

5pF

 

GROUND

 

10

SPAN 15

 

 

 

 

 

11

THCOM 14

DIGITAL

 

 

 

 

100pF

 

 

12

VTH 13

GND PLANE

DIGITAL

 

 

 

 

 

 

 

 

RTH

 

SUPPLY

 

 

 

1kΩ

 

GROUND

AMPLIFIER NOISE GAIN: 11

+5V

BIPOLAR MODE (Refer to Figure 7)

Step 1 – Set bits to offset binary “zero” (10 . . . 00). Adjust the zero resistor to produce 0 V at the DAC output. This removes the bipolar zero error.

Step 2 – Set all bits to Logic “1” (ON). Adjust gain trim resistor so the output voltage is equal to the desired full-scale minus

l LSB .

Step 3 – (Optional) If precise trimming of the bipolar offset is preferred to trimming of bipolar zero: set all bits to Logic “0” (OFF). Trim the zero resistor to produce the desired negative

REV. A

Figure 8. Unipolar Output Buffered 0 to –10.24V

Unipolar Inverting Configuration

Figure 8 shows the connections for producing a – 10.24 V fullscale swing. This configuration uses the AD568 in the current output mode into a summing junction at the inverting input terminal of the external op amp. With the load resistor RL grounded, the DAC has an output impedance of 100 Ω. This produces a noise gain of 11 from the noninverting terminal of the op amp, and hence, satisfies the stability criterion of the AD840 (stable at a gain of 10). The addition of a 5 pF compen-

–5–

Loading...
+ 9 hidden pages