Analog Devices AD5341BRU, AD5341, AD5331BRU, AD5331, AD5330BRU Datasheet

...
0 (0)
Analog Devices AD5341BRU, AD5341, AD5331BRU, AD5331, AD5330BRU Datasheet

a 2.5 V to 5.5 V, 115 A, Parallel Interface

Single Voltage-Output 8-/10-/12-Bit DACs

AD5330/AD5331/AD5340/AD5341*

FEATURES

AD5330: Single 8-Bit DAC in 20-Lead TSSOP AD5331: Single 10-Bit DAC in 20-Lead TSSOP AD5340: Single 12-Bit DAC in 24-Lead TSSOP AD5341: Single 12-Bit DAC in 20-Lead TSSOP

Low Power Operation: 115 A @ 3 V, 140 A @ 5 V

Power-Down to 80 nA @ 3 V, 200 nA @ 5 V via PD Pin 2.5 V to 5.5 V Power Supply

Double-Buffered Input Logic

Guaranteed Monotonic by Design Over All Codes Buffered/Unbuffered Reference Input Options

Output Range: 0–VREF or 0–2 VREF Power-On Reset to Zero Volts

Simultaneous Update of DAC Outputs via LDAC Pin Asynchronous CLR Facility

Low Power Parallel Data Interface

On-Chip Rail-to-Rail Output Buffer Amplifiers Temperature Range: –40 C to +105 C

APPLICATIONS

Portable Battery-Powered Instruments

Digital Gain and Offset Adjustment

Programmable Voltage and Current Sources

Programmable Attenuators

Industrial Process Control

GENERAL DESCRIPTION

The AD5330/AD5331/AD5340/AD5341 are single 8-, 10-, and 12-bit DACs. They operate from a 2.5 V to 5.5 V supply consuming just 115 µA at 3 V, and feature a power-down mode that further reduces the current to 80 nA. These devices incorporate an on-chip output buffer that can drive the output to both supply rails, while the AD5330, AD5340, and AD5341 allow a choice of buffered or unbuffered reference input.

The AD5330/AD5331/AD5340/AD5341 have a parallel interface. CS selects the device and data is loaded into the input registers on the rising edge of WR.

The GAIN pin allows the output range to be set at 0 V to VREF or 0 V to 2 × VREF.

Input data to the DACs is double-buffered, allowing simultaneous update of multiple DACs in a system using the LDAC pin.

An asynchronous CLR input is also provided, which resets the contents of the Input Register and the DAC Register to all zeros. These devices also incorporate a power-on reset circuit that ensures that the DAC output powers on to 0 V and remains there until valid data is written to the device.

The AD5330/AD5331/AD5340/AD5341 are available in Thin Shrink Small Outline Packages (TSSOP).

AD5330 FUNCTIONAL BLOCK DIAGRAM

(Other Diagrams Inside)

 

 

 

VREF

VDD

 

 

 

POWER-ON

 

 

AD5330

 

 

 

RESET

 

 

 

 

BUF

 

 

 

 

 

 

GAIN

INPUT

DAC

 

 

 

 

DB

REGISTER

REGISTER

8-BIT

BUFFER

V

 

 

 

OUT

. 7

INTER-

 

DAC

 

 

.

 

 

 

 

DB0

FACE

 

 

 

 

 

 

LOGIC

 

 

 

 

 

CS

 

 

 

 

 

 

WR

 

 

 

 

 

 

CLR

RESET

 

 

POWER-DOWN

 

 

 

 

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

LDAC

 

 

 

 

 

 

 

 

 

 

PD

GND

 

*Protected by U.S. Patent Number 5,969,657; other patents pending.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2000

AD5330/AD5331/AD5340/AD5341–SPECIFICATIONS

(VDD = 2.5 V to 5.5 V, VREF = 2 V. RL = 2 k to GND; CL = 200 pF to GND; all specifications TMIN to TMAX unless otherwise noted.)

Parameter1

 

B Version2

 

 

 

Min

Typ

Max

Unit

Conditions/Comments

DC PERFORMANCE3, 4

 

 

 

 

 

AD5330

 

 

 

 

 

Resolution

 

8

 

Bits

 

Relative Accuracy

 

±0.15

±1

LSB

 

Differential Nonlinearity

 

±0.02

±0.25

LSB

Guaranteed Monotonic By Design Over All Codes

AD5331

 

 

 

 

 

Resolution

 

10

 

Bits

 

Relative Accuracy

 

±0.5

±4

LSB

 

Differential Nonlinearity

 

±0.05

±0.5

LSB

Guaranteed Monotonic By Design Over All Codes

AD5340/AD5341

 

 

 

 

 

Resolution

 

12

 

Bits

 

Relative Accuracy

 

±2

±16

LSB

 

Differential Nonlinearity

 

±0.2

±1

LSB

Guaranteed Monotonic By Design Over All Codes

Offset Error

 

±0.4

±3

% of FSR

 

Gain Error

 

±0.15

±1

% of FSR

 

Lower Deadband5

 

10

60

mV

Lower Deadband Exists Only if Offset Error Is Negative

Upper Deadband

 

10

60

mV

VDD = 5 V. Upper Deadband Exists Only if VREF = VDD

Offset Error Drift6

 

–12

 

ppm of FSR/°C

 

Gain Error Drift6

 

–5

 

ppm of FSR/°C

∆VDD = ±10%

DC Power Supply Rejection Ratio6

 

–60

 

dB

DAC REFERENCE INPUT6

 

 

 

 

 

VREF Input Range

1

 

VDD

V

Buffered Reference (AD5330, AD5340, and AD5341)

 

0.25

 

VDD

V

Unbuffered Reference

VREF Input Impedance

 

>10

 

MΩ

Buffered Reference (AD5330, AD5340, and AD5341)

 

 

180

 

kΩ

Unbuffered Reference. Gain = 1, Input Impedance = RDAC

 

 

90

 

kΩ

Unbuffered Reference. Gain = 2, Input Impedance = RDAC

Reference Feedthrough

 

–90

 

dB

Frequency = 10 kHz

 

 

 

 

 

 

OUTPUT CHARACTERISTICS6

 

 

 

 

 

Minimum Output Voltage4, 7

 

0.001

 

V min

Rail-to-Rail Operation

Maximum Output Voltage4, 7

 

VDD–0.001

V max

 

DC Output Impedance

 

0.5

 

 

Short Circuit Current

 

25

 

mA

VDD = 5 V

 

 

15

 

mA

VDD = 3 V

Power-Up Time

 

2.5

 

µs

Coming Out of Power-Down Mode. VDD = 5 V

 

 

5

 

µs

Coming Out of Power-Down Mode. VDD = 3 V

LOGIC INPUTS6

 

±1

 

µA

 

Input Current

 

 

VDD = 5 V ± 10%

VIL, Input Low Voltage

 

 

0.8

V

 

 

 

0.6

V

VDD = 3 V ± 10%

 

 

 

0.5

V

VDD = 2.5 V

VIH, Input High Voltage

2.4

 

 

V

VDD = 5 V ± 10%

 

2.1

 

 

V

VDD = 3 V ± 10%

 

2.0

 

 

V

VDD = 2.5 V

Pin Capacitance

 

3

 

pF

 

 

 

 

 

 

 

POWER REQUIREMENTS

 

 

 

 

 

VDD

2.5

 

5.5

V

 

IDD (Normal Mode)

 

 

 

µA

DACs active and excluding load currents. Unbuffered

VDD = 4.5 V to 5.5 V

 

140

250

Reference. VIH = VDD, VIL = GND.

VDD = 2.5 V to 3.6 V

 

115

200

µA

IDD increases by 50 µA at VREF > VDD – 100 mV.

 

 

 

 

 

In Buffered Mode extra current is (5 + VREF/RDAC) µA,

IDD (Power-Down Mode)

 

 

 

 

where RDAC is the resistance of the resistor string.

 

 

 

µA

 

VDD = 4.5 V to 5.5 V

 

0.2

1

 

VDD = 2.5 V to 3.6 V

 

0.08

1

µA

 

NOTES

1See Terminology section.

2Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.

3Linearity is tested using a reduced code range: AD5330 (Code 8 to 255); AD5331 (Code 28 to 1023); AD5340/AD5341 (Code 115 to 4095). 4DC specifications tested with output unloaded.

5This corresponds to x codes. x = Deadband voltage/LSB size. 6Guaranteed by design and characterization, not production tested.

7In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, VREF = VDD and “Offset plus Gain” Error must be positive.

Specifications subject to change without notice.

–2–

REV. 0

 

 

 

 

 

 

AD5330/AD5331/AD5340/AD5341

1 (VDD = 2.5 V to 5.5 V. RL = 2 k to GND; CL = 200 pF to GND; all specifications TMIN to TMAX

AC CHARACTERISTICS

unless otherwise noted.)

 

 

 

 

 

Parameter2

 

 

B Version3

 

 

 

 

 

 

Min

Typ

Max

Unit

 

Conditions/Comments

 

Output Voltage Settling Time

 

 

 

 

s

 

VREF = 2 V. See Figure 20

AD5330

 

 

6

8

 

1/4 Scale to 3/4 Scale Change (40 H to C0 H)

AD5331

 

 

7

9

s

 

1/4 Scale to 3/4 Scale Change (100 H to 300 H)

AD5340

 

 

8

10

s

 

1/4 Scale to 3/4 Scale Change (400 H to C00 H)

AD5341

 

 

8

10

s

 

1/4 Scale to 3/4 Scale Change (400 H to C00 H)

Slew Rate

 

 

0.7

 

V/ s

 

 

 

Major Code Transition Glitch Energy

 

6

 

nV-s

 

1 LSB Change Around Major Carry

Digital Feedthrough

 

 

0.5

 

nV-s

 

VREF = 2 V ± 0.1 V p-p. Unbuffered Mode

Multiplying Bandwidth

 

 

200

 

kHz

 

Total Harmonic Distortion

 

 

–70

 

dB

 

VREF = 2.5 V ± 0.1 V p-p. Frequency = 10 kHz

 

NOTES

1Guaranteed by design and characterization, not production tested.

2See Terminology section.

3Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.

Specifications subject to change without notice.

TIMING CHARACTERISTICS1, 2, 3 (VDD = 2.5 V to 5.5 V, All specifications TMIN to TMAX unless otherwise noted.)

Parameter

Limit at TMIN, TMAX

Unit

Condition/Comments

t1

0

ns min

CS to WR Setup Time

t2

0

ns min

CS to WR Hold Time

t3

20

ns min

WR Pulsewidth

t4

5

ns min

Data, GAIN, BUF, HBEN Setup Time

t5

4.5

ns min

Data, GAIN, BUF, HBEN Hold Time

t6

5

ns min

Synchronous Mode. WR Falling to LDAC Falling.

t7

5

ns min

Synchronous Mode. LDAC Falling to WR Rising.

t8

4.5

ns min

Synchronous Mode. WR Rising to LDAC Rising.

t9

5

ns min

Asynchronous Mode. LDAC Rising to WR Rising.

t10

4.5

ns min

Asynchronous Mode. WR Rising to LDAC Falling.

t11

20

ns min

LDAC Pulsewidth

t12

20

ns min

CLR Pulsewidth

t13

50

ns min

Time Between WR Cycles

NOTES

1Guaranteed by design and characterization, not production tested.

2All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. 3See Figure 1.

t1

 

 

 

t2

 

 

 

 

 

 

 

 

CS

t3 t13

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t5

 

DATA,

 

 

 

 

 

t4

 

 

 

 

 

 

 

 

 

 

 

 

GAIN,

 

 

 

 

 

 

 

 

 

 

 

 

 

BUF,

 

 

 

 

 

 

 

 

 

 

 

 

 

HBEN

 

 

 

 

 

 

 

 

 

 

 

 

t8

t6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LDAC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t9 t10 t11

LDAC2

t12

CLR

NOTES:

1SYNCHRONOUS LDAC UPDATE MODE

2ASYNCHRONOUS LDAC UPDATE MODE

Figure 1. Parallel Interface Timing Diagram

REV. 0

–3–

AD5330/AD5331/AD5340/AD5341

ABSOLUTE MAXIMUM RATINGS*

(TA = 25°C unless otherwise noted)

VDD to GND . . . . . . . . . . . . . . .

. . . . . . . . . .

. –0.3 V to +7 V

Digital Input Voltage to GND . .

. . . . . –0.3 V to VDD + 0.3

V

Digital Output Voltage to GND

. . . . . –0.3 V to VDD + 0.3

V

Reference Input Voltage to GND

. . . . –0.3 V to VDD + 0.3

V

VOUT to GND . . . . . . . . . . . . . .

. . . . . –0.3 V to VDD + 0.3

V

Operating Temperature Range

 

–40°C to +105°C

Industrial (B Version) . . . . . .

. . . . . . . . .

Storage Temperature Range . . .

. . . . . . . . .

–65°C to +150°C

Junction Temperature . . . . . . . .

. . . . . . . . . .

. . . . . . . 150°C

TSSOP Package

(TJ max – TA)/θJA mW

Power Dissipation . . . . . . . . . .

θJA Thermal Impedance (20-Lead TSSOP)

. . . . . 143°C/W

θJA Thermal Impedance (24-Lead TSSOP)

. . . . . 128°C/W

θJA Thermal Impedance (20-Lead TSSOP)

. . . . . . 45°C/W

θJC Thermal Impedance (24-Lead TSSOP)

. . . . . . 42°C/W

Reflow Soldering

220 +5/–0°C

Peak Temperature . . . . . . . . . . . . . . . . . . . .

Time at Peak Temperature . . . . . . . . . . . .

10 sec to 40 sec

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

 

 

 

Package

Model

Temperature Range

Package Description

Option

 

 

 

 

AD5330BRU

–40°C to +105°C

TSSOP (Thin Shrink Small Outline Package)

RU-20

AD5331BRU

–40°C to +105°C

TSSOP (Thin Shrink Small Outline Package)

RU-20

AD5340BRU

–40°C to +105°C

TSSOP (Thin Shrink Small Outline Package)

RU-24

AD5341BRU

–40°C to +105°C

TSSOP (Thin Shrink Small Outline Package)

RU-20

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5330/AD5331/AD5340/AD5341 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–4–

REV. 0

AD5330/AD5331/AD5340/AD5341

AD5330 FUNCTIONAL BLOCK DIAGRAM

AD5330 PIN CONFIGURATION

 

 

 

VREF

VDD

 

 

POWER-ON

 

 

AD5330

 

 

RESET

 

 

 

BUF

 

 

 

 

 

GAIN

INPUT

DAC

 

 

 

DB

REGISTER

REGISTER

8-BIT

BUFFER

VOUT

 

 

. 7

INTER-

 

DAC

.

 

 

 

DB0

FACE

 

 

 

 

 

LOGIC

 

 

 

 

CS

 

 

 

 

 

WR

 

 

 

 

 

CLR

RESET

 

 

POWER-DOWN

 

 

 

 

 

 

LOGIC

 

 

 

 

 

 

LDAC

 

 

 

 

 

 

 

 

 

PD

GND

 

 

 

 

DB7

BUF

1

 

20

 

 

 

 

DB6

NC

2

 

19

VREF

 

 

 

DB5

3

 

18

VOUT

 

 

 

DB4

4

8-BIT

17

GND

 

 

DB3

5

AD5330

16

CS

 

TOP VIEW

 

DB2

6

15

(Not to Scale)

 

 

 

DB1

WR

7

 

14

GAIN

 

 

 

DB0

8

 

13

 

 

 

 

VDD

CLR

9

 

12

 

 

 

 

PD

LDAC

10

 

11

 

 

 

 

 

NC = NO CONNECT

 

 

AD5330 PIN FUNCTION DESCRIPTIONS

 

 

 

Pin

 

 

No.

Mnemonic

Function

 

 

 

1

BUF

Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.

2

NC

No Connect.

3

VREF

Reference Input.

4

VOUT

Output of DAC. Buffered output with rail-to-rail operation.

5

GND

Ground reference point for all circuitry on the part.

6

CS

Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.

7

WR

Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.

8

GAIN

Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF.

9

CLR

Asynchronous active low control input that clears all input registers and DAC registers to zero.

10

LDAC

Active low control input that updates the DAC registers with the contents of the input registers.

11

PD

Power-Down Pin. This active low control pin puts the DAC into power-down mode.

12

VDD

Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled

 

 

with a 10 F capacitor in parallel with a 0.1 F capacitor to GND.

13–20

DB0–DB7

Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.

REV. 0

–5–

AD5330/AD5331/AD5340/AD5341

AD5331 FUNCTIONAL BLOCK DIAGRAM

AD5331 PIN CONFIGURATION

 

 

 

VREF

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

DB8

1

 

20

DB7

 

POWER-ON

 

 

AD5331

 

DB9

2

 

19

DB6

 

RESET

 

 

 

VREF

3

 

18

DB5

 

 

 

 

 

 

 

BUF

 

 

 

 

 

VOUT

4

10-BIT

17

DB4

 

INPUT

DAC

 

 

 

GND

5

16

DB3

 

 

 

 

AD5331

DB

REGISTER

REGISTER

10-BIT

BUFFER

VOUT

CS

6

TOP VIEW

15

DB

 

 

 

2

. 9

INTER-

 

DAC

 

 

(Not to Scale)

 

 

.

 

 

 

 

 

 

 

 

DB0

FACE

 

 

 

 

WR 7

 

14

DB1

 

LOGIC

 

 

 

 

GAIN

8

 

13

DB0

CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

CLR

9

 

12

VDD

 

 

 

 

 

LDAC 10

 

11

PD

 

 

RESET

 

 

POWER-DOWN

 

 

CLR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LDAC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PD

GND

 

 

 

 

 

 

 

 

AD5331 PIN FUNCTION DESCRIPTIONS

 

 

 

Pin

 

 

No.

Mnemonic

Function

 

 

 

1

DB8

Parallel Data Input.

2

DB9

Most Significant Bit of Parallel Data Input.

3

VREF

Unbuffered Reference Input.

4

VOUT

Output of DAC. Buffered output with rail-to-rail operation.

5

GND

Ground reference point for all circuitry on the part.

6

CS

Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.

7

WR

Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.

8

GAIN

Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF.

9

CLR

Active low control input that clears all input registers and DAC registers to zero.

10

LDAC

Active low control input that updates the DAC registers with the contents of the input registers.

11

PD

Power-Down Pin. This active low control pin puts the DAC into power-down mode.

12

VDD

Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled

 

 

with a 10 F capacitor in parallel with a 0.1 F capacitor to GND.

13–20

DB0–DB7

Eight Parallel Data Inputs.

–6–

REV. 0

Loading...
+ 14 hidden pages