Analog Devices AD5201BRM50-REEL7, AD5201BRM10-REEL7, AD5200BRM50-REEL7, AD5200BRM10-REEL7 Datasheet

0 (0)

a

256-Position and 33-Position

Digital Potentiometers

 

 

 

 

 

AD5200/AD5201

 

 

 

FEATURES AD5200—256-Position AD5201—33-Position 10 k , 50 k

3-Wire SPI-Compatible Serial Data Input Single Supply 2.7 V to 5.5 V or

Dual Supply 2.7 V for AC or Bipolar Operations

Internal Power-On Midscale Preset

APPLICATIONS

Mechanical Potentiometer Replacement

Instrumentation: Gain, Offset Adjustment

Programmable Voltage-to-Current Conversion

Programmable Filters, Delays, Time Constants

Line Impedance Matching

FUNCTIONAL BLOCK DIAGRAM

VDD

AD5200/AD5201

VSS

 

 

 

A

CS

 

W

CLK

SER

B

 

REG

 

RDAC

SDI

8/6

Dx

REG

 

GND

 

SHDN

 

 

 

PWR-ON

 

 

PRESET

 

GENERAL DESCRIPTION

The AD5200 and AD5201 are programmable resistor devices, with 256 positions and 33 positions respectively, that can be digitally controlled through a 3-wire SPI serial interface. The terms programmable resistor, variable resistor (VR), and RDAC are commonly used interchangeably to refer to digital potentiometers. These devices perform the same electronic adjustment function as a potentiometer or variable resistor. Both AD5200/AD5201 contain a single variable resistor in the compact µSOIC-10 package. Each device contains a fixed wiper resistance at the wiper contact that taps the programmable resistance at a point determined by a digital code. The code is loaded in the serial input register. The resistance between the wiper and either end point of the programmable resistor varies linearly with respect to the digital code transferred into the VR latch. Each variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper, or the B terminal and the wiper. The fixed A-to-B terminal resistance of 10 kor 50 k

has a nominal temperature coefficient of 500 ppm/°C. The VR has a VR latch that holds its programmed resistance value. The VR latch is updated from an SPI-compatible serial-to-parallel shift register that is loaded from a standard 3-wire serial-input digital interface. Eight data bits for the AD5200 and six data bits for the AD5201 make up the data word that is clocked into the serial input register. The internal preset forces the wiper to the midscale position by loading 80H and 10H into AD5200 and AD5201 VR latches respectively. The SHDN pin forces the resistor to an end-to-end open-circuit condition on the A terminal and shorts the wiper to the B terminal, achieving a microwatt power shutdown state. When SHDN is returned to logic high, the previous latch setting puts the wiper in the same resistance setting prior to shutdown. The digital interface is still active during shutdown so that code changes can be made that will produce a new wiper position when the device is returned from shutdown.

All parts are guaranteed to operate over the extended industrial temperature range of –40°C to +85°C.

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2001

AD5200/AD5201–SPECIFICATIONS

 

 

 

 

(VDD = 5 V 10%, or 3 V 10%, VSS = 0 V, VA = +VDD, VB = 0 V,

 

AD5200 ELECTRICAL CHARACTERISTICS –40 C < TA < +85 C unless otherwise noted.)

 

 

 

 

Parameter

 

Symbol

Conditions

 

 

Min

Typ1

Max

Unit

DC CHARACTERISTICS RHEOSTAT MODE

 

 

 

 

 

 

 

Resistor Differential Nonlinearity 2

 

 

R-DNL

RWB, VA = No Connect

 

 

–1

± 0.25

+1

LSB

 

 

 

 

Resistor Integral Nonlinearity 2

 

 

R-INL

RWB, VA = No Connect

 

 

–2

± 0.5

+2

LSB

Nominal Resistor Tolerance 3

 

 

RAB

TA = 25°C

 

 

–30

 

+30

%

Resistance Temperature Coefficient

 

 

RAB/T

VAB = VDD, Wiper = No Connect

 

 

 

500

 

ppm/°C

Wiper Resistance

 

 

RW

VDD = 5 V

 

 

 

50

100

DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs.)

 

 

 

 

 

 

Resolution

 

N

 

 

 

8

± 1/4

 

Bits

 

 

 

 

 

Differential Nonlinearity 4

 

DNL

 

 

 

–1

+1

LSB

Integral Nonlinearity 4

 

INL

 

 

 

–2

± 1/2

+2

LSB

Voltage Divider Temperature Coefficient

 

VW/T

Code = 80 H

 

 

 

5

 

ppm/°C

Full-Scale Error

 

VWFSE

Code = FF H

 

 

–1.5

–0.5

0

LSB

Zero-Scale Error

 

VWZSE

Code = 00 H

 

 

0

+0.5

+1.5

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

 

 

 

Voltage Range 5

 

VA, B, W

 

 

 

VSS

 

VDD

V

Capacitance 6 A, B

 

CA, B

f = 1 MHz, Measured to GND, Code = 80

H

 

 

45

 

pF

Capacitance 6 W

 

CW

f = 1 MHz, Measured to GND, Code = 80

H

 

 

60

 

pF

Shutdown Supply Current 7

 

IDD_SD

VDD = 5.5 V

 

 

 

0.01

5

µA

Common-ModeLeakage

 

ICM

VA = VB = VDD/2

 

 

 

1

 

nA

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

 

Input Logic High

 

VIH

 

 

 

2.4

 

 

V

Input Logic Low

 

VIL

 

 

 

 

 

0.8

V

Input Logic High

 

VIH

VDD = 3 V, VSS = 0 V

 

 

2.1

 

 

V

Input Logic Low

 

VIL

VDD = 3 V, VSS = 0 V

 

 

 

 

0.6

V

Input Current

 

IIL

VIN = 0 V or 5 V

 

 

 

 

± 1

µA

InputCapacitance 6

 

CIL

 

 

 

 

5

 

pF

POWERSUPPLIES

 

 

 

 

 

 

 

 

 

Logic Supply

 

VLOGIC

 

 

 

2.7

 

5.5

V

Power Single-Supply Range

 

VDD RANGE

VSS = 0 V

 

 

–0.3

 

5.5

V

Power Dual-Supply Range

 

VDD/SS RANGE

 

 

 

± 2.3

 

± 2.7

V

Positive Supply Current

 

IDD

VIH = +5 V or VIL = 0 V

 

 

 

15

40

µA

Negative Supply Current

 

ISS

VSS = –5 V

 

 

 

15

40

µA

Power Dissipation 8

 

PDISS

VIH = +5 V or VIL = 0 V, VDD = +5 V, VSS = 0 V

 

 

 

0.2

mW

Power Supply Sensitivity

 

PSS

VDD = +5 V ± 10%, Code = Midscale

 

 

–0.01

0.001

+0.01

%/%

DYNAMIC CHARACTERISTICS 6, 9

 

 

 

 

 

 

 

 

 

Bandwidth –3 dB

 

BW_10 k

RAB = 10 k, Code = 80 H

 

 

 

600

 

kHz

 

 

 

BW_50 k

RAB = 50 k, Code = 80 H

 

 

 

100

 

kHz

Total Harmonic Distortion

 

THDW

VA = 1 V rms, VB = 0 V, f = 1 kHz, R AB = 10 k

 

 

0.003

 

%

VW Settling Time (10 k/50 k)

 

tS

VA = 5 V, VB = 0 V, ± 1 LSB Error Band

 

 

 

2/9

 

µs

Resistor Noise Voltage Density

 

eN_WB

RWB = 5 k, RS = 0

 

 

 

9

 

nVHz

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = +2.7 V,

VSS = –2.7 V.

3VAB = VDD, Wiper (VW) = No connect.

4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = 0 V. DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions.

5Resistor Terminals A, B, W have no limitations on polarity with respect to each other.

6Guaranteed by design and not subject to production test.

7Measured at the A terminal. A terminal is open-circuited in shutdown mode.

8PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation. 9All dynamic characteristics use VDD = 5 V, VSS = 0 V.

Specifications subject to change without notice.

–2–

REV. B

AD5200/AD5201

 

 

 

 

 

(VDD = 5 V 10%, or 3 V 10%, VSS = 0 V, VA = +VDD, VB = 0 V,

 

AD5201 ELECTRICAL CHARACTERISTICS –40 C < TA < +85 C unless otherwise noted.)

 

 

 

 

Parameter

 

Symbol

Conditions

 

 

Min

Typ1

Max

Unit

DC CHARACTERISTICS RHEOSTAT MODE

 

 

 

 

 

 

 

Resistor Differential Nonlinearity 2

 

R-DNL

RWB, VA = No Connect

 

 

–0.5

± 0.05

+0.5

LSB

 

 

 

Resistor Integral Nonlinearity 2

 

R-INL

RWB, VA = No Connect

 

 

–1

± 0.1

+1

LSB

Nominal Resistor Tolerance 3

 

RAB

TA = 25°C

 

 

–30

 

+30

%

Resistance Temperature Coefficient

 

RAB/T

VAB = VDD, Wiper = No Connect

 

 

 

500

 

ppm/°C

Wiper Resistance

 

RW

VDD = 5 V

 

 

 

50

100

DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs.)

 

 

 

 

 

 

Resolution 4

 

 

 

N

 

 

 

6

± 0.01

 

Bits

 

 

 

 

 

 

Differential Nonlinearity 5

 

 

 

DNL

 

 

 

–0.5

+0.5

LSB

Integral Nonlinearity 5

 

 

 

INL

 

 

 

–1

± 0.02

+1

LSB

Voltage Divider Temperature Coefficient

 

 

 

VW/T

Code = 10 H

 

 

 

5

 

ppm/°C

Full-Scale Error

 

 

 

VWFSE

Code = 20 H

 

 

–1/2

–1/4

0

LSB

Zero-Scale Error

 

 

 

VWZSE

Code = 00 H

 

 

0

+1/4

+1/2

LSB

RESISTOR TERMINALS

 

 

 

 

 

 

 

 

 

 

 

Voltage Range 6

 

 

 

VA, B, W

 

 

 

VSS

 

VDD

V

Capacitance 7 A, B

 

 

 

CA, B

f = 1 MHz, Measured to GND, Code = 10

H

 

 

45

 

pF

Capacitance 7 W

 

 

 

CW

f = 1 MHz, Measured to GND, Code = 10

H

 

 

60

 

pF

Shutdown Supply Current 8

 

 

 

IDD_SD

VDD = 5.5 V

 

 

 

0.01

5

µA

Common-ModeLeakage

 

 

 

ICM

VA = VB = VDD/2

 

 

 

1

 

nA

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

 

 

 

 

 

Input Logic High

 

 

 

VIH

 

 

 

2.4

 

 

V

Input Logic Low

 

 

 

VIL

 

 

 

 

 

0.8

V

Input Logic High

 

 

 

VIH

VDD = 3 V, VSS = 0 V

 

 

2.1

 

 

V

Input Logic Low

 

 

 

VIL

VDD = 3 V, VSS = 0 V

 

 

 

 

0.6

V

Input Current

 

 

 

IIL

VIN = 0 V or 5 V

 

 

 

 

±1

µA

InputCapacitance 7

 

 

 

CIL

 

 

 

 

5

 

pF

POWERSUPPLIES

 

 

 

 

 

 

 

 

 

 

 

Logic Supply

 

 

 

VLOGIC

 

 

 

2.7

 

5.5

V

Power Single-Supply Range

 

 

 

VDD RANGE

VSS = 0 V

 

 

–0.3

 

5.5

V

Power Dual-Supply Range

 

 

 

VDD/SS RANGE

 

 

 

± 2.3

 

± 2.7

V

Positive Supply Current

 

 

 

IDD

VIH = +5 V or VIL = 0 V

 

 

 

15

40

µA

Negative Supply Current

 

 

 

ISS

VSS = –5 V

 

 

 

15

40

µA

Power Dissipation 9

 

 

 

PDISS

VIH = +5 V or VIL = 0 V, VDD = +5 V, VSS = –5 V

 

 

 

0.2

mW

Power Supply Sensitivity

 

 

 

PSS

VDD = +5 V ± 10%

 

 

–0.01

0.001

+0.01

%/%

DYNAMIC CHARACTERISTICS 7, 10

 

 

 

 

 

 

 

 

 

 

 

Bandwidth –3 dB

 

 

 

BW_10 k

RAB = 10 k, Code = 10 H

 

 

 

600

 

kHz

 

 

 

 

BW_50 k

RAB = 50 k, Code = 10 H

 

 

 

100

 

kHz

Total Harmonic Distortion

 

 

 

THDW

VA = 1 V rms, VB = 0 V, f = 1 kHz, R AB = 10 k

 

 

0.003

 

%

VW Settling Time (10 k/50 k)

 

 

 

tS

VA = 5 V, VB = 0 V, ± 1 LSB Error Band

 

 

 

2/9

 

µs

Resistor Noise Voltage Density

 

 

 

eN_WB

RWB = 5 k, RS = 0

 

 

 

9

 

nVHz

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.

2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = +2.7 V, VSS = –2.7 V.

3VAB = VDD, Wiper (VW) = No connect.

4Six bits are needed for 33 positions even though it is not a 64-position device.

5INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = 0 V. DNL specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions.

6Resistor Terminals A, B, W have no limitations on polarity with respect to each other.

7Guaranteed by design and not subject to production test.

8Measured at the A terminal. A terminal is open-circuited in shutdown mode.

9PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.

10All dynamic characteristics use VDD = 5 V, VSS = 0 V.

Specifications subject to change without notice.

REV. B

–3–

Analog Devices AD5201BRM50-REEL7, AD5201BRM10-REEL7, AD5200BRM50-REEL7, AD5200BRM10-REEL7 Datasheet

AD5200/AD5201–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

(VDD = 5 V 10%, or 3 V 10%, VSS = 0 V, VA = +VDD, VB = 0 V, –40 C < TA < +85 C

unless otherwise noted.)

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

Symbol

Conditions

Min

Typ1

Max

Unit

INTERFACE TIMING CHARACTERISTICS (Applies to All Parts [Notes 2, 3])

 

 

 

 

Input Clock Pulsewidth

 

tCH, tCL

 

Clock Level High or Low

20

 

 

ns

 

 

 

 

Data Setup Time

 

tDS

 

 

5

 

 

ns

Data Hold Time

 

tDH

 

 

5

 

 

ns

CS Setup Time

 

tCSS

 

 

15

 

 

ns

CS High Pulsewidth

 

tCSW

 

 

40

 

 

ns

CLK Fall to CS Fall Hold Time

 

tCSH0

 

 

0

 

 

ns

CLK Fall to CS Rise Hold Time

 

tCSH1

 

 

0

 

 

ns

CS Rise to Clock Rise Setup

 

tCS1

 

 

10

 

 

ns

NOTES

1Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.

2Guaranteed by design and not subject to production test.

3See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using VLOGIC = 5 V.

Specifications subject to change without notice.

SDI

1

 

 

 

 

 

 

 

D7

D6

D5

D4

D3

D2

D1

D0

 

0

 

 

 

 

 

 

 

CLK

1

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

DAC REGISTER LOAD

 

 

CS

 

 

 

 

 

 

 

 

 

 

 

 

0

1

VOUT

0

Figure 1a. AD5200 Timing Diagram

 

1

 

 

 

 

 

SDI

D5

D4

D3

D2

D1

D0

0

1

CLK

0

1

DAC REGISTER LOAD

CS

0

1

VOUT

0

Figure 1b. AD5201 Timing Diagram

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDI

 

 

 

Dx

 

 

Dx

 

 

 

 

(DATA IN)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

tCH

 

tDS

 

tDH

tCS1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

tCSH0

 

 

 

 

 

 

 

tCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCSH1

1

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CSS

 

 

 

 

 

 

 

 

 

CS

 

 

 

 

 

 

 

 

 

 

 

 

tCSW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

tS

VDD

VOUT

0

1LSB

Figure 1c. Detail Timing Diagram

–4–

REV. B

AD5200/AD5201

ABSOLUTE MAXIMUM RATINGS1

(TA = 25°C, unless otherwise noted)

VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . 7 V

VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . –0.3, +7 V

VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 0 V, –7 V

VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . .

. . . . . VSS, VDD

IMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . ± 20 mA2

Digital Inputs and Output Voltage to GND .

. . . . . . 0 V, 7 V

Operating Temperature Range . . . . . . . . . . .

–40°C to +85°C

Maximum Junction Temperature (TJ Max) . .

. . . . . . . 150°C

Storage Temperature . . . . . . . . . . . . . . . . . .

–65°C to +150°C

Lead Temperature (Soldering, 10 sec) . . . . .

. . . . . . . 300°C

Thermal Resistance θJA, µSOIC-10 . . . . . . . .

. . . . . 200°C/W

Package Power Dissipation = (TJ Max – TA)/θJA

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2Max current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance. Please refer to TPC 31 and TPC 32 for detail.

PIN FUNCTION DESCRIPTIONS

Pin

Name

Description

 

 

 

1

B

B Terminal.

2

VSS

Negative Power Supply, specified for opera-

 

 

tion from 0 V to –2.7 V.

3

GND

Ground.

4

CS

Chip Select Input, Active Low. When CS

 

 

returns high, data will be loaded into the

 

 

DAC register.

5

SDI

Serial Data Input.

6

CLK

Serial Clock Input, positive edge triggered.

7

SHDN

Active Low Input. Terminal A open circuit.

 

 

Shutdown controls Variable Resistors of

 

 

RDAC to temporary infinite.

8

VDD

Positive Power Supply (Sum of VDD + VSS

 

 

5.5 V).

9

W

Wiper Terminal.

10

A

A Terminal.

 

 

 

PIN CONFIGURATION

B 1

10 A

VSS

2

AD5200/

9

W

 

 

 

GND

3

AD5201

8

VDD

CS

 

TOP VIEW

 

SHDN

4

7

(Not to Scale)

SDI

 

 

CLK

5

 

6

ORDERING GUIDE

 

 

 

Temperature

Package

Package

Full

Branding

Model

RES

k

Range

Description

Option

Reel Qty.

Information

 

 

 

 

 

 

 

 

AD5200BRM10-REEL7

256

10

–40°C/+85°C

SOIC-10

RM-10

5000

DLA

AD5200BRM50-REEL7

256

50

–40°C/+85°C

SOIC-10

RM-10

5000

DLB

AD5201BRM10-REEL7

33

10

–40°C/+85°C

SOIC-10

RM-10

5000

DMA

AD5201BRM50-REEL7

33

50

–40°C/+85°C

SOIC-10

RM-10

5000

DMB

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5200/AD5201 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. B

–5–

Loading...
+ 11 hidden pages