ANALOG DEVICES AD5235 Service Manual

0 (0)

 

Nonvolatile Memory, Dual

 

1024-Position Digital Potentiometer

Data Sheet

AD5235

 

 

FEATURES

Dual-channel, 1024-position resolution 25 kΩ, 250 kΩ nominal resistance

Maximum ±8% nominal resistor tolerance error Low temperature coefficient: 35 ppm/°C

2.7 V to 5 V single supply or ±2.5 V dual supply SPI-compatible serial interface

Nonvolatile memory stores wiper settings Power-on refreshed with EEMEM settings Permanent memory write protection Resistance tolerance stored in EEMEM

26 bytes extra nonvolatile memory for user-defined information

1M programming cycles

100-year typical data retention

APPLICATIONS

DWDM laser diode driver, optical supervisory systems Mechanical potentiometer replacement Instrumentation: gain, offset adjustment Programmable voltage-to-current conversion Programmable filters, delays, time constants Programmable power supply

Low resolution DAC replacement Sensor calibration

GENERAL DESCRIPTION

The AD5235 is a dual-channel, nonvolatile memory,1 digitally controlled potentiometer2 with 1024-step resolution, offering guaranteed maximum low resistor tolerance error of ±8%.

The device performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. The versatile programming of the AD5235 via an SPI®-compatible serial interface allows 16 modes of operation and adjustment including scratchpad programming, memory storing and restoring, increment/decrement, ±6 dB/step log taper adjustment, wiper setting readback, and extra EEMEM1 for user-

defined information such as memory data for other components, look-up table, or system identification information.

1The terms nonvolatile memory and EEMEM are used interchangeably.

2The terms digital potentiometer and RDAC are used interchangeably.

Rev. F

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No license isgranted by implication or otherwise under any patent or patent rightsof Analog Devices. Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.

FUNCTIONAL BLOCK DIAGRAM

 

ADDR

 

RDAC1

AD5235

VDD

CS

DECODE

 

 

 

CLK

 

 

REGISTER

 

A1

 

 

 

 

SERIAL

 

 

 

W1

SDI

 

 

 

 

 

 

 

INTERFACE

 

 

 

B1

SDO

 

EEMEM1

RDAC1

 

 

 

PR

POWER-ON

 

 

 

 

RESET

 

RDAC2

 

 

 

 

 

 

 

 

 

 

A2

WP

EEMEM

 

REGISTER

 

 

 

 

W2

RDY

CONTROL

 

 

 

B2

 

 

 

EEMEM2

RDAC2

 

 

 

 

 

 

 

 

 

 

 

 

26 BYTES

 

VSS

 

 

RTOL*

 

 

 

 

USER EEMEM

 

 

 

 

 

 

GND

 

 

 

 

 

*RAB TOLERANCE

 

 

 

02816-001

Figure 1.

In the scratchpad programming mode, a specific setting can be programmed directly to the RDAC2 register, which sets the resistance between Terminal W and Terminal A and Terminal W and Terminal B. This setting can be stored into the EEMEM and is restored automatically to the RDAC register during system power-on.

The EEMEM content can be restored dynamically or through external PR strobing, and a WP function protects EEMEM contents. To simplify the programming, the independent or simultaneous linear-step increment or decrement commands can be used to move the RDAC wiper up or down, one step at a time. For logarithmic ±6 dB changes in the wiper setting, the left or right bit shift command can be used to double or halve the RDAC wiper setting.

The AD5235 patterned resistance tolerance is stored in the EEMEM. The actual end-to-end resistance can, therefore, be known by the host processor in readback mode. The host can execute the appropriate resistance step through a software routine that simplifies open-loop applications as well as precision calibration and tolerance matching applications.

The AD5235 is available in a thin, 16-lead TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of −40°C to +85°C.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2004–2012 Analog Devices, Inc. All rights reserved.

AD5235

Data Sheet

TABLE OF CONTENTS

 

Features ..............................................................................................

1

Applications.......................................................................................

1

General Description .........................................................................

1

Functional Block Diagram ..............................................................

1

Revision History ...............................................................................

3

Specifications.....................................................................................

4

Electrical Characteristics—25 kΩ, 250 kΩ Versions ...............

4

Interface Timing and EEMEM Reliability Characteristics—

 

25 kΩ, 250 kΩ Versions ...............................................................

6

Absolute Maximum Ratings............................................................

8

ESD Caution..................................................................................

8

Pin Configuration and Function Descriptions.............................

9

Typical Performance Characteristics ...........................................

10

Test Circuits.................................................................................

14

Theory of Operation ......................................................................

16

Scratchpad and EEMEM Programming..................................

16

Basic Operation ..........................................................................

16

EEMEM Protection....................................................................

17

Digital Input and Output Configuration.................................

17

Serial Data Interface...................................................................

17

Daisy-Chain Operation .............................................................

18

Terminal Voltage Operating Range..........................................

18

Advanced Control Modes .........................................................

20

RDAC Structure..........................................................................

21

Programming the Variable Resistor.........................................

22

Programming the Potentiometer Divider...............................

22

Programming Examples ............................................................

23

EVAL-AD5235SDZ Evaluation Kit..........................................

23

Applications Information ..............................................................

24

Bipolar Operation from Dual Supplies....................................

24

Gain Control Compensation ....................................................

24

High Voltage Operation ............................................................

24

DAC..............................................................................................

24

Bipolar Programmable Gain Amplifier...................................

25

10-Bit Bipolar DAC....................................................................

25

Programmable Voltage Source with Boosted Output ...........

25

Programmable Current Source ................................................

26

Programmable Bidirectional Current Source.........................

26

Programmable Low-Pass Filter ................................................

27

Programmable Oscillator ..........................................................

27

Optical Transmitter Calibration with ADN2841 ...................

28

Resistance Scaling ......................................................................

28

Resistance Tolerance, Drift, and Temperature Coefficient

 

Mismatch Considerations .........................................................

29

RDAC Circuit Simulation Model.............................................

29

Outline Dimensions .......................................................................

30

Ordering Guide ..........................................................................

30

Rev. F | Page 2 of 32

Data Sheet

AD5235

 

 

REVISION HISTORY

 

 

6/12—Rev. E to Rev. F

 

 

Changes to Table 1 Conditions........................................................

 

4

Removed Positive Supply Current RDY and/or SDO Floating

 

Parameters and Negative Supply Current RDY and/or SDO

 

Floating Parameters, Table 1............................................................

 

5

Added Endnote 2 to Ordering Guide ...........................................

 

30

4/11—Rev. D to Rev. E

 

 

Changes to Figure 12 ......................................................................

 

11

4/11—Rev. C to Rev. D

 

 

Changes to EEMEM Performance ..............................

Throughout

Changes to Features and General Descriptions Sections.............

1

Changes to Specifications Section...................................................

 

4

Changes to Pin 5, Pin 13, Pin 14 Descriptions..............................

 

9

Changes to Typical Performance Characteristics Section .........

10

Changes to Table 7 ..........................................................................

 

19

Changes to Table 9 ..........................................................................

 

21

Changes to Rheostat Operation Section, Table 12, Table 13 .....

22

Changes to Table 16, Table 19, and EVAL-AD5235SDZ

 

Evaluation Kit Section ....................................................................

 

23

Changes to RDAC Circuit Simulation Model Section ...............

29

Updated Outline Dimensions........................................................

 

30

Changes to Ordering Guide...........................................................

 

30

4/09—Rev. B to Rev. C

 

 

Changes to Figure 1...........................................................................

 

1

Changes to Specifications.................................................................

 

3

Changes to SDO, Description Column, Table 4............................

 

8

Changes to Figure 18 ......................................................................

 

11

Changes to Theory of Operation Section ....................................

 

14

Changes to Serial Data Interface Section.....................................

 

15

Changes to Linear Increment and Decrement Instructions

 

Section, Logarithmic Taper Mode Adjustment Section, and

 

Figure 42 ...........................................................................................

 

18

Changes to Rheostat Operations Section.....................................

 

20

Changes to Bipolar Programmable Gain Amplifier Section,

 

Figure 49, Table 21, and 10-Bit Bipolar DAC Section ................

23

Changes to Programmable Oscillator Section and Figure 56 ...

25

Changes to Ordering Guide...........................................................

 

28

7/04—Rev. A to Rev. B

 

 

Updated Formatting ..........................................................

Universal

Edits to Features, General Description, and Block Diagram

......1

Changes to Specifications.................................................................

 

3

Replaced Timing Diagrams .............................................................

 

6

Changes to Absolute Maximum Ratings........................................

 

7

Changes to Pin Function Descriptions ..........................................

 

8

Changes to Typical Performance Characteristics .........................

 

9

Additional Test Circuit (Figure 36).................................................

 

9

Edits to Theory of Operation ........................................................

 

14

Edits to Applications.......................................................................

 

23

Updated Outline Dimensions........................................................

 

27

8/02—Rev. 0 to Rev. A

 

 

Change to Features and General Description ...............................

 

1

Change to Specifications ..................................................................

 

2

Change to Calculating Actual End-to-End Terminal

 

 

Resistance Section...........................................................................

 

14

Rev. F | Page 3 of 32

AD5235

Data Sheet

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—25 kΩ, 250 kΩ VERSIONS

VDD = 2.7 V to 5.5 V, VSS = 0 V; VDD = 2.5 V, VSS = −2.5 V, VA = VDD, VB = VSS, −40°C < TA < +85°C, unless otherwise noted. These specifications apply to versions with a date code 1209 or later.

Table 1.

Parameter

Symbol

Conditions

Min

Typ1

Max

Unit

DC CHARACTERISTICS—RHEOSTAT

 

 

 

 

 

 

MODE (All RDACs)

 

 

 

 

 

 

Resistor Differential Nonlinearity2

R-DNL

RWB

−1

 

+1

LSB

Resistor Integral Nonlinearity2

R-INL

RWB

−2

 

+2

LSB

Nominal Resistor Tolerance

∆RAB/RAB

 

−8

 

+8

%

Resistance Temperature Coefficient

(∆RAB/RAB)/∆T × 106

 

 

35

 

ppm/°C

Wiper Resistance

RW

IW = 1 V/RWB, code = midscale

 

 

 

 

 

 

VDD = 5 V

 

30

60

 

 

VDD = 3 V

 

50

 

Nominal Resistance Match

RAB1/RAB2

 

 

±0.1

 

%

 

 

 

 

 

 

 

DC CHARACTERISTICS—

 

 

 

 

 

 

POTENTIOMETER DIVIDER MODE

 

 

 

 

 

 

(All RDACs)

 

 

 

 

 

 

Resolution

N

 

 

 

10

Bits

Differential Nonlinearity3

DNL

 

−1

 

+1

LSB

Integral Nonlinearity3

INL

 

−1

 

+1

LSB

Voltage Divider Temperature

(∆VW/VW)/∆T × 106

Code = midscale

 

15

 

ppm/°C

Coefficient

 

 

 

 

 

 

Full-Scale Error

VWFSE

Code = full scale

−6

 

0

LSB

Zero-Scale Error

VWZSE

Code = zero scale

0

 

4

LSB

 

 

 

 

 

 

 

RESISTOR TERMINALS

 

 

 

 

 

 

Terminal Voltage Range4

VA, VB, VW

 

VSS

 

VDD

V

Capacitance Ax, Bx5

CA, CB

f = 1 MHz, measured to GND,

 

11

 

pF

 

 

code = midscale

 

 

 

 

Capacitance Wx5

CW

f = 1 MHz, measured to GND,

 

80

 

pF

 

 

code = midscale

 

 

 

 

Common-Mode Leakage Current5, 6

ICM

VW = VDD/2

 

0.01

±1

µA

DIGITAL INPUTS AND OUTPUTS

 

 

 

 

 

 

Input Logic High

VIH

With respect to GND, VDD = 5 V

2.4

 

 

V

Input Logic Low

VIL

With respect to GND, VDD = 5 V

 

 

0.8

V

Input Logic High

VIH

With respect to GND, VDD = 3 V

2.1

 

 

V

Input Logic Low

VIL

With respect to GND, VDD = 3 V

 

 

0.6

V

Input Logic High

VIH

With respect to GND, VDD = +2.5 V,

2.0

 

 

V

 

 

VSS = −2.5 V

 

 

 

 

Input Logic Low

VIL

With respect to GND, VDD = +2.5 V,

 

 

0.5

V

 

 

VSS = −2.5 V

 

 

 

 

Output Logic High (SDO, RDY)

VOH

RPULL-UP = 2.2 kΩ to 5 V (see

4.9

 

 

V

 

 

Figure 38)

 

 

 

 

Output Logic Low

VOL

IOL = 1.6 mA, VLOGIC = 5 V (see

 

 

0.4

V

 

 

Figure 38)

 

 

 

 

Input Current

IIL

VIN = 0 V or VDD

 

 

±1

µA

Input Capacitance5

CIL

 

 

5

 

pF

Rev. F | Page 4 of 32

Data Sheet

 

 

 

 

AD5235

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

Symbol

Conditions

Min

Typ1

Max

Unit

POWER SUPPLIES

 

 

 

 

 

 

Single-Supply Power Range

VDD

VSS = 0 V

2.7

 

5.5

V

Dual-Supply Power Range

VDD/VSS

 

±2.25

 

±2.75

V

Positive Supply Current

IDD

VIH = VDD or VIL = GND

 

2

5

µA

Negative Supply Current

ISS

VDD = +2.5 V, VSS = −2.5 V

 

 

 

 

 

 

VIH = VDD or VIL = GND

−4

−2

 

µA

EEMEM Store Mode Current

IDD (store)

VIH = VDD or VIL = GND,

 

2

 

mA

 

 

VSS = GND, ISS ≈ 0

 

 

 

 

 

ISS (store)

VDD = +2.5 V, VSS = −2.5 V

 

−2

 

mA

EEMEM Restore Mode Current7

IDD (restore)

VIH = VDD or VIL = GND,

 

320

 

µA

 

 

VSS = GND, ISS ≈ 0

 

 

 

 

 

ISS (restore)

VDD = +2.5 V, VSS = −2.5 V

 

−320

 

µA

Power Dissipation8

PDISS

VIH = VDD or VIL = GND

 

10

30

µW

Power Supply Sensitivity5

PSS

∆VDD = 5 V ± 10%

 

0.006

0.01

%/%

DYNAMIC CHARACTERISTICS5, 9

 

 

 

 

 

 

Bandwidth

BW

−3 dB, RAB = 25 kΩ/250 kΩ

 

125/12

 

kHz

Total Harmonic Distortion

THDW

VA = 1 V rms, VB = 0 V,

 

 

 

 

 

 

f = 1 kHz, code = midscale

 

 

 

 

 

 

RAB = 25 kΩ

 

0.009

 

%

 

 

RAB = 250 kΩ

 

0.035

 

%

VW Settling Time

tS

VA = VDD, VB = 0 V, VW = 0.50% error

 

 

 

 

 

 

band, from zero scale to midscale

 

 

 

 

 

 

RAB = 25 kΩ

 

4

 

µs

 

 

RAB = 250 kΩ

 

36

 

µs

Resistor Noise Density

eN_WB

RAB = 25 kΩ/250 kΩ

 

20/64

 

nV/√Hz

Crosstalk (CW1/CW2)

CT

VA1 = VDD, VB1 = VSS , measured VW2

 

30/60

 

nV-s

 

 

with VW1 making full-scale change,

 

 

 

 

 

 

RAB = 25 kΩ/250 kΩ

 

 

 

 

Analog Crosstalk

CTA

VAB2 = 5 V p-p, f = 1 kHz, measured

 

−110/−100

 

dB

 

 

VW1, Code 1 = midscale, Code 2 =

 

 

 

 

 

 

full scale, RAB = 25 kΩ/250 kΩ

 

 

 

 

1Typicals represent average readings at 25°C and VDD = 5 V.

2Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. IWB = (VDD − 1)/RWB (see Figure 27).

3INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = VSS. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions (see Figure 28).

4Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables groundreferenced bipolar signal adjustment.

5Guaranteed by design and not subject to production test.

6Common-mode leakage current is a measure of the dc leakage from any Terminal A, Terminal B, or Terminal W to a common-mode bias level of VDD/2.

7EEMEM restore mode current is not continuous. Current is consumed while EEMEM locations are read and transferred to the RDAC register.

8PDISS is calculated from (IDD × VDD) + (ISS × VSS).

9All dynamic characteristics use VDD = +2.5 V and VSS = −2.5 V.

Rev. F | Page 5 of 32

AD5235

Data Sheet

INTERFACE TIMING AND EEMEM RELIABILITY CHARACTERISTICS—25 kΩ, 250 kΩ VERSIONS

Guaranteed by design and not subject to production test. See the Timing Diagrams section for the location of measured values. All input control voltages are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using both VDD = 2.7 V and VDD = 5 V.

Table 2.

 

Parameter

Symbol

 

Conditions

Min

Typ1

Max

Unit

 

Clock Cycle Time (tCYC)

t1

 

 

 

20

 

 

ns

 

 

 

 

 

 

 

 

 

t2

 

 

 

10

 

 

ns

 

CS

Setup Time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK Shutdown Time to

CS

Rise

t3

 

 

 

1

 

 

tCYC

 

Input Clock Pulse Width

t4, t5

 

Clock level high or low

10

 

 

ns

 

Data Setup Time

t6

 

From positive CLK transition

5

 

 

ns

 

Data Hold Time

t7

 

From positive CLK transition

5

 

 

ns

 

 

 

 

 

 

 

t8

 

 

 

 

 

40

ns

 

CS

to SDO-SPI Line Acquire

 

 

 

 

 

 

 

 

 

 

 

 

t9

 

 

 

 

 

50

ns

 

CS

to SDO-SPI Line Release

 

 

 

 

 

 

CLK to SDO Propagation Delay2

t10

 

RP = 2.2 kΩ, CL < 20 pF

 

 

50

ns

 

CLK to SDO Data Hold Time

t11

 

RP = 2.2 kΩ, CL < 20 pF

0

 

 

ns

 

 

 

 

 

 

 

t12

 

 

 

10

 

 

ns

 

CS

High Pulse Width3

 

 

 

 

 

 

 

 

 

 

High3

t13

 

 

 

4

 

 

tCYC

 

CS

High to

CS

 

 

 

 

 

 

RDY Rise to

CS

Fall

t14

 

 

 

0

 

 

ns

 

 

t15

 

 

 

 

0.15

0.3

ms

 

CS

Rise to RDY Fall Time

 

 

 

 

 

Store EEMEM Time4, 5

t16

 

Applies to Instructions 0x2, 0x3

 

15

50

ms

 

Read EEMEM Time4

t16

 

Applies to Instructions 0x8, 0x9, 0x10

 

7

30

µs

 

CS

Rise to Clock Rise/Fall Setup

t17

 

 

 

10

 

 

ns

 

Preset Pulse Width (Asynchronous)6

tPRW

 

 

 

50

 

 

ns

 

Preset Response Time to Wiper Setting6

tPRESP

 

PR

pulsed low to refresh wiper positions

 

30

 

µs

 

Power-On EEMEM Restore Time6

tEEMEM

 

 

 

 

30

 

µs

 

FLASH/EE MEMORY RELIABILITY

 

 

 

 

 

 

 

 

 

Endurance7

 

 

TA = 25°C

 

1

 

MCycles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

kCycles

 

Data Retention8

 

 

 

 

 

100

 

Years

1Typicals represent average readings at 25°C and VDD = 5 V.

2Propagation delay depends on the value of VDD, RPULL-UP, and CL.

3Valid for commands that do not activate the RDY pin.

4The RDY pin is low only for Instruction 2, Instruction 3, Instruction 8, Instruction 9, Instruction 10, and the PR hardware pulse: CMD_8 ~ 20 µs; CMD_9, CMD_10 ~ 7 µs; CMD_2, CMD_3 ~ 15 ms; PR hardware pulse ~ 30 µs.

5Store EEMEM time depends on the temperature and EEMEM writes cycles. Higher timing is expected at a lower temperature and higher write cycles.

6Not shown in Figure 2 and Figure 3.

7Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C, +25°C, and +85°C.

8Retention lifetime equivalent at junction temperature (TJ) = 85°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV derates with junction temperature in the Flash/EE memory.

Rev. F | Page 6 of 32

Data Sheet

AD5235

Timing Diagrams

 

 

 

CPHA = 1

 

 

CS

 

 

 

 

t12

 

 

 

t1

t3

t13

 

 

t2

 

 

CLK

 

 

 

 

 

t5

B23

B0

 

CPOL = 1

 

t17

 

 

t4

 

 

 

 

 

 

 

 

 

t7

 

 

 

HIGH

 

t6

 

 

 

 

 

 

 

SDI

OR LOW

B23 (MSB)

B0 (LSB)

 

 

 

 

t8

 

t10

t11

t9

SDO

 

B24*

B23 (MSB)

B0 (LSB)

 

 

t14

 

 

 

t15

RDY

 

 

 

 

t16

 

 

 

 

 

*THE EXTRA BIT THAT IS NOT DEFINED IS NORMALLY THE LSB OF THE CHARACTER PREVIOUSLY TRANSMITTED. THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

HIGH OR LOW

02816-002

 

 

 

 

Figure 2. CPHA = 1 Timing Diagram

 

 

 

 

 

CPHA = 0

 

CS

 

 

 

 

t12

 

 

 

 

 

 

 

t1

 

t3

t13

 

 

t2

 

 

 

t5

 

t17

CLK

 

B23

B0

 

 

CPOL = 0

 

t4

 

t7

 

 

 

 

 

 

 

HIGH

 

t6

 

HIGH

SDI

OR LOW

B23 (MSB IN)

 

B0 (LSB)

OR LOW

 

 

 

 

t8

t10

 

t11

t9

 

 

 

 

 

SDO

 

B23 (MSB OUT)

 

B0 (LSB)

*

 

 

 

 

 

 

t14

 

 

 

t15

 

 

 

 

 

t16

RDY

 

 

 

 

 

*THE EXTRA BIT THAT IS NOT DEFINED IS NORMALLY THE MSB OF THE CHARACTER JUST RECEIVED.

THE CPOL = 0 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 3. CPHA = 0 Timing Diagram

02816-003

Rev. F | Page 7 of 32

AD5235

Data Sheet

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.

Table 3.

Parameter

Rating

VDD to GND

–0.3 V to +7 V

VSS to GND

+0.3 V to −7 V

VDD to VSS

7 V

VA, VB, VW to GND

VSS − 0.3 V to VDD + 0.3 V

IA, IB, IW

 

Pulsed1

±20 mA

Continuous

±2 mA

Digital Input and Output Voltage to GND

−0.3 V to VDD + 0.3 V

Operating Temperature Range2

−40°C to +85°C

Maximum Junction Temperature (TJ max)

150°C

Storage Temperature Range

−65°C to +150°C

Lead Temperature, Soldering

 

Vapor Phase (60 sec)

215°C

Infrared (15 sec)

220°C

Thermal Resistance

 

Junction-to-Ambient θJA,TSSOP-16

150°C/W

Junction-to-Case θJC, TSSOP-16

28°C/W

Package Power Dissipation

(TJ max − TA)/θJA

1Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

2Includes programming of nonvolatile memory.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. F | Page 8 of 32

Data Sheet

AD5235

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

CLK

1

 

16

RDY

SDI

2

 

 

 

 

 

 

 

 

15

 

CS

SDO

 

 

 

 

 

 

3

 

14

 

PR

 

 

GND

 

AD5235

 

 

 

4

13

 

WP

 

VSS

5

TOP VIEW

12

 

VDD

(Not to Scale)

 

A1

6

 

11

A2

W1

7

 

10

W2

B1 8

9 B2

02816-005

 

 

 

 

 

Figure 4. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.

 

Mnemonic

Description

1

 

CLK

Serial Input Register Clock. Shifts in one bit at a time on positive clock edges.

2

 

SDI

Serial Data Input. Shifts in one bit at a time on positive clock CLK edges. MSB loads first.

3

 

SDO

Serial Data Output. Serves readback and daisy-chain functions. Command 9 and Command 10 activate the SDO

 

 

 

 

 

output for the readback function, delayed by 24 or 25 clock pulses, depending on the clock polarity before and

 

 

 

 

 

after the data-word (see Figure 2 and Figure 3). In other commands, the SDO shifts out the previously loaded SDI

 

 

 

 

 

bit pattern, delayed by 24 or 25 clock pulses depending on the clock polarity (see Figure 2 and Figure 3). This

 

 

 

 

 

previously shifted out SDI can be used for daisy-chaining multiple devices. Whenever SDO is used, a pull-up

 

 

 

 

 

resistor in the range of 1 kΩ to 10 kΩ is needed.

4

 

GND

Ground Pin, Logic Ground Reference.

5

 

VSS

Negative Supply. Connect to 0 V for single-supply applications. If VSS is used in dual supply, it must be able to sink

 

 

 

 

 

2 mA for 15 ms when storing data to EEMEM.

6

 

A1

Terminal A of RDAC1.

7

 

W1

Wiper terminal of RDAC1. ADDR (RDAC1) = 0x0.

8

 

B1

Terminal B of RDAC1.

9

 

B2

Terminal B of RDAC2.

10

 

W2

Wiper terminal of RDAC2. ADDR (RDAC2) = 0x1.

11

 

A2

Terminal A of RDAC2.

12

 

VDD

Positive Power Supply.

13

 

 

 

Optional Write Protect. When active low,

 

prevents any changes to the present contents, except

 

strobe.

 

WP

 

WP

PR

 

 

 

 

 

CMD_1 and COMD_8 refresh the RDAC register from EEMEM. Tie WP to VDD, if not used.

14

 

 

Optional Hardware Override Preset. Refreshes the scratchpad register with current contents of the EEMEM

 

PR

 

 

 

 

 

 

register. Factory default loads midscale until EEMEM is loaded with a new value by the user.

PR

is activated

 

 

 

 

 

at the logic high transition. Tie PR to VDD, if not used.

15

 

 

Serial Register Chip Select Active Low. Serial register operation takes place when

 

returns to logic high.

 

CS

 

CS

16

 

RDY

Ready. Active high open-drain output. Identifies completion of Instruction 2, Instruction 3, Instruction 8,

 

 

 

 

 

Instruction 9, Instruction 10, and PR.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rev. F | Page 9 of 32

ANALOG DEVICES AD5235 Service Manual

AD5235

Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS

 

0.20

+85°C

 

 

 

 

 

 

 

 

 

 

 

 

 

0.15

+25°C

 

 

 

 

 

 

–40°C

 

 

 

 

 

 

0.10

 

 

 

 

 

 

(LSB)

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

ERROR

0

 

 

 

 

 

 

 

 

 

 

 

 

 

INL

–0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.10

 

 

 

 

 

 

 

–0.15

 

 

 

 

 

 

 

–0.20 0

200

400

600

800

1000

-006

 

 

 

DIGITAL CODE

 

 

02816

Figure 5. INL vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 25 kΩ

 

0.16

+85°C

 

 

 

 

 

 

 

 

 

 

 

 

 

0.14

+25°C

 

 

 

 

 

 

–40°C

 

 

 

 

 

 

 

 

 

 

 

 

 

0.12

 

 

 

 

 

 

(LSB)

0.10

 

 

 

 

 

 

0.08

 

 

 

 

 

 

ERROR

 

 

 

 

 

 

0.06

 

 

 

 

 

 

0.04

 

 

 

 

 

 

DNL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

–0.02

 

 

 

 

 

 

 

–0.04 0

200

400

600

800

1000

-007

 

 

 

DIGITAL CODE

 

 

02816

Figure 6. DNL vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 25 kΩ

 

0.20

+85°C

 

 

 

 

 

 

 

 

 

 

 

 

 

0.15

+25°C

 

 

 

 

 

 

–40°C

 

 

 

 

 

 

0.10

 

 

 

 

 

 

(LSB)

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

ERROR

0

 

 

 

 

 

 

 

 

 

 

 

 

 

INL

–0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.10

 

 

 

 

 

 

 

–0.15

 

 

 

 

 

 

 

–0.20 0

200

400

600

800

1000

-008

 

 

 

DIGITAL CODE

 

 

02816

Figure 7. R-INL vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 25 kΩ

 

0.20

+85°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+25°C

 

 

 

 

 

 

0.15

–40°C

 

 

 

 

 

 

 

 

 

 

 

 

(LSB)

0.10

 

 

 

 

 

 

0.05

 

 

 

 

 

 

ERROR

 

 

 

 

 

 

0

 

 

 

 

 

 

DNL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.05

 

 

 

 

 

 

 

–0.10

 

 

 

 

 

 

 

–0.15 0

200

400

600

800

1000

-009

 

 

 

DIGITAL CODE

 

 

02816

Figure 8. R-DNL vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 25 kΩ

 

200

 

 

 

 

25kΩ

(ppm/°C)

 

 

 

 

 

180

 

 

 

 

250kΩ

160

 

 

 

 

 

 

 

 

 

 

 

TEMPCO

140

 

 

 

 

 

120

 

 

 

 

 

MODE

100

 

 

 

 

 

 

 

 

 

 

 

POTENTIOMETER

80

 

 

 

 

 

60

 

 

 

 

 

40

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

0

0

256

512

768

1023

 

 

 

 

CODE (Decimal)

 

02816010-

 

Figure 9. (∆VW/VW)/∆T × 106 Potentiometer Mode Tempco

 

200

 

 

 

 

25kΩ

 

 

 

 

 

 

(ppm/°C)

180

 

 

 

 

250kΩ

160

 

 

 

 

 

 

 

 

 

 

 

TEMPCO

140

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

 

 

MODE

100

 

 

 

 

 

80

 

 

 

 

 

RHEOSTAT

60

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

20

 

 

 

 

 

 

0

0

256

512

768

1023

 

 

 

 

CODE (Decimal)

 

02816011-

Figure 10. (∆RWB/RWB)/∆T × 106 Rheostat Mode Tempco

Rev. F | Page 10 of 32

Loading...
+ 22 hidden pages