Analog Devices AD641AP, AD641AN, AD641-EB, 5962-9559801MRA Datasheet

0 (0)

a

250 MHz Demodulating

Logarithmic Amplifier

FEATURES

Logarithmic Amplifier Performance

Usable to 250 MHz

44 dB Dynamic Range

62.0 dB Log Conformance

37.5 mV/dB Voltage Output

Stable Slope and Intercepts

2.0 nV/Hz Input Noise Voltage

50 mV Input Offset Voltage

Low Power

65 V Supply Operation

9 mA (+VS), 35 mA (–VS) Quiescent Current

Onboard Resistors

Onboard 103 Attenuator

Dual Polarity Current Outputs

Direct Coupled Differential Signal Path

APPLICATIONS

IF/RF Signal Processing

Received Signal Strength Indicator (RSSI)

High Speed Signal Compression

High Speed Spectrum Analyzer

ECM/Radar

PRODUCT DESCRIPTION

The AD641 is a 250 MHz, demodulating logarithmic amplifier with an accuracy of ±2.0 dB and 44 dB dynamic range. The AD641 uses a successive detection architecture to provide an output current that is logarithmically proportional to its input voltage. The output current can be converted to a voltage using one of several on-chip resistors to select the slope. A single AD641 provides up to 44 dB of dynamic range at speeds up to 250 MHz, and two cascaded AD641s together can provide 58 dB of dynamic range at speeds up to 250 MHz. The AD641 is fully stable and well characterized over either the industrial or military temperature ranges.

The AD641 is not a logarithmic building block, but rather a complete logarithmic solution for compressing and measuring wide dynamic range signals. The AD641 is comprised of five stages and each stage has a full wave rectifier, whose current depends on the absolute value of its input voltage. The output of these stages are summed together to provide the demodulated output current scaled at 1 mA per decade (50 µA/dB).

Without utilizing the 10× input attenuator, log conformance of 2.0 dB is maintained over the input range –44 dBm to 0 dBm. The attenuator offers the most flexibility without significantly impacting performance.

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD641

PIN CONFIGURATIONS

20-Lead Plastic DIP (N)

20-Lead Cerdip (Q)

–INPUT

 

 

 

 

 

+INPUT

1

 

 

 

20

ATN LO

 

 

 

 

 

ATN OUT

2

 

 

 

19

ATN COM

 

 

 

 

 

CKT COM

3

 

 

 

18

ATN COM

 

 

 

 

 

RG1

4

 

 

 

17

ATN IN

 

AD641

 

RG0

5

16

BL1

 

TOP VIEW

 

RG2

6

15

(Not to Scale)

–V

 

 

LOG OUT

7

 

 

 

14

S

 

 

 

 

 

 

ITC

 

 

 

 

 

LOG COM

8

 

 

 

13

BL2

 

 

 

 

 

+VS

9

 

 

 

12

 

 

 

 

 

 

+OUTPUT

–OUTPUT

10

 

 

 

11

 

 

 

 

 

 

 

20-Lead PLCC (P)

 

 

 

ATN COM

 

ATN LO

–INPUT

 

+INPUT

ATN OUT

 

 

 

3

2

 

1

20

 

19

 

 

 

ATN COM

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

PIN 1

 

 

18

CKT COM

 

 

 

 

 

 

 

 

IDENTIFIER

 

 

ATN IN

5

 

 

 

AD641

 

 

17

RG1

BL1

6

 

 

 

 

 

16

RG0

 

 

 

TOP VIEW

 

 

 

 

 

 

 

 

 

 

 

–V

7

 

 

(Not to Scale)

15

RG2

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ITC

8

 

 

 

 

 

 

 

 

 

 

 

14

LOG OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

10

 

11

 

12

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BL2

–OUTSIG

+OUTSIG

 

+V

LOGCOM

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

The 250 MHz bandwidth and temperature stability make this product ideal for high speed signal power measurement in RF/ IF systems. ECM/Radar and Communication applications are routinely in the 100 MHz–180 MHz range for power measurement. The bandwidth and accuracy, as well as dynamic range, make this part ideal for high speed, wide dynamic range signals.

The AD641 is offered in industrial (–40°C to +85°C) and military (–55°C to +125°C) package temperature ranges. Industrial versions are available in plastic DIP and PLCC; MIL versions are packaged in cerdip.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1999

AD641–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (VS = 65 V; TA = +258C, unless otherwise noted)

 

 

 

AD641A

 

AD641S

 

 

Parameter

Conditions

 

Min

Typ

Max

Min

Typ

Max

Units

 

 

 

 

 

 

TRANSFER FUNCTION1

 

(IOUT = IY LOG |VIN/VX|for VIN = 0.75 mV to ±200 mV dc)

 

LOG AMPLIFIER PERFORMANCE

 

 

 

 

 

 

 

 

 

3 dB Bandwidth

 

 

 

250

 

 

250

 

MHz

Voltage Compliance Range

 

 

–0.3

 

+VS – 1

–0.3

 

+VS – 1

V

Slope Current, IY

 

 

0.98

1.00

1.02

0.98

1.00

1.02

mA

Accuracy vs. Temperature

 

 

 

0.002

 

 

0.002

 

%/°C

Over Temperature

TMIN to TMAX

 

 

 

 

0.98

 

1.02

mA

Intercept dBm

250 MHz

 

–40.84

–40.43

–39.96

–40.84

–40.43

–39.96

dBm

Over Temperature

TMIN to TMAX, 250 MHz

 

 

 

 

–40.59

 

–39.47

dBm

Zero Signal Output Current2

 

 

 

–0.2

 

 

–0.2

 

mA

ITC Disabled

Pin 8 to COM

 

 

–0.27

 

 

–0.27

 

mA

Maximum Output Current

 

 

 

 

2.3

 

 

2.3

mA

DYNAMIC RANGE

 

 

 

 

 

 

 

 

 

Single Configuration

 

 

 

44

 

 

44

 

dB

Over Temperature

TMIN to TMAX

 

 

40

 

 

38

 

dB

Dual Configuration

 

 

 

58

 

 

58

 

dB

Over Temperature

TMIN to TMAX

 

 

52

 

 

52

 

dB

LOG CONFORMANCE

f = 250 MHz

 

 

± 0.5

± 2.0

 

± 0.5

± 2.0

 

Single Configuration

–44 dBm to 0 dBm

 

 

 

dB

Over Temperature

–42 dBm to –4 dBm; TMIN to TMAX

 

 

±1.0

±2.5

 

±1.0

±2.5

dB

 

–42 dBm to –2 dBm, TMIN to TMAX

 

 

 

± 0.5

± 2.0

 

Dual Configuration

S: –60 dBm to –2 dBm;

 

 

± 0.5

± 2.0

 

dB

Over Temperature

A: –56 dBm to –4 dBm, TMIN to TMAX

 

 

±1.0

±2.5

 

±1.0

±2.5

dB

LIMITER CHARACTERISTICS

 

 

 

± 1.6

 

 

± 1.6

 

 

Flatness

–44 dBm to 0 dBm @ 10.7 MHz

 

 

 

 

 

dB

Phase Variation

–44 dBm to 0 dBm @ 10.7 MHz

 

 

± 2.0

 

 

± 2.0

 

Degrees

INPUT CHARACTERISTICS

 

 

 

 

 

 

 

 

kΩ

Input Resistance

Differential

 

 

500

 

 

500

 

Input Offset Voltage

Differential

 

 

50

200

 

50

200

µV

vs. Temperature

 

 

 

0.8

 

 

0.8

 

µV/°C

Over Temperature

TMIN to TMAX

 

 

 

 

 

 

300

µV

vs. Supply

 

 

 

2

 

 

2

 

µV/V

Input Bias Current

 

 

 

7

25

 

7

25

µA

Input Bias Offset

 

 

 

1

 

 

1

 

µA

Common Mode Input Range

 

 

–2

 

+0.3

–2

 

+0.3

V

SIGNAL INPUT (Pins 1, 20)

 

 

 

 

 

 

 

 

 

Input Capacitance

Either Pin to COM

 

 

2

 

 

2

 

pF

Noise Spectral Density

1 kHz to 10 MHz

 

 

2

 

 

2

 

nV/Hz

Tangential Sensitivity

BW = 100 MHz

 

 

–72

 

 

–72

 

dBm

INPUT ATTENUATOR

 

 

 

 

 

 

 

 

 

(Pins 2, 3, 4, 5 & 19)

 

 

 

 

 

 

 

 

 

Attenuation3

Pins 5 to Pin 19

 

 

20

 

 

20

 

dB

Input Resistance

Pins 5 to 3/4

 

 

300

 

 

300

 

Ω

APPLICATION RESISTORS

 

 

 

 

 

 

 

 

kΩ

(Pins 15, 16, 17)

 

 

0.995

1.000

1.005

0.995

1.000

1.005

OUTPUT CHARACTERISTICS

 

 

 

 

 

 

 

 

 

(Pins 10, 11)

 

 

 

± 180

 

 

± 180

 

 

Peak Differential Output4

 

 

 

 

 

 

mV

Output Resistance

Either Pin to COM

 

 

75

 

 

75

 

Ω

Quiescent Output Voltage

Either Pin to COM

 

 

–90

 

 

–90

 

mV

POWER SUPPLY

 

 

± 4.5

 

± 7.5

± 4.5

 

± 7.5

 

Voltage Supply Range

 

 

 

 

V

Quiescent Current

 

 

 

 

 

 

 

 

 

+VS (Pin 12)

TMIN to TMAX

 

 

9

15

 

9

15

mA

–VS (Pin 7)

TMIN to TMAX

 

 

35

60

 

35

60

mA

NOTES

1Logarithms to base 10 are used throughout. The response is independent of the sign of VIN.

2The zero-signal current is a function of temperature unless internal temperature compensation (ITC) pin is grounded. 3Attenuation ratio trimmed to calibrate intercept to 10 mV when in use. It has a temperature coefficient of +0.3%/°C. 4The fully limited signal output will appear to be a square wave; its amplitude is proportional to absolute temperature.

Specifications subject to change without notice.

–2–

REV. C

AD641

ORDERING GUIDE

 

 

Temperature

Package

Package

Model

 

Range

 

Description

Option

 

 

 

 

 

 

 

 

AD641AN

 

–40°C to

+85°C

Plastic DIP

N-20

AD641AP

 

–40°C to

+85°C

PLCC

P-20A

5962-9559801MRA

–55°C to

+125°C

Cerdip

Q-20

AD641-EB

 

 

 

Evaluation Board

 

 

 

 

 

 

 

 

 

THERMAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uJC

 

uJA

 

 

 

 

 

(8C/W)

 

(8C/W)

 

 

 

 

 

 

20-Lead Plastic DIP Package (N)

 

24

 

61

20-Lead Cerdip Package (Q)

 

 

25

 

85

20-Lead Plastic Leadless Chip Carrier (P)

28

 

75

 

 

 

 

 

 

 

 

ABSOLUTE MAXIMUM RATINGS*

±7.5 V

Supply Voltages . . . . . . . . . . . . . . . . . . . . . . .

Input Voltage (Pin 1 or Pin 20 to COM) . . .

–3 V to +300 mV

Attenuator Input Voltage (Pin 5 to Pin 3/4) . .

. . . . . . . . . ±4 V

Storage Temperature Range, Q . . . . . . . . . .

–65°C to +150°C

Storage Temperature Range, N, P . . . . . . . .

–65°C to +125°C

Ambient Temperature Range, Rated Performance

Industrial, AD641A . . . . . . . . . . . . . . . . . .

–40°C to +85°C

Military, AD641S . . . . . . . . . . . . . . . . . .

–55°C to +125°C

Lead Temperature Range (Soldering 60 sec) .

. . . . . . . +300°C

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD641 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. C

–3–

AD641–Typical DC Performance Characteristics

 

1.015

 

 

 

 

 

 

1.010

 

 

 

 

 

mA

1.005

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

1

 

 

 

 

 

0.995

 

 

 

 

 

 

 

 

 

 

 

SLOPE

0.990

 

 

 

 

 

 

 

 

 

 

 

 

0.985

 

 

 

 

 

 

0.980

0

20

40

60

80 100 120 140

 

–60 –40 –20

 

TEMPERATURE –8C

Figure 1. Slope Current, IY, vs. Temperature

 

1.015

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– mV

1.010

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.005

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.000

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERCEPT

 

 

 

 

 

 

 

 

 

 

 

 

 

0.990

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.995

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.985

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

5.5

6.0

6.5

7.0

7.5

 

4.5

POWER SUPPLY VOLTAGES –6 Volts

Figure 4. Intercept Voltage, VX, vs. Supply Voltages

 

2.4

 

 

 

2

 

 

 

 

1

 

2.2

 

 

 

 

 

 

 

0

 

2.0

 

 

 

– mA

 

 

 

 

1.8

 

 

 

 

1.6

 

 

 

 

OUTPUT CURRENT

1.4

 

 

 

 

1.2

 

 

 

ERROR – dB

1.0

 

 

 

0.8

 

 

 

0.6

 

 

 

0.4

 

 

 

0.2

 

 

 

0

 

 

 

 

 

 

 

 

 

–0.2

 

 

 

 

 

–0.4

 

 

 

 

 

0.1

1.0

10.0

100.0

1000.0

INPUT VOLTAGE – mV (EITHER SIGN)

Figure 7. DC Logarithmic Transfer Function and Error Curve for Single AD641

 

1.20

 

 

 

 

 

 

 

1.15

 

 

 

 

 

 

– mV

1.10

 

 

 

 

 

 

1.05

 

 

 

 

 

 

INTERCEPT

 

 

 

 

 

 

1.00

 

 

 

 

 

 

0.95

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

0.85

 

 

 

 

 

 

 

–60

–40 –20

0

20

40

60

80 100 120 140

 

 

TEMPERATURE –8C

Figure 2. Intercept Voltage, VX, vs. Temperature

 

14

 

 

 

 

 

 

13

 

 

 

 

 

– mV

12

 

 

 

 

 

11

 

 

 

 

 

INTERCEPT

 

 

 

 

 

10

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

7

 

 

 

 

 

 

–60 –40 –20

0

20

40

60

80 100 120 140

 

TEMPERATURE –8C

Figure 5. Intercept Voltage (Using Attenuator) vs. Temperature

 

2.5

 

 

 

 

 

– dB

2.0

 

 

 

 

 

 

 

 

 

 

 

ERROR

1.5

 

 

 

 

 

 

 

 

 

 

 

ABSOLUTE

1.0

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

0

0

20

40

60

80 100 120 140

 

–60 –40 –20

 

TEMPERATURE –8C

 

Figure 8. Absolute Error vs. Temperature, VIN = ±1 mV to ±100 mV

 

1.006

 

 

 

 

 

 

 

 

 

 

 

 

 

– mV

1.004

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.002

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRENT

1.000

 

 

 

 

 

 

 

 

 

 

 

 

 

SLOPE

0.998

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.996

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.994

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0

5.5

6.0

6.5

7.0

7.5

 

4.5

POWER SUPPLY VOLTAGES –6 Volts

Figure 3. Slope Current, IY, vs. Supply Voltages

mV

+0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

+0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+0.2

INPUT OFFSET VOLTAGE

 

DEVIATION WILL BE WITHIN

OFFSET

 

SHADED AREA.

 

 

+0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT

0

 

 

 

 

 

 

–0.1

 

 

 

 

 

 

OF

 

 

 

 

 

 

 

 

 

 

 

 

 

DEVIATION

–0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.3

 

0

20

40

60

80 100 120 140

 

–60 –40 –20

 

 

TEMPERATURE –8C

Figure 6. Input Offset Voltage Deviation vs. Temperature

 

2.5

 

 

 

 

 

– dB

2.0

 

 

 

 

 

 

 

 

 

 

 

ERROR

1.5

 

 

 

 

 

 

 

 

 

 

 

ABSOLUTE

1.0

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

0

0

20

40

60

80 100 120 140

 

–60 –40 –20

 

TEMPERATURE –8C

 

Figure 9. Absolute Error vs. Temperature, Using Attenuator. VIN = ±10 mV to ±1 V, Pin 8 Grounded to Disable ITC Bias

–4–

REV. C

Analog Devices AD641AP, AD641AN, AD641-EB, 5962-9559801MRA Datasheet

Typical AC Performance Characteristics–AD641

 

–2.25

 

 

–2.00

50MHz

 

 

 

–1.75

150MHz

 

190MHz

mA

 

210MHz

–1.50

250MHz

–1.25

 

CURRENT

 

–1.00

 

–0.75

 

OUTPUT

 

–0.50

 

–0.25

 

 

 

 

0.00

 

 

0.25

0

 

–52–48 –44–40 –36 –32 –28 –24 –20 –16 –12–4–8 2

INPUT LEVEL – dBm

Figure 10. AC Response at 50 MHz, 150 MHz, 190 MHz, 210 MHz at 250 MHz, vs. dBm Input (Sinusoidal Input)

 

87.5

 

 

 

 

 

 

 

 

85.0

 

 

 

 

 

 

 

dBm

82.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEVEL

80.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERCEPT

77.5

 

 

 

 

 

 

 

75.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72.5

 

 

 

 

 

 

 

 

70.0

 

 

 

 

 

 

 

 

50

100

150

170

190

210

230

250

 

 

 

INPUT FREQUENCY – MHz

 

 

Figure 11. Intercept Level (dBm) vs. Frequency (Cascaded AD641s—Sinusoidal Input)

 

–2.00

 

 

5

 

 

–1.75

 

+1258C

4

 

 

–1.50

+1258C

+258C

3

 

 

 

 

 

OUTPUT– mA

–1.25

+258C

–558C

2

INERROR– dB

–1.00

ERROR

 

1

–0.75

–558C

 

0

 

 

 

 

 

 

 

 

–0.50

 

+1258C

–1

 

 

 

+258C

 

 

 

 

 

 

 

–0.25

+1258C

 

–558C

–2

 

 

 

OUTPUT

 

 

 

–0.00

 

 

–3

 

 

 

 

 

 

 

0.25

+258C

 

 

–4

 

 

 

 

 

 

 

0.50

–558C

 

 

–5

 

 

 

 

 

0

 

–52–48 –44–40 –36 –32 –28 –24 –20 –16 –12–4–8 2

 

 

 

INPUT LEVEL – dBm

 

 

 

Figure 13. Logarithmic Response and Linearity at

 

200 MHz, TA for TA = –55°C, +25°C, +125°C

 

 

 

1.0

 

 

 

 

 

– mA

0.95

 

 

 

 

 

 

 

 

 

 

 

CURRENT

0.90

 

 

 

 

 

0.85

 

 

 

 

 

SLOPE

 

 

 

 

 

 

 

 

 

 

 

 

0.80

 

 

 

 

 

 

0.75

 

 

 

 

 

 

50

150

190

210

250

 

INPUT FREQUENCY – MHz

Figure 14. Slope Current, IY, vs. Input Frequency

5µs

5µs

100

 

90

 

10

 

0%

 

20mV

20mV

Figure 12. Baseband Pulse Response of Single AD641,

Figure 15. Baseband Pulse Response of Cascaded AD641s

Inputs of 1 mV, 10 mV and 100 mV

at Inputs of 0.2 mV, 2 mV, 20 mV and 200 mV

REV. C

–5–

Loading...
+ 11 hidden pages