Analog Devices AD595CQ, AD595CD, AD595AQ, AD595AD, AD595 Datasheet

...
0 (0)

a Monolithic Thermocouple Amplifiers

with Cold Junction Compensation

AD594/AD595

FEATURES

Pretrimmed for Type J (AD594) or Type K (AD595) Thermocouples

Can Be Used with Type T Thermocouple Inputs Low Impedance Voltage Output: 10 mV/8C

Built-In Ice Point Compensation

Wide Power Supply Range: +5 V to 615 V

Low Power: <1 mW typical Thermocouple Failure Alarm

Laser Wafer Trimmed to 18C Calibration Accuracy

Setpoint Mode Operation

Self-Contained Celsius Thermometer Operation High Impedance Differential Input

Side-Brazed DIP or Low Cost Cerdip

FUNCTIONAL BLOCK DIAGRAM

–IN

–ALM

+ALM

V+

COMP

VO

FB

14

13

12

11

10

9

8

 

 

 

OVERLOAD

 

 

 

 

 

DETECT

 

 

AD594/AD595

 

+A

 

 

 

 

 

 

 

 

 

G

 

G

 

ICE

 

 

 

 

 

 

POINT

 

 

 

 

 

+TC

COMP. –TC

 

 

 

 

 

 

1

2

3

4

5

6

7

+IN

+C

+T

COM

–T

–C

V–

PRODUCT DESCRIPTION

The AD594/AD595 is a complete instrumentation amplifier and thermocouple cold junction compensator on a monolithic chip. It combines an ice point reference with a precalibrated amplifier to produce a high level (10 mV/°C) output directly from a thermocouple signal. Pin-strapping options allow it to be used as a linear amplifier-compensator or as a switched output setpoint controller using either fixed or remote setpoint control. It can be used to amplify its compensation voltage directly, thereby converting it to a stand-alone Celsius transducer with a low impedance voltage output.

The AD594/AD595 includes a thermocouple failure alarm that indicates if one or both thermocouple leads become open. The alarm output has a flexible format which includes TTL drive capability.

The AD594/AD595 can be powered from a single ended supply (including +5 V) and by including a negative supply, temperatures below 0°C can be measured. To minimize self-heating, an unloaded AD594/AD595 will typically operate with a total supply current 160 A, but is also capable of delivering in excess of

±5 mA to a load.

The AD594 is precalibrated by laser wafer trimming to match the characteristic of type J (iron-constantan) thermocouples and the AD595 is laser trimmed for type K (chromel-alumel) inputs. The temperature transducer voltages and gain control resistors

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

are available at the package pins so that the circuit can be recalibrated for the thermocouple types by the addition of two or three resistors. These terminals also allow more precise calibration for both thermocouple and thermometer applications.

The AD594/AD595 is available in two performance grades. The C and the A versions have calibration accuracies of ±1°C and

±3°C, respectively. Both are designed to be used from 0°C to +50°C, and are available in 14-pin, hermetically sealed, sidebrazed ceramic DIPs as well as low cost cerdip packages.

PRODUCT HIGHLIGHTS

1.The AD594/AD595 provides cold junction compensation, amplification, and an output buffer in a single IC package.

2.Compensation, zero, and scale factor are all precalibrated by laser wafer trimming (LWT) of each IC chip.

3.Flexible pinout provides for operation as a setpoint controller or a stand-alone temperature transducer calibrated in degrees Celsius.

4.Operation at remote application sites is facilitated by low quiescent current and a wide supply voltage range +5 V to dual supplies spanning 30 V.

5.Differential input rejects common-mode noise voltage on the thermocouple leads.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1999

 

 

 

 

 

(@ +258C and VS = 5 V, Type J (AD594), Type K (AD595) Thermocouple,

AD594/AD595–SPECIFICATIONS unless otherwise noted)

 

 

 

 

 

Model

 

AD594A

 

 

AD594C

 

 

AD595A

 

 

AD595C

 

 

 

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Units

ABSOLUTE MAXIMUM RATING

 

 

 

 

 

 

 

 

 

 

 

 

 

+VS to –VS

 

 

36

 

 

36

 

 

36

 

 

36

Volts

Common-Mode Input Voltage

–VS – 0.15

+VS

–VS – 0.15

+VS

–VS – 0.15

+VS

–VS – 0.15

+VS

Volts

Differential Input Voltage

–VS

 

+VS

–VS

 

+VS

–VS

 

+VS

–VS

 

+VS

Volts

Alarm Voltages

 

 

 

 

 

 

 

 

 

 

 

 

 

+ALM

–VS

 

–VS + 36

–VS

 

–VS + 36

–VS

 

–VS + 36

–VS

 

–VS + 36

Volts

–ALM

–VS

 

+VS

–VS

 

+VS

–VS

 

+VS

–VS

 

+VS

Volts

Operating Temperature Range

–55

 

+125

–55

 

+125

–55

 

+125

–55

 

+125

°C

Output Short Circuit to Common

Indefinite

 

Indefinite

 

Indefinite

 

Indefinite

 

 

TEMPERATURE MEASUREMENT

 

 

 

 

 

 

 

 

 

 

 

 

 

(Specified Temperature Range

 

 

 

 

 

 

 

 

 

 

 

 

 

0°C to +50°C)

 

 

 

 

 

 

 

 

 

 

 

 

 

Calibration Error at +25°C1

 

 

63

 

 

61

 

 

63

 

 

61

°C

Stability vs. Temperature2

 

 

60.05

 

 

60.025

 

 

60.05

 

 

60.025

°C/°C

Gain Error

 

 

61.5

 

 

60.75

 

 

61.5

 

 

60.75

%

Nominal Transfer Function

 

 

10

 

 

10

 

 

10

 

 

10

mV/°C

AMPLIFIER CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

Closed Loop Gain3

 

193.4

 

 

 

193.4

 

 

247.3

 

 

247.3

 

Input Offset Voltage

 

(Temperature in °C) ×

(Temperature in °C) ×

(Temperature in °C) ×

 

(Temperature in °C) ×

 

 

 

51.70 µV/°C

 

51.70 µV/°C

 

40.44 µV/°C

 

 

40.44 µV/°C

 

µV

Input Bias Current

 

0.1

 

 

0.1

 

 

0.1

 

 

0.1

 

µA

Differential Input Range

–10

 

+50

 

 

 

–10

 

+50

–10

 

+50

mV

Common-Mode Range

–VS – 0.15

–VS – 4

–VS – 0.15

–VS – 4

–VS – 0.15

–VS – 4

–VS – 0.15

–VS – 4

Volts

Common-Mode Sensitivity – RTO

 

 

10

 

 

10

 

 

10

 

 

10

mV/V

Power Supply Sensitivity – RTO

 

 

10

 

 

10

 

 

10

 

 

10

mV/V

Output Voltage Range

 

 

 

 

 

 

 

 

 

 

 

 

 

Dual Supply

–VS + 2.5

+VS – 2

–VS + 2.5

+VS – 2

–VS + 2.5

+VS – 2

–VS + 2.5

+VS – 2

Volts

Single Supply

0

±5

+VS – 2

0

±5

–VS – 2

0

±5

+VS + 2

0

±5

+VS – 2

Volts

Usable Output Current4

 

 

 

 

 

 

 

 

mA

3 dB Bandwidth

 

15

 

 

15

 

 

15

 

 

15

 

kHz

ALARM CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

VCE(SAT) at 2 mA

 

0.3

 

 

0.3

 

 

0.3

 

 

0.3

 

Volts

Leakage Current

 

 

61

 

 

61

 

 

61

 

 

61

µA max

Operating Voltage at – ALM

 

 

+VS – 4

 

 

+VS – 4

 

 

+VS – 4

 

 

+VS – 4

Volts

Short Circuit Current

 

20

 

 

20

 

 

20

 

 

20

 

mA

POWER REQUIREMENTS

 

 

 

 

 

 

 

 

 

 

 

 

 

Specified Performance

 

+VS = 5, –VS = 0

 

 

+VS = 5, –VS = 0

 

+VS = 5, –VS = 0

 

 

+VS = 5, –VS = 0

 

Volts

Operating5

 

+VS to –VS 30

 

 

+VS to –VS 30

 

 

+VS to –VS 30

 

 

+VS to –VS 30

 

Volts

Quiescent Current (No Load)

 

 

 

 

 

 

 

 

 

 

 

 

 

+VS

 

160

300

 

160

300

 

160

300

 

160

300

µA

–VS

 

100

 

 

100

 

 

100

 

 

100

 

µA

PACKAGE OPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

TO-116 (D-14)

 

AD594AD

 

 

AD594CD

 

 

AD595AD

 

 

AD595CD

 

 

Cerdip (Q-14)

 

AD594AQ

 

 

AD594CQ

 

 

AD595AQ

 

 

AD595CQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

1Calibrated for minimum error at +25°C using a thermocouple sensitivity of 51.7 µV/°C. Since a J type thermocouple deviates from this straight line approximation, the AD594 will normally read 3.1 mV when the measuring junction is at 0°C. The AD595 will similarly read 2.7 mV at 0°C.

2Defined as the slope of the line connecting the AD594/AD595 errors measured at 0°C and 50°C ambient temperature. 3Pin 8 shorted to Pin 9.

4Current Sink Capability in single supply configuration is limited to current drawn to ground through a 50 kΩ resistor at output voltages below 2.5 V. 5–VS must not exceed –16.5 V.

Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max specifications are guaranteed, although only those shown in boldface are tested on all production units.

Specifications subject to change without notice.

INTERPRETING AD594/AD595 OUTPUT VOLTAGES

To achieve a temperature proportional output of 10 mV/°C and accurately compensate for the reference junction over the rated operating range of the circuit, the AD594/AD595 is gain trimmed to match the transfer characteristic of J and K type thermocouples at 25°C. For a type J output in this temperature range the TC is 51.70 µV/°C, while for a type K it is 40.44 µV/°C. The resulting gain for the AD594 is 193.4 (10 mV/°C divided by 51.7 µV/°C) and for the AD595 is 247.3 (10 mV/°C divided by 40.44 µV/°C). In addition, an absolute accuracy trim induces an input offset to the output amplifier characteristic of 16 µV for the AD594 and 11 µV for the AD595. This offset arises because the AD594/ AD595 is trimmed for a 250 mV output while applying a 25°C thermocouple input.

Because a thermocouple output voltage is nonlinear with respect to temperature, and the AD594/AD595 linearly amplifies the

compensated signal, the following transfer functions should be used to determine the actual output voltages:

AD594 output = (Type J Voltage + 16 µV) × 193.4 AD595 output = (Type K Voltage + 11 µV) × 247.3 or conversely:

Type J voltage = (AD594 output/193.4) – 16 µV Type K voltage = (AD595 output/247.3) – 11 µV

Table I lists the ideal AD594/AD595 output voltages as a function of Celsius temperature for type J and K ANSI standard thermocouples, with the package and reference junction at 25°C. As is normally the case, these outputs are subject to calibration, gain and temperature sensitivity errors. Output values for intermediate temperatures can be interpolated, or calculated using the output equations and ANSI thermocouple voltage tables referred to zero degrees Celsius. Due to a slight variation in alloy content between ANSI type J and DIN FE-CUNI

–2–

REV. C

Analog Devices AD595CQ, AD595CD, AD595AQ, AD595AD, AD595 Datasheet

AD594/AD595

Table I. Output Voltage vs. Thermocouple Temperature (Ambient +25°C, VS = –5 V, +15 V)

Thermocouple

Type J

AD594

Type K

AD595

Temperature

Voltage

Output

Voltage

Output

°C

mV

mV

mV

mV

 

 

 

 

 

–200

–7.890

–1523

–5.891

–1454

–180

–7.402

–1428

–5.550

–1370

–160

–6.821

–1316

–5.141

–1269

–140

–6.159

–1188

–4.669

–1152

–120

–5.426

–1046

–4.138

–1021

 

 

 

 

 

–100

–4.632

–893

–3.553

–876

–80

–3.785

–729

–2.920

–719

–60

–2.892

–556

–2.243

–552

–40

–1.960

–376

–1.527

–375

–20

–.995

–189

–.777

–189

 

 

 

 

 

–10

–.501

–94

–.392

–94

0

0

3.1

0

2.7

10

.507

101

.397

101

20

1.019

200

.798

200

25

1.277

250

1.000

250

 

 

 

 

 

30

1.536

300

1.203

300

40

2.058

401

1.611

401

50

2.585

503

2.022

503

60

3.115

606

2.436

605

80

4.186

813

3.266

810

 

 

 

 

 

100

5.268

1022

4.095

1015

120

6.359

1233

4.919

1219

140

7.457

1445

5.733

1420

160

8.560

1659

6.539

1620

180

9.667

1873

7.338

1817

 

 

 

 

 

200

10.777

2087

8.137

2015

220

11.887

2302

8.938

2213

240

12.998

2517

9.745

2413

260

14.108

2732

10.560

2614

280

15.217

2946

11.381

2817

 

 

 

 

 

300

16.325

3160

12.207

3022

320

17.432

3374

13.039

3227

340

18.537

3588

13.874

3434

360

19.640

3801

14.712

3641

380

20.743

4015

15.552

3849

 

 

 

 

 

400

21.846

4228

16.395

4057

420

22.949

4441

17.241

4266

440

24.054

4655

18.088

4476

460

25.161

4869

18.938

4686

480

26.272

5084

19.788

4896

 

 

 

 

 

Thermocouple

Type J

AD594

Type K

AD595

Temperature

Voltage

Output

Voltage

Output

°C

mV

mV

mV

mV

 

 

 

 

 

500

27.388

5300

20.640

5107

520

28.511

5517

21.493

5318

540

29.642

5736

22.346

5529

560

30.782

5956

23.198

5740

580

31.933

6179

24.050

5950

 

 

 

 

 

600

33.096

6404

24.902

6161

620

34.273

6632

25.751

6371

640

35.464

6862

26.599

6581

660

36.671

7095

27.445

6790

680

37.893

7332

28.288

6998

 

 

 

 

 

700

39.130

7571

29.128

7206

720

40.382

7813

29.965

7413

740

41.647

8058

30.799

7619

750

42.283

8181

31.214

7722

760

31.629

7825

 

 

 

 

 

780

32.455

8029

800

33.277

8232

820

34.095

8434

840

34.909

8636

860

35.718

8836

 

 

 

 

 

880

36.524

9035

900

37.325

9233

920

38.122

9430

940

38.915

9626

960

39.703

9821

 

 

 

 

 

980

40.488

10015

1000

41.269

10209

1020

42.045

10400

1040

42.817

10591

1060

43.585

10781

 

 

 

 

 

1080

44.439

10970

1100

45.108

11158

1120

45.863

11345

1140

46.612

11530

1160

47.356

11714

 

 

 

 

 

1180

48.095

11897

1200

48.828

12078

1220

49.555

12258

1240

50.276

12436

1250

50.633

12524

thermocouples Table I should not be used in conjunction with European standard thermocouples. Instead the transfer function given previously and a DIN thermocouple table should be used. ANSI type K and DIN NICR-NI thermocouples are composed

CONSTANTAN

 

 

+5V

 

 

 

10mV/8C

(ALUMEL)

 

 

 

 

 

 

 

 

 

 

 

 

14

13

12

11

10

9

8

 

 

 

 

OVERLOAD

 

 

 

 

 

 

DETECT

 

 

 

 

AD594/

 

 

+A

 

 

 

 

AD595

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

G

 

ICE

 

 

 

 

 

 

 

POINT

 

 

 

 

 

 

+TC

COMP. –TC

IRON

1

2

3

4

5

6

7

(CHROMEL)

 

 

 

 

 

 

 

 

 

 

 

 

COMMON

 

Figure 1. Basic Connection, Single Supply Operation

of identical alloys and exhibit similar behavior. The upper temperature limits in Table I are those recommended for type J and type K thermocouples by the majority of vendors.

SINGLE AND DUAL SUPPLY CONNECTIONS

The AD594/AD595 is a completely self-contained thermocouple conditioner. Using a single +5 V supply the interconnections shown in Figure 1 will provide a direct output from a type J thermocouple (AD594) or type K thermocouple (AD595) measuring from 0°C to +300°C.

Any convenient supply voltage from +5 V to +30 V may be used, with self-heating errors being minimized at lower supply levels. In the single supply configuration the +5 V supply connects to Pin 11 with the V– connection at Pin 7 strapped to power and signal common at Pin 4. The thermocouple wire inputs connect to Pins 1 and 14 either directly from the measuring point or through intervening connections of similar thermocouple wire type. When the alarm output at Pin 13 is not used it should be connected to common or –V. The precalibrated feedback network at Pin 8 is tied to the output at Pin 9 to provide a 10 mV/°C nominal temperature transfer characteristic.

By using a wider ranging dual supply, as shown in Figure 2, the AD594/AD595 can be interfaced to thermocouples measuring both negative and extended positive temperatures.

REV. C

–3–

Loading...
+ 5 hidden pages