Fairchild Semiconductor 100397QIX, 100397QI, 100397QCX, 100397QC, 100397PC Datasheet

0 (0)

January 1992

Revised August 2000

100397

Quad Differential ECL/TTL Translating Transceiver with Latch

General Description

The 100397 is a quad latched transceiver designed to convert TTL logic levels to differential F100K ECL logic levels and vice versa. This device was designed with the capability of driving a differential 25Ω ECL load with cutoff capability, and will sink a 64 mA TTL load. The 100397 is ideal for mixed technology applications utilizing either an ECL or TTL backplane.

The direction of translation is set by the direction control pin (DIR). The DIR pin on the 100397 accepts F100K ECL logic levels. An ECL LOW on DIR sets up the ECL pins as inputs and TTL pins as outputs. An ECL HIGH on DIR sets up the TTL pins as inputs and ECL pins as outputs.

A LOW on the output enable input pin (OE) holds the ECL output in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the latch transparent.

The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitterfollowers to turn off when the termination supply is − 2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

The 100397 is designed with FAST TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have 50 KΩ pull-down resistors.

Features

Differential ECL input/output structure

64 mA FAST TTL outputs

25Ω differential ECL outputs with cut-off

Bi-directional translation

2000V ESD protection

Latched outputs

3-STATE outputs

Voltage compensated operating range = − 4.2V to − 5.7V

Ordering Code:

Order Number

Package Number

Package Description

 

 

 

100397PC

N24E

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide

 

 

 

100397QC

V28A

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square

 

 

 

100397QI

V28A

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square

 

 

Industrial Temperature Range (− 40° C to + 85° C)

 

 

 

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

FAST is a registered trademark of Fairchild Semiconductor Corporation.

Latch with Transceiver Translating ECL/TTL Differential Quad 100397

© 2000 Fairchild Semiconductor Corporation

DS010971

www.fairchildsemi.com

100397

Logic Symbol

Connection Diagrams

24-Pin DIP

28-Pin PLCC

Pin Descriptions

 

 

Pin Names

Description

 

 

 

 

E0–E3

ECL Data I/O

 

 

 

 

 

 

 

E

0–E

3

Complementary ECL Data I/O

 

T0–T3

TTL Data I/O

 

OE

Output Enable Input (ECL Levels)

 

LE

Latch Enable Input (ECL Levels)

 

DIR

Direction Control Input (ECL levels)

 

 

 

 

GNDECL

ECL Ground

 

GNDECLO

ECL Output Ground

 

GNDS

ECL Ground-to-Substrate

 

VEE

ECL Quiescent Power Supply

 

VEED

ECL Dynamic Power Supply

 

GNDTTL

TTL Quiescent Ground

 

GNDTTLD

TTL Dynamic Ground

 

VTTL

TTL Quiescent Power Supply

 

VTTLD

TTL Dynamic Power Supply

All pins function at 100K ECL levels except for T0–T3.

Truth Table

 

 

LE

DIR

 

OE

ECL

TTL

Notes

 

 

 

Port

Port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

0

LOW

Z

 

 

 

 

 

 

 

(Cut-Off)

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

1

Input

Output

(Note 1)(Note 4)

 

 

 

 

 

 

 

 

 

 

 

0

1

 

0

LOW

Z

 

 

 

 

 

 

 

(Cut-Off)

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

1

Output

Input

(Note 2)(Note 4)

 

 

 

 

 

 

 

 

 

 

 

1

0

 

0

Input

Z

(Note 1)(Note 3)

 

 

 

 

 

 

 

 

 

 

 

1

0

 

1

Latched

X

(Note 1)(Note 3)

 

 

 

 

 

 

 

 

 

 

 

1

1

 

0

LOW

Input

(Note 2)(Note 3)

 

 

 

 

 

 

(Cut-Off)

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

1

Latched

X

(Note 2)(Note 3)

 

 

 

 

 

 

 

 

 

H =

HIGH Voltage Level

 

 

 

L =

LOW Voltage Level

 

 

 

 

X =

Don't Care

 

 

 

 

Z =

High Impedance

 

 

 

 

Note 1: ECL input to TTL output mode.

Note 2: TTL input to ECL output mode.

Note 3: Retains data present before LE set HIGH.

Note 4: Latch is transparent.

www.fairchildsemi.com

2

Fairchild Semiconductor 100397QIX, 100397QI, 100397QCX, 100397QC, 100397PC Datasheet

Functional Diagram

Note: LE, DIR, and OE use ECL logic levels

Detail

100397

3

www.fairchildsemi.com

100397

Absolute Maximum Ratings(Note 5)

Storage Temperature (TSTG)

− 65° C to + 150° C

Maximum Junction Temperature

 

(TJ)

+ 150° C

VEE Pin Potential to Ground Pin

− 7.0V to + 0.5V

VTTL Pin Potential to Ground Pin

− 0.5V to + 6.0V

ECL Input Voltage (DC)

VEE to + 0.5V

ECL Output Current

 

(DC Output HIGH)

− 50 mA

TTL Input Voltage (Note 7)

− 0.5V to + 7.0V

TTL Input Current (Note 7)

− 30 mA to + 5.0 mA

Voltage Applied to Output

 

in HIGH State

 

3-STATE Output

− 0.5V to + 5.5V

Current Applied to TTL

 

Output in LOW State (Max)

twice the Rated IOL (mA)

ESD (Note 6)

≥ 2000V

Recommended Operating

Conditions

Case Temperature (TC)

 

Commercial

0° C to + 85° C

Industrial

− 40° C to + 85° C

ECL Supply Voltage (VEE)

− 5.7V to − 4.2V

TTL Supply Voltage (VTTL)

+ 4.5V to + 5.5V

Note 5: The “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The “Recommended Operating Conditions” table will define the conditions for actual device operation.

Note 6: ESD testing conforms to MIL-STD-883, Method 3015.

Note 7: Either voltage limit or current limit is sufficient to protect inputs.

Commercial Version

TTL-to-ECL DC Electrical Characteristics (Note 8)

VEE = − 4.2V to − 5.7V, GND = 0V, TC =

0° C to + 85° C, VTTL =

+ 4.5V to + 5.5V

 

 

 

 

Symbol

Parameter

 

Min

 

Typ

Max

Units

 

Conditions

 

 

 

 

 

 

 

 

 

 

VOH

Output HIGH Voltage

 

− 1025

 

− 955

− 870

mV

VIN = VIH(Max) or VIL(Min)

VOL

Output LOW Voltage

 

− 1830

 

− 1705

− 1620

mV

Loading with 50Ω to − 2V

 

 

Cutoff Voltage

 

 

 

 

 

 

 

 

OE and LE Low, DIR High

 

 

 

 

 

 

 

− 2000

− 1950

mV

VIN = VIH(Max) or VIL(Min),

 

 

 

 

 

 

 

 

 

 

 

Loading with 50Ω to − 2V

 

 

 

 

 

 

 

 

 

 

 

 

VOHC

Output HIGH Voltage

 

− 1035

 

 

 

 

mV

 

 

 

 

Corner Point High

 

 

 

 

 

VIN = VIH(Min) or VIL(Max)

 

 

 

 

 

 

 

 

 

 

VOLC

Output LOW Voltage

 

 

 

 

 

− 1610

mV

Loading with 50Ω to − 2V

 

 

Corner Point Low

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIH

Input HIGH Voltage

 

 

2.0

 

 

5.0

V

Over VTTL, VEE, TC Range

VIL

Input LOW Voltage

 

 

0

 

 

0.8

V

Over VTTL, VEE, TC Range

IIH

Input HIGH Current

 

 

 

 

 

5.0

µ A

VIN =

+ 2.7V

IBVIT

Input HIGH Current

 

 

 

 

 

0.5

mA

VIN =

5.5V

 

 

Breakdown (I/O)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIL

Input LOW Current

 

1.0

 

 

 

 

mA

VIN =

+ 0.5V

VFCD

Input Clamp

 

1.2

 

 

 

 

V

IIN =

− 18 mA

 

 

Diode Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEE

VEE Supply Current

 

− 99

 

 

50

 

LE Low, OE and DIR HIGH

 

 

 

 

 

 

 

 

 

 

 

Inputs Open

 

 

 

 

 

 

 

 

 

 

 

IEEZ

VEE Supply Current

 

159

 

 

90

 

LE and OE Low, Dir HIGH

 

 

 

 

 

 

 

 

 

 

 

Inputs Open

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 8: The specified limits represent the “worst case” value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under “worst case” conditions.

www.fairchildsemi.com

4

Loading...
+ 9 hidden pages