Analog Devices DAC8222GP, DAC8222FS, DAC8222FP, DAC8222EW, DAC8222BTC Datasheet

0 (0)

a

Dual 12-Bit Double-Buffered

Multiplying CMOS D/A Converter

 

 

 

 

 

DAC8222

 

 

 

FEATURES

Two Matched 12-Bit DACs on One Chip

Direct Parallel Load of All 12 Bits for High Data Throughput

Double-Buffered Digital Inputs

12-Bit Endpoint Linearity ( 1/2 LSB) Over Temperature

+5 V to +15 V Single Supply Operation DACs Matched to 1% Max Four-Quadrant Multiplication Improved ESD Resistance

Packaged in a Narrow 0.3" 24-Lead DIP and 0.3" 24Lead SOL Package

Available in Die Form

APPLICATIONS

Automatic Test Equipment

Robotics/Process Control/Automation

Digital Gain/Attenuation Control

Ideal for Battery-Operated Equipment

GENERAL DESCRIPTION

The DAC8222 is a dual 12-bit, double-buffered, CMOS digital- to-analog converter. It has a 12-bit wide data port that allows a 12-bit word to be loaded directly. This achieves faster throughput time in stand-alone systems or when interfacing to a 16-bit processor. A common 12-bit input TTL/CMOS compatible data port is used to load the 12-bit word into either of the two DACs. This port, whose data loading is similar to that of a RAM’s write cycle, interfaces directly with most 12-bit and 16-bit bus systems. (See DAC8248 for a complete 8-bit data bus interface product.) A common bus allows the DAC8222 to be packaged in a narrow 24-lead 0.3" DIP and save PCB space.

The DAC is controlled with two signals, WR and LDAC. With logic low at these inputs, the DAC registers become transparent. This allows direct unbuffered data to flow directly to either DAC output selected by DAC A/DAC B. Also, the DAC’s

FUNCTIONAL DIAGRAM

double-buffered digital inputs will allow both DACs to be simultaneously updated.

DAC8222’s monolithic construction offers excellent DAC-to- DAC matching and tracking over the full operating temperature range. The chip consists of two thin-film R-2R resistor ladder networks, four 12-bit registers, and DAC control logic circuitry. The device has separate reference-input and feedback resistors for each DAC and operates on a single supply from +5 V to +15 V. Maximum power dissipation at +5 V using zero or VDD logic levels is less than 0.5 mW.

The DAC8222 is manufactured with highly stable thin-film resistors on an advanced oxide-isolated, silicon-gate, CMOS technology. Improved latch-up resistant design eliminates the need for external protective Schottky diodes.

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 2000

DAC8222–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ VDD = +5 V or +15 V, VREF A = VREF B = +10 V, VOUT A = VOUT B = 0 V; AGND = DGND = 0 V; TA = Full Temperature Range Specified in Absolute Maximum Ratings; unless otherwise noted. Specifications apply for DAC A and DAC B.)

Parameter

 

Symbol

 

Conditions

 

 

 

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATIC ACCURACY

 

 

 

 

 

 

 

 

 

 

 

 

 

Resolution

 

N

 

 

 

 

 

 

12

 

 

± 1/2

Bits

Relative Accuracy

 

INL

 

Endpoint Linearity Error DAC8222A/E/G

 

 

 

 

LSB

 

 

 

 

 

 

DAC8222F/H

 

 

 

 

± 1

LSB

Differential Nonlinearity

 

DNL

 

All Grades are Guaranteed Monotonic

 

 

 

 

± 1

LSB

Full-Scale Gain Error1

 

GFSE

 

DAC8222A/E

 

 

 

 

 

 

± 1

LSB

 

 

 

 

DAC8222G

 

 

 

 

 

 

± 2

LSB

Gain Temperature Coefficient

 

 

 

DAC8222F/H

 

 

 

 

 

 

± 4

LSB

 

 

 

 

 

 

 

 

 

± 2

 

± 5

ppm/°C

Gain/Temperature

 

TCGFS

 

(Notes 2, 7)

 

 

 

 

 

Output Leakage Current

 

 

 

 

 

TA = +25°C

 

 

± 5

 

± 10

 

IOUT A (Pin 2),

 

ILKG

 

All Digital Inputs =

 

 

 

nA

IOUT B (Pin 24)

 

 

 

0000 0000 0000

 

TA = Full Temp. Range

 

 

 

 

± 50

nA

Input Resistance

 

 

 

 

 

 

 

 

 

 

 

 

k

(VREF A, VREF B)

 

RREF

 

(Note 9)

 

 

 

8

11

 

15

Input Resistance Match

 

RREF

 

 

 

 

 

 

 

± 0.2

± 1

%

 

 

RREF

 

 

 

 

 

 

 

 

 

 

 

DIGITAL INPUTS

 

 

 

VDD = +5 V

 

 

 

2.4

 

 

 

V

Digital Input High

 

VINH

 

 

 

 

 

 

 

 

 

 

 

VDD = +15 V

 

 

 

13.5

 

 

 

V

Digital Input Low

 

VINL

 

VDD = +5 V

 

 

 

 

 

 

0.8

V

 

 

 

 

VDD = +15 V

 

 

 

 

 

 

1.5

V

Input Current

 

IIN

 

VIN = 0 V or VDD

TA = +25°C

 

 

± 0.001 ± 1

µA

Input Capacitance2

 

 

 

and VINL or VINH

TA = Full Temp. Range

 

 

 

 

± 10

µA

 

CIN

 

DB0–DB11

 

 

 

 

 

 

10

pF

 

 

 

 

WR, LDAC, DAC A/DAC B

 

 

 

 

 

15

pF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER SUPPLY

 

 

 

All Digital Inputs VINL or VINH

 

 

 

 

 

2

mA

Supply Current

 

IDD

 

 

 

 

 

 

DC Power Supply

 

 

 

All Digital Inputs 0 V or VDD

 

 

 

10

 

100

µA

 

 

 

VDD = ± 5%

 

 

 

 

 

 

0.002

%/%

Rejection Ratio

 

PSRR

 

 

 

 

 

 

 

(Gain/VDD)

 

 

 

 

 

 

 

 

 

 

 

 

 

AC PERFORMANCE CHARACTERISTICS2

 

 

 

 

 

 

 

 

Propagation Delay4, 5

 

tPD

 

TA = +25°C

 

 

 

 

 

 

350

ns

 

 

 

 

 

 

 

 

Current Settling Time5, 6

 

tS

 

TA = +25°C

 

 

 

 

 

 

1

µs

Output Capacitance

 

CO

 

Digital Inputs = All 0s

 

 

 

 

 

 

90

pF

 

 

 

 

COUT A, COUT B

 

 

 

 

 

 

90

pF

 

 

 

 

Digital Inputs = All 1s

 

 

 

 

 

 

120

pF

 

 

 

 

COUT A, COUT B

 

 

 

 

 

 

120

pF

AC Feedthrough at

 

FTA

 

VREF A to IOUT A; VREF A = 20 V p-p;

 

 

 

 

–70

dB

IOUT A or IOUT B

 

 

 

f = 100 kHz; TA = +25°C

 

 

 

 

 

–70

dB

 

 

 

 

VREF B to IOUT B; VREF B

= 20 V p-p;

 

 

 

 

–70

dB

 

 

FTB

 

f = 100 kHz; TA = +25°C

 

 

 

 

 

–70

dB

SWITCHING CHARACTERISTICS2, 3

 

 

 

 

VDD = +5 V

–55°C to +125°C

 

VDD = +15 V

 

 

 

 

 

 

 

+25°C

–40°C to +85°C8

 

All Temps10

 

 

 

 

 

 

 

 

DAC Select to

 

tAS

 

 

 

150

180

210

 

 

60

ns min

Write Set-Up Time

 

 

 

 

 

0

0

0

 

 

 

0

ns min

DAC Select to

 

tAH

 

 

 

 

 

 

Write Hold Time

 

 

 

 

 

80

100

120

 

 

60

ns min

LDAC to

 

tLS

 

 

 

 

 

Write Set-Up Time

 

 

 

 

 

20

20

20

 

 

20

ns min

LDAC to

 

tLH

 

 

 

 

 

Write Hold Time

 

 

 

 

 

220

240

260

 

 

100

ns min

Data Valid to

 

tDS

 

 

 

 

 

Write Set-Up Time

 

 

 

 

 

0

0

0

 

 

 

10

ns min

Data Valid to

 

tDH

 

 

 

 

 

 

Write Hold Time

 

 

 

 

 

130

160

170

 

 

90

ns min

Write Pulse Width

 

tWR

 

 

 

 

 

LDAC Pulse Width

 

tLWD

 

 

 

100

120

130

 

 

60

ns min

NOTES

1Measured using internal RFB A and RFB B. Both DAC digital inputs = 1111 1111 1111. 2Guaranteed and not tested.

3See timing diagram.

4From 50% of digital input to 90% of final analog output current.

VREF A = VREF B = +10 V; OUT A, OUT B load = 100 , CEXT = 13 pF. 5WR, LDAC = 0 V; DB0–DB11 = 0 V to VDD or VDD to 0 V.

6Settling time is measured from 50% of the digital input change to where the output voltage settles within 1/2 LSB of full scale.

7Gain TC is measured from +25°C to TMIN or from +25°C to TMAX.

8These limits apply for the commercial and industrial grade products.

9Absolute temperature coefficient is approximately +50 ppm/°C.

10These limits also apply as typical values for VDD = +12 V with +5 V CMOS logic levels and TA = +25°C.

Specifications subject to change without notice.

–2–

REV. C

DAC8222

ABSOLUTE MAXIMUM RATINGS

(TA = +25°C, unless otherwise noted.)

 

 

 

VDD to AGND . . . . . . . . . .

. . . . . . . .

. . . . .

. . . .

. 0 V, +17 V

VDD to DGND . . . . . . . . . .

. . . . . . . .

. . . . .

. . . .

. 0 V, +17 V

AGND to DGND . . . . . . .

. . . . . . . .

. . . –0.3 V, VDD +0.3 V

Digital Input Voltage to DGND . . . .

. . . –0.3 V, VDD +0.3 V

IOUTA, IOUTB to AGND . . .

. . . . . . . .

. . . –0.3 V, VDD +0.3 V

VREFA, VREFB to AGND . . .

. . . . . . . .

. . . . . .

. . .

. . . . . ±25 V

VRFBA, VRFBB to AGND . . .

. . . . . . . .

. . . . . .

. . .

. . . . . ±25 V

Operating Temperature Range

 

–55°C to +125°C

AW Version . . . . . . . . . .

. . . . . . . .

. . . . .

EW, FW, FP Versions . .

. . . . . . . .

. . . . . .

–40°C to +85°C

GP, HP, HS Versions . . .

. . . . . . . .

. . . . . .

. . 0°C to +70°C

Junction Temperature . . . .

. . . . . . . .

. . . . . .

. . .

. . . .+150°C

Storage Temperature . . . . .

. . . . . . . .

. . . . .

–65°C to +150°C

Lead Temperature (Soldering, 60 sec)

. . . . .

. . .

. . . .+300°C

 

 

 

 

 

Package Type

JA1

JC

 

Units

24-Lead Hermetic DIP (W)

69

10

 

°C/W

24-Lead Plastic DIP (P)

62

32

 

°C/W

24-Lead SOL (S)

72

24

 

°C/W

NOTE

1θJA is specified for worst-case mounting conditions, i.e., qJA is specified for device in socket for Cerdip, and P-DIP packages; JA is specified for device soldered to printed circuit board for SO package.

CAUTION

1.Do not apply voltages higher than VDD or less than GND potential on any terminal except VREF and RFB.

2.The digital control inputs are Zener-protected; however, permanent damage may occur on unprotected units from high-energy electrostatic fields. Keep units in conductive foam at all times until ready to use.

3.Do not insert this device into powered sockets; remove power before insertion or removal.

4.Use proper antistatic handling procedures.

5.Devices can suffer permanent damage and/or reliability degradation if stressed above the limits listed under Absolute Maximum Ratings for extended periods.

PIN CONNECTIONS

24-Lead 0.3" Cerdip

24-Lead Plastic DIP 28-Terminal LCC

24-Lead SOL

NC = NO CONNECT

ORDERING GUIDE

 

INL

GFSE

Temperature

Package

Package

Model

(LSB)

(LSB)

Range

Description

Option

 

 

 

 

 

 

DAC8222EW

±1/2

± 1

–40°C to +85°C

Cerdip-24

Q-24

DAC8222GP

±1/2

± 2

0°C to +70°C

P-DIP-24

N-24

DAC8222BTC/883*

±1

± 4

–55°C to +125°C

LCC-28

E-28A

DAC8222FW

±1

± 4

–40°C to +85°C

Cerdip-24

Q-24

DAC8222FP

±1

± 4

–40°C to +85°C

P-DIP-24

N-24

DAC8222FS

±1

± 4

–40°C to +85°C

SOL-24

R-24

*Consult factory for DAC8222/883 MIL-STD data sheet.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the DAC8222 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

REV. C

–3–

Analog Devices DAC8222GP, DAC8222FS, DAC8222FP, DAC8222EW, DAC8222BTC Datasheet

DAC8222

DICE CHARACTERISTICS

1.

AGND

13.

DB4

2.

IOUT A

14.

DB3

3.

RFB A

15.

DB2

4.

VREF A

16.

DB1

5.

DGND

17.

DB0 (LSB)

6.

DB11(MSB)

18.

DAC A/DAC B

7.

DB10

19.

LDAC

8.

DB9

20.

WR

9.

DB8

21.

VDD

10.

DB7

22.

VREF B

11.

DB6

23.

RFB B

12.

DB5

24.

IOUT B

Substrate (die backside) is internally connected to VDD.

DIE SIZE 0.124 × 0.132 inch, 16,368 sq. mils (3.15 × 3.55 mm, 10.56 sq. mm)

WAFER TEST LIMITS (@ VDD = +5 V or +15 V, VREF A = VREF B = +10 V, VOUT A = VOUT B = 0 V; AGND = DGND = 0 V; TA = +25 C)

 

 

 

DAC8222G

 

Parameter

Symbol

Conditions

Limit

Units

 

 

 

 

 

Relative Accuracy

INL

Endpoint Linearity Error

± 1

LSB max

Differential Nonlinearity

DNL

All Grades are Guaranteed Monotonic

± 1

LSB max

Full Scale Gain Error1

GFSE

Digital Inputs = 1111 1111 1111

± 4

LSB max

Output Leakage

 

Digital Inputs = 0000 0000 0000

±50

nA max

(IOUT A, IOUT B)

ILKG

Pads 2 and 24

 

 

Input Resistance

 

 

 

kmax

(VREF A, VREF B)

RREF

Pads 4 and 22

8/15

Input Resistance Match

RREF

 

± 1

% max

 

RREF

 

 

 

Digital Input High

VINH

VDD = +5 V

2.4

V min

 

 

VDD = +15 V

13.5

V min

Digital Input Low

VINL

VDD = +5 V

0.8

V max

 

 

VDD = +15 V

1.5

V min

Digital Input Current

IIN

VIN = 0 V or VDD; VINL or VINH

± 1

µA max

Supply Current

IDD

All Digital Inputs VINL or VINH

2

 

 

 

All Digital Inputs 0 V or VDD

0.1

mA max

DC Supply Rejection

PSR

VDD = ±5%

0.002

%/% max

(Gain/VDD)

 

 

 

 

NOTES

1Measured using internal RFB A and RFB B.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

–4–

REV. C

DAC8222

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Channel-to-Channel Match-

Figure 2. Differential Nonlinearity

Figure 3. Differential Nonlinearity

ing (DAC A and B are Superimposed)

vs. VREF

vs. VREF

Figure 4. Nonlinearity vs. VREF

Figure 5. Nonlinearity vs. VREF

Figure 6. Nonlinearity vs. VDD

Figure 7. Nonlinearity vs. Code

Figure 8. Nonlinearity vs. Code at TA

Figure 9. Absolute Gain Error

(DAC A and B are Superimposed)

= –55°C, +25°C, +125°C for DAC A and

Changes vs. VREF

 

B (All Superimposed)

 

REV. C

–5–

Loading...
+ 10 hidden pages