White Electronic Designs WEDPNF8M721V-1010BI, WEDPNF8M721V-1010BC, WEDPNF8M721V-1215BM, WEDPNF8M721V-1215BI, WEDPNF8M721V-1215BC Datasheet

...
0 (0)

White Electronic Designs WEDPNF8M721V-XBX

8Mx72 Synchronous DRAM + 8Mb Flash Mixed Module Multi-Chip Package ADVANCED*

FEATURES

Package:

275 Plastic Ball Grid Array (PBGA), 32mm x 25mm

Commercial, Industrial and Military Temperature Ranges

Weight:

WEDPNF8M721V-XBX - 2.5 grams typical

SDRAM PERFORMANCE FEATURES

Organized as 8M x 72

High Frequency = 100, 125MHz

Single 3.3V ±0.3V power supply

Fully Synchronous; all signals registered on positive edge of system clock cycle

Internal pipelined operation; column address can be changed every clock cycle

Internal banks for hiding row access/precharge

Programmable Burst length 1,2,4,8 or full page

4096 refresh cycles

FLASH PERFORMANCE FEATURES

User Configurable as 1Mx8 or 512Kx16

Access Times of 100, 120, 150ns

3.3 Volt for Read and Write Operations

1,000,000 Erase/Program Cycles

Sector Architecture

One 16KByte, two 8KBytes, one 32KByte, and fif teen 64KBytes in byte mode

One 8K word, two 4K words, one 16K word, and fifteen 32K word sectors in word mode.

Any combination of sectors can be concurrently erased. Also supports full chip erase

Boot Code Sector Architecture (Bottom)

Embedded Erase and Program Algorithms

Erase Suspend/Resume

Supports reading data from or programing data to a sector not being erased

BENEFITS

42% SPACE SAVINGS

Reduced part count

Reduced I/O count

• 14% I/O Reduction

Suitable for hi-reliability applications

SDRAM Upgradeable to 16M x 72 density (contact factory for information)

Flash upgradeable to 2M x 8 (or 1M x 16 or 512K x 32) density

* This data sheet describes a product that may or may not be under development and is subject to change or cancellation without notice.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

September 2002 Rev. 3

1

White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

White Electronic Designs WEDPNF8M721V-1010BI, WEDPNF8M721V-1010BC, WEDPNF8M721V-1215BM, WEDPNF8M721V-1215BI, WEDPNF8M721V-1215BC Datasheet

White Electronic Designs

WEDPNF8M721V-XBX

FIG. 1 PIN CONFIGURATION

TOP VIEW

NOTES:

1.DNU = Do Not Use

2.FD16-31, BYTE2, RY/BY2 are NC in this part, and used for flash upgraded to WEDPN8M722V-XBX (2x8M Flash).

White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520

2

 

 

 

White Electronic Designs

WEDPNF8M721V-XBX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2 FUNCTIONAL BLOCK DIAGRAMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDRAM

 

 

 

 

FLASH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

White Electronic Designs

 

WEDPNF8M721V-XBX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PACKAGE PINOUT LISTING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal Name

 

Pin Number

 

 

VCC

 

D15, E15, F8, F10, F15, G4, H4, J14, J15, J16, J17, K2, K3, K4, K5, L14, L15, L16, M5, M14, M15, N4, N5, N7, N8, N14, P4, P5, P6,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P7, P11, P12, P13, P14, R4, T15, U15, V15

 

 

GND

 

D4, D16, E4, F4, F7, F9, F11, F12, F13, G14, G15, H15, J2, J3, J4, J5, K14, K15, K16, K17, L4, L5, M4, N6, N9, N10, N11, N12, N13,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N15, P8, P9, P10, P15, R15, T4, U4, V4

 

 

FD0 - 15

 

E8, C8, E9, C9, C10, D11, C11, D12, D8, B8, D9, D10, E10, E11, E12, E13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H5

 

 

RYBY1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A7

 

 

RST

 

 

 

BYTE1

 

D13

 

 

FD16* - 31*

 

C12, C15, A15, B9, B11, B13, A10, A12, C13, B15, B14, B10, B12, A9, A11, A14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A8

 

 

RYBY2*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A13

 

 

BYTE2*

 

 

 

FA1-19

 

F14, F5, E7, E6, E5, D6, D5, C6, C5, C4, B6, B5, B4, A6, A5, A4, C14, D7, C7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H14

 

 

FCS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E14

 

 

FCS2*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B7

 

 

FWE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D14

 

 

FOE

 

 

 

A0 - A11

 

V12, U13, V13, V14, T14, R13, T13, R12, T12, R11, U12, T11

 

 

BA0 - 1

 

U11, V11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3

 

 

 

CS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE0

 

E3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C3

 

 

CLK0

 

 

 

CKE0

 

B3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G3

 

 

RAS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F3

 

 

CAS0

 

 

 

DQML0

 

H2

 

 

DQMH0

 

D3

 

 

 

 

 

 

 

 

 

 

 

 

 

H18

 

 

CS1

 

 

 

 

 

 

 

 

 

 

 

J18

 

 

WE1

 

 

 

 

 

 

CLK1

 

B18

 

 

CKE1

 

A18

 

 

 

 

 

 

 

 

 

 

 

G18

 

 

RAS1

 

 

 

 

 

 

 

 

 

 

F18

 

 

 

CAS1

 

 

 

 

 

DQML1

 

E18

 

 

DQMH1

 

C18

 

 

 

 

 

 

 

 

T18

 

 

 

CS2

 

 

 

 

 

 

 

 

 

 

 

 

 

R18

 

 

WE2

 

 

 

 

 

CLK2

 

L18

 

 

CKE2

 

K18

 

 

 

 

 

 

 

 

 

 

 

 

RAS2

 

U18

 

 

 

 

 

 

 

 

V18

 

 

 

CAS2

 

 

 

 

 

DQML2

 

V17

 

 

DQMH2

 

M18

 

 

 

 

 

 

 

U3

 

 

CS3

 

 

 

 

 

 

 

 

V3

 

 

WE3

 

 

 

 

 

 

CLK3

 

M3

 

 

CKE3

 

L3

 

 

 

 

T3

 

 

RAS3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are NC in this part, and used for flash upgrade to WEDPNF8M722V-XBX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*FD16-31, RY/BY2,

 

BYTE2

White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520

4

 

 

 

 

 

 

 

 

 

 

White Electronic Designs

WEDPNF8M721V-XBX

 

 

 

 

 

 

 

 

 

 

PACKAGE PINOUT LISTING (CONTINUED)

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal Name

Pin Number

 

 

 

 

 

R3

 

 

CAS3

 

 

DQML3

U2

 

 

DQMH3

N3

 

 

 

 

 

 

 

T10

 

 

CS4

 

 

 

 

 

 

 

 

U9

 

 

WE4

 

 

CLK4

R9

 

 

CKE4

R10

 

 

 

 

 

 

 

 

 

 

U10

 

 

RAS4

 

 

 

 

 

 

 

 

 

 

 

 

V10

 

 

CAS4

 

 

DQML4

V9

 

 

DQMH4

T9

 

 

DQ0 - 15

E1, F1, E2, G1, F2, H1, J1, G2, A3, A2, B2, C2, B1, D2, C1, D1,

 

 

DQ16 - 31

E16, F16, G16, H16, E17, F17, G17, H17, D18, A17, B17, C17, D17, A16, B16, C16

 

DQ32 - 47

R17, T17, U16, V16, T16, R16, U17, P18, N16, P16, P17, M16, M17, N17, N18, L17

 

DQ48 - 63

R1, P2, T1, R2, P3, U1, V2, T2, M2, N2, L2, M1, P1, N1, L1, K1

 

 

DQ64 - 79

U8, U6, V5, V6, U7, U5, V7, V8, R8, R6, T8, T6, R7, R5, T7, T5

 

 

DNU

F6, G5, R14, U14, V1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

White Electronic Designs

WEDPNF8M721V-XBX

ABSOLUTE MAXIMUM RATINGS

Parameter

 

Unit

Supply Voltage Range (VCC)

-0.5 to +4.0

V

Signal Voltage Range

-0.5 to Vcc +0.5

V

Operating Temperature TA (Mil)

-55 to +125

°C

Operating Temperature TA (Ind)

-40 to +85

°C

Storage Temperature, Plastic

-65 to +150

°C

Flash Endurance (write/erase cycles)

1,000,000 min.

cycles

 

 

 

NOTE:

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

SDRAM CAPACITANCE (NOTE 2)

Parameter

Symbol

Max

Unit

Input Capacitance: CLK

CI1

10

pF

Addresses, BA0-1 Input Capacitance

CA

35

pF

InputCapacitance:Allotherinput-onlypins

CI2

10

pF

Input/Output Capacitance: I/Os

CIO

12

pF

FLASH DATA RETENTION

Parameter

Test Conditions

Min

Unit

 

 

 

 

Minimum Pattern Data

150°C

10

Years

Retention Time

125°C

20

Years

 

 

 

 

DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS (NOTES 1, 3)

(VCC = +3.3V ±0.3V; TA = -55°C TO +125°C)

Parameter/Condition

Symbol

Min

Max

Units

 

 

 

Supply Voltage

VCC

3

3.6

V

Input High Voltage: Logic 1; All inputs (4)

VIH

0.7 x Vcc

VCC + 0.3

V

Input Low Voltage: Logic 0; All inputs (4)

VIL

-0.3

0.8

V

SDRAM

 

 

 

 

Input Leakage Current: Any input 0V VIN VCC

II

-5

5

µA

(All other pins not under test = 0V)

 

 

 

 

SDRAM Input Leakage Address Current

 

 

 

 

(All other pins not under test = 0V)

II

-25

25

µA

SDRAM Output Leakage Current: I/Os are disabled; 0V VOUT VCC

IOZ

-5

5

µA

SDRAM Output High Voltage (IOUT = -4mA)

VOH

2.4

V

SDRAM Output Low Voltage (IOUT = 4mA)

VOL

0.4

V

Flash

 

 

 

 

Flash Input Leakage Current (VCC = 3.6, VIN = GND or VCC)

ILI

 

10

µA

Flash Output Leakage Current (VCC = 3.6, VIN = GND or VCC)

ILOx8

 

10

µA

 

 

 

 

 

Flash Output High Voltage (IOH = -2.0 mA, VCC = 3.0)

VOH1

0.85 X VCC

 

V

 

 

 

 

 

Flash Output Low Voltage (IOL = 5.8 mA, VCC = 3.0)

VOL

 

0.45

V

 

 

 

 

 

Flash Low VCC Lock-Out Voltage (5)

VLKO

2.3

2.5

V

 

 

 

 

 

NOTES:

 

 

 

 

1.All voltages referenced to VSS.

2.This parameter is not tested but guaranteed by design. f = 1 MHz, TA = 25°C.

3.An initial pause of 100ms is required after power-up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (VCC must be powered up simultaneously.) The two AUTO REFRESH command wake-ups should be repeated any time the tREF refresh requirement is exceeded.

4.VIH overshoot: VIH (MAX) = VCC + 2V for a pulse width 3ns, and the pulse width cannot be greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for a pulse width 3ns.

5.Guaranteed by design, but not tested.

White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520

6

White Electronic Designs

WEDPNF8M721V-XBX

 

 

 

 

 

 

ICC SPECIFICATIONS AND CONDITIONS (NOTES 1,2,3,4)

 

 

 

 

 

 

 

 

 

 

(VCC = +3.3V ±0.3V; TA = -55°C TO +125°C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter/Condition

 

Symbol

Max

Units

SDRAM Operating Current: Active Mode;

 

 

 

ICC1

750

mA

Burst = 2; Read or Write; tRC = tRC (min); CAS latency = 3 (5, 6, 7); FCS = High

 

 

 

 

 

SDRAM Standby Current: Active Mode; CKE = HIGH;

 

 

 

= HIGH;

 

 

 

= High;

 

 

 

 

CS

FCS

 

ICC3

250

mA

All banks active after tRCD met; No accesses in progress (5, 7, 8)

 

 

 

 

 

SDRAM Operating Current: Burst Mode; Continuous burst;

 

= High

 

 

 

 

FCS

 

ICC4

750

mA

Read or Write; All banks active; CAS latency = 3 (5, 6, 7)

 

 

 

 

 

SDRAM Self Refresh Current;

 

= High (14)

 

ICC7

10

mA

FCS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flash VCC Active Current for Read :

 

 

= VIL,

 

 

 

= VIH, f = 5MHz (9),

 

= High, CKE = Low

 

IFCC1

32

mA

FCS

FOE

CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flash VCC Active Current for Program or Erase:

FCS

= VIL,

FOE

= VIH,

CS

= High, CKE = Low

 

IFCC2

50

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standby Current: VCC = 3.6 Max,

FCS

= VIH,

CS

= High,

CKE

= Low

 

ICC3

20

mA

NOTES:

1.All voltages referenced to VSS.

2.An initial pause of 100ms is required after power-up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (VCC must be powered up simultaneously.) The two AUTO REFRESH command wake-ups should be repeated any time the tREF refresh requirement is exceeded.

3.AC timing and ICC tests have VIL = 0V and VIH = 3V, with timing referenced to 1.5V crossover point.

4.ICC specifications are tested after the device is properly initialized.

5.ICC is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.

6.The ICC current will decrease as the CAS latency is reduced. This is due to

the fact that the maximum cycle rate is slower as the CAS latency is reduced.

7.Address transitions average one transition every two clocks.

8.Other input signals are allowed to transition no more than once every two clocks and are otherwise at valid VIH or VIL levels.

9.The ICC current listed includes both the DC operating current and the frequency dependent component (at 5 MHz). The frequency component typically is less than 8 mA/MHz, with OE at VIH.

10.ICC active while Embedded Algorithm (program or erase) is in progress.

11.Maximum ICC specifications are tested with VCC = VCC Max.

12.Automatic sleep mode enables the low power mode when addressed remain stable for tacc + 30 ns.

13.SDRAM inactive and in Power Down mode, all banks idle.

14.Self refresh available in commercial and industrial temperatures only.

SDRAM DESCRIPTION

The 64MByte (512Mb) SDRAM is a high-speed CMOS, dynamic random-access ,memory using 5 chips containing 134, 217, 728 bits. Each chip is internally configured as a quad-bank DRAM with a synchronous interface. Each of the chip’s 33,554,432-bit banks is organized as 4,096 rows by 512 columns by 16 bits.

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-11 select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

The SDRAM provides for programmable READ or WRITE burst lengths of 1, 2, 4 or 8 locations, or the full page, with a burst terminate option. An AUTO PRECHARGE function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

The 64MB SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

The 64MB SDRAM is designed to operate in 3.3V, lowpower memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode.

All inputs and outputs are LVTTL compatible. SDRAMs offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks in order to hide precharge time and the capability to randomly change column addresses on each clock cycle during a burst access.

SDRAM FUNCTIONAL DESCRIPTION

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence.

7 White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

White Electronic Designs

WEDPNF8M721V-XBX

Accesses begin with the registration of an ACTIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1 select the bank, A0-11 select the row). The address bits (A0-8) registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation.

INITIALIZATION

SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. Once power is applied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is defined as a signal cycling within timing constraints specified for the clock pin), the SDRAM requires a 100µs delay prior to issuing any command other than a COMMAND INHIBIT or a NOP. Starting at some point during this 100µs period and continuing at least through the end of this period, COMMAND INHIBIT or NOP commands should be applied.

Once the 100µs delay has been satisfied with at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied. All banks must be precharged, thereby placing the device in the all banks idle state.

Once in the idle state, two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is ready for Mode Register programming. Because the Mode Register will power up in an unknown state, it should be loaded prior to applying any operational command.

REGISTER DEFINITION

MODE REGISTER

The Mode Register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in Figure 3. The Mode Register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power.

Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4-

M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the WRITE burst mode, and M10 and M11 are reserved for future use.

The Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation.

BURST LENGTH

Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in Figure 3. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4 or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1-8 when the burst length is set to two; by A2-8 when the burst length is set to four; and by A3-8 when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Fullpage bursts wrap within the page if the boundary is reached.

BURST TYPE

Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3.

The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 1.

CAS LATENCY

The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two or three clocks.

If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available by clock edge

White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520

8

White Electronic Designs WEDPNF8M721V-XBX

FIG. 3

MODE REGISTER DEFINITION

TABLE 1 - BURST DEFINITION

Burst

Starting Column

Order of Accesses Within a Burst

Length

 

Address

 

 

Type = Sequential

Type = Interleaved

 

 

 

 

 

 

 

 

 

A0

 

 

2

 

 

0

 

0-1

0-1

 

 

 

1

 

1-0

1-0

 

 

A1

A0

 

 

 

 

0

0

 

0-1-2-3

0-1-2-3

4

 

0

1

 

1-2-3-0

1-0-3-2

 

 

1

0

 

2-3-0-1

2-3-0-1

 

 

1

1

 

3-0-1-2

3-2-1-0

 

A2

A1

A0

 

 

 

0

0

0

 

0-1-2-3-4-5-6-7

0-1-2-3-4-5-6-7

 

0

0

1

 

1-2-3-4-5-6-7-0

1-0-3-2-5-4-7-6

 

0

1

0

 

2-3-4-5-6-7-0-1

2-3-0-1-6-7-4-5

8

0

1

1

 

3-4-5-6-7-0-1-2

3-2-1-0-7-6-5-4

 

1

0

0

 

4-5-6-7-0-1-2-3

4-5-6-7-0-1-2-3

 

1

0

1

 

5-6-7-0-1-2-3-4

5-4-7-6-1-0-3-2

 

1

1

0

 

6-7-0-1-2-3-4-5

6-7-4-5-2-3-0-1

 

1

1

1

 

7-0-1-2-3-4-5-6

7-6-5-4-3-2-1-0

Full

n = A0-9/8/7

Cn, Cn + 1, Cn + 2

 

Page

 

 

 

 

Cn + 3, Cn + 4...

Not Supported

(y)

(location 0-y)

…Cn - 1,

 

 

 

 

 

 

Cn…

 

 

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

1.For full-page accesses: y = 512.

2.For a burst length of two, A1-8 select the block-of-two burst; A0 selects the starting column within the block.

3.For a burst length of four, A2-8 select the block-of-four burst; A0-1 select the starting column within the block.

4.For a burst length of eight, A3-8 select the block-of-eight burst; A0-2 select the starting column within the block.

5.For a full-page burst, the full row is selected and A0-8 select the starting column.

6.Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.

7.For a burst length of one, A0-8 select the unique column to be accessed, and Mode Register bit M3 is ignored.

9 White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

White Electronic Designs

 

 

 

 

 

 

WEDPNF8M721V-XBX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4 CAS LATENCY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n+m. The I/Os will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the I/Os will start driving after T1 and the data will be valid by T2. Table 2 indicates the operating frequencies at which each CAS latency setting can be used.

Reserved states should not be used as unknown operation or incompatibility with future versions may result.

OPERATING MODE

The normal operating mode is selected by setting M7and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts.

Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result.

WRITE BURST MODE

When M9 = 0, the burst length programmed via M0-M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but write

accesses are single-location (nonburst) accesses.

COMMANDS

The Truth Table provides a quick reference of available commands. This is followed by a written description of each command. Three additional Truth Tables appear following the Operation section; these tables provide current state/ next state information.

TABLE 2 - CAS LATENCY

 

 

ALLOWABLE OPERATING

 

 

 

FREQUENCY (MHZ)

 

 

CAS

 

CAS

SPEED

LATENCY = 2

LATENCY = 3

-100

75

100

-125

100

125

COMMAND INHIBIT

The COMMAND INHIBIT function prevents new commands from being executed by the SDRAM, regardless of whether the CLK signal is enabled. The SDRAM is effectively deselected. Operations already in progress are not affected.

NO OPERATION (NOP)

The NO OPERATION (NOP) command is used to perform a NOP to an SDRAM which is selected (CS is LOW). This pre-

White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520

10

White Electronic Designs

 

 

 

WEDPNF8M721V-XBX

TABLE 3 TRUTH TABLE - COMMANDS AND DQM OPERATION (NOTE 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAME (FUNCTION)

 

CS

 

 

RAS

 

 

CAS

 

 

 

WE

 

DQM

ADDR

I/Os

COMMAND INHIBIT (NOP)

 

H

 

X

 

X

 

 

X

X

X

X

NO OPERATION (NOP)

 

L

 

H

 

H

 

 

H

X

X

X

ACTIVE (Select bank and activate row) ( 3)

 

L

 

L

 

H

 

 

H

X

Bank/Row

X

READ (Select bank and column, and start READ burst) (4)

 

L

 

H

 

L

 

 

H

L/H 8

Bank/Col

X

WRITE (Select bank and column, and start WRITE burst) (4)

 

L

 

H

 

L

 

 

L

L/H 8

Bank/Col

Valid

BURST TERMINATE

 

L

 

H

 

H

 

 

L

X

X

Active

PRECHARGE (Deactivate row in bank or banks) ( 5)

 

L

 

L

 

H

 

 

L

X

Code

X

AUTO REFRESH or SELF REFRESH (Enter self refresh mode) (6, 7)

 

L

 

L

 

L

 

 

H

X

X

X

LOAD MODE REGISTER (2)

 

L

 

L

 

L

 

 

L

X

Op-Code

X

Write Enable/Output Enable (8)

 

 

 

 

 

L

Active

Write Inhibit/Output High-Z (8)

 

 

 

 

 

H

High-Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.CKE is HIGH for all commands shown except SELF REFRESH.

2.A0-11 define the op-code written to the Mode Register.

3.A0-11 provide row address, and BA0, BA1 determine which bank is made active.

4.A0-8 provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), while A10 LOW disables the auto precharge feature; BA0, BA1 determine which bank is being read from or written to.

5.A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: All banks precharged and BA0, BA1 are “Don’t Care.”

6.This command is AUTO REFRESH if CKE is HIGH; SELF REFRESH if CKE is LOW.

7.Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.

8.Activates or deactivates the I/Os during WRITEs (zero-clock delay) and READs (two-clock delay).

vents unwanted commands from being registered during idle or wait states. Operations already in progress are not affected.

LOAD MODE REGISTER

The Mode Register is loaded via inputs A0-11. See Mode Register heading in the Register Definition section. The LOAD MODE REGISTER command can only be issued when all banks are idle, and a subsequent executable command cannot be issued until tMRD is met.

ACTIVE

The ACTIVE command is used to open (or activate) a row in a particular bank for a subsequent access. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0-11 selects the row. This row remains active (or open) for accesses until a PRECHARGE command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank.

READ

The READ command is used to initiate a burst read access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0-8 selects the starting column location. The value on input A10 deter-

mines whether or not AUTO PRECHARGE is used. If AUTO PRECHARGE is selected, the row being accessed will be precharged at the end of the READ burst; if AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses. Read data appears on the I/Os subject to the logic level on the DQM inputs two clocks earlier. If a given DQM signal was registered HIGH, the corresponding I/Os will be High-Z two clocks later; if the DQM signal was registered LOW, the I/Os will provide valid data.

WRITE

The WRITE command is used to initiate a burst write access to an active row. The value on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0-8 selects the starting column location. The value on input A10 determines whether or not AUTO PRECHARGE is used. If AUTO PRECHARGE is selected, the row being accessed will be precharged at the end of the WRITE burst; if AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses. Input data appearing on the I/Os is written to the memory array subject to the DQM input logic level appearing coincident with the data. If a given DQM signal is registered LOW, the corresponding data will be written to memory; if the DQM signal is registered HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location.

11 White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

White Electronic Designs

WEDPNF8M721V-XBX

PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as “Don’t Care.” Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

AUTO PRECHARGE

AUTO PRECHARGE is a feature which performs the same individual-bank PRECHARGE function described above, without requiring an explicit command. This is accomplished by using A10 to enable AUTO PRECHARGE in conjunction with a specific READ or WRITE command. A precharge of the bank/row that is addressed with the READ or WRITE command is automatically performed upon completion of the READ or WRITE burst, except in the full-page burst mode, where AUTO PRECHARGE does not apply. AUTO PRECHARGE is nonpersistent in that it is either enabled or disabled for each individual READ or WRITE command.

AUTO PRECHARGE ensures that the precharge is initiated at the earliest valid stage within a burst. The user must not issue another command to the same bank until the precharge time (tRP) is completed. This is determined as if an explicit PRECHARGE command was issued at the earliest possible time.

BURST TERMINATE

The BURST TERMINATE command is used to truncate either fixed-length or full-page bursts. The most recently registered READ or WRITE command prior to the BURST TERMINATE command will be truncated.

AUTO REFRESH

AUTO REFRESH is used during normal operation of the SDRAM and is analagous to CAS-BEFORE-RAS (CBR) REFRESH in conventional DRAMs. This command is nonpersistent, so it must be issued each time a refresh is required.

The addressing is generated by the internal refresh controller. This makes the address bits “Don’t Care” during an AUTO REFRESH command. Each 128Mb SDRAM requires 4,096 AUTO REFRESH cycles every refresh period (tREF). Providing a distributed AUTO REFRESH command will meet the

refresh requirement and ensure that each row is refreshed. Alternatively, 4,096 AUTO REFRESH commands can be issued in a burst at the minimum cycle rate (tRC), once every refresh period (tREF).

SELF REFRESH*

The SELF REFRESH command can be used to retain data in the SDRAM, even if the rest of the system is powered down. When in the self refresh mode, the SDRAM retains data without external clocking. The SELF REFRESH command is initiated like an AUTO REFRESH command except CKE is disabled (LOW). Once the SELF REFRESH command is registered, all the inputs to the SDRAM become “Don’t Care,” with the exception of CKE, which must remain LOW.

Once self refresh mode is engaged, the SDRAM provides its own internal clocking, causing it to perform its own AUTO REFRESH cycles. The SDRAM must remain in self refresh mode for a minimum period equal to tRAS and may remain in self refresh mode for an indefinite period beyond that.

The procedure for exiting self refresh requires a sequence of commands. First, CLK must be stable (stable clock is defined as a signal cycling within timing constraints specified for the clock pin) prior to CKE going back HIGH. Once CKE is HIGH, the SDRAM must have NOP commands issued (a minimum of two clocks) for tXSR, because time is required for the completion of any internal refresh in progress.

Upon exiting the self refresh mode, AUTO REFRESH commands must be issued as both SELF REFRESH and AUTO REFRESH utilize the row refresh counter.

*Self refresh available in commercial and industrial temperatures only.

FLASH DESCRIPTION

The 8Mbit 3.3 volt-only Flash memory is organized as 1,048,576 bytes. The byte-wide (x8) data appears on FD0- 7; the word-wide (x16) data appears on FD0-15. This device requires only a single 3.3 volt Vcc supply to perform read, program, and erase operations. A standard EPROM programmer can also be used to program and erase the device.

This device features unlock bypass programming and insystem sector protection/unprotection.

This device offers access times of 100, 120 and 150ns, allowing operation without wait states. To eliminate bus con-

tention the device has separate chip select (FCS), wite enable (FWE) and output enable (FOE) controls.

The device requires only a single 3.3 volt power supply for

White Electronic Designs Corporation • Phoenix AZ • (602) 437-1520

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

White Electronic Designs

 

WEDPNF8M721V-XBX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDRAM ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(NOTES 1, 2, 3, 4, 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

Symbol

-100

 

-125

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min

Max

Min

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Access time from CLK (pos. edge)

CL = 3

 

tAC

 

 

 

7

 

 

6

 

ns

CL = 2

 

tAC

 

 

 

7

 

 

6

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address hold time

 

 

tAH

1

 

 

 

1

 

 

 

ns

Address setup time

 

 

tAS

2

 

 

 

2

 

 

 

ns

CLK high-level width

 

 

tCH

3

 

 

 

3

 

 

 

ns

CLK low-level width

 

 

tCL

3

 

 

 

3

 

 

 

ns

Clock cycle time (6)

CL = 3

 

tCK

10

 

 

 

8

 

 

 

ns

CL = 2

 

tCK

13

 

 

 

10

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CKE hold time

 

 

tCKH

1

 

 

 

1

 

 

 

ns

CKE setup time

 

 

tCKS

2

 

 

 

2

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQM hold time

 

 

tCMH

1

 

 

 

1

 

 

 

ns

CS,

RAS,

CAS,

WE,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQM setup time

 

 

tCMS

2

 

 

 

2

 

 

 

ns

 

 

CS,

 

RAS,

CAS,

WE,

 

 

 

 

 

 

 

Data-in hold time

 

 

tDH

1

 

 

 

1

 

 

 

ns

Data-in setup time

 

 

tDS

2

 

 

 

2

 

 

 

ns

Data-out high-impedance time

CL = 3 (7)

 

tHZ

 

 

 

7

 

 

6

 

ns

CL = 2 (7)

 

tHZ

 

 

 

7

 

 

6

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data-out low-impedance time

 

 

tLZ

1

 

 

 

1

 

 

 

ns

Data-out hold time (load)

 

 

tOH

3

 

 

 

3

 

 

 

ns

Data-out hold time (no load) (8)

 

 

tOHN

1.8

 

 

 

1.8

 

 

 

ns

ACTIVE to PRECHARGE command

 

 

tRAS

50

 

 

120,000

45

 

120,000

 

ns

ACTIVE to ACTIVE command period

 

 

tRC

70

 

 

 

68

 

 

 

ns

ACTIVE to READ or WRITE delay

 

 

tRCD

20

 

 

 

20

 

 

 

ns

Refresh period (4,096 rows) – Commercial, Industrial

 

tREF

 

 

 

64

 

 

64

 

ms

Refresh period (4,096 rows) – Military

 

 

tREF

 

 

 

16

 

 

16

 

ms

AUTO REFRESH period

 

 

tRFC

70

 

 

 

70

 

 

 

ns

PRECHARGE command period

 

 

tRP

20

 

 

 

20

 

 

 

ns

ACTIVE bank A to ACTIVE bank B command

 

 

tRRD

15

 

 

 

16

 

 

 

ns

Transition time (9)

 

 

tT

0.3

 

 

1.2

0.3

 

1.2

 

ns

WRITE recovery time

(10)

 

tWR

1 CLK + 7ns

 

 

1 CLK + 7ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11)

 

15

 

 

 

15

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exit SELF REFRESH to ACTIVE command

 

 

tXSR

80

 

 

 

78

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

1.The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is ensured.

2.An initial pause of 100ms is required after power-up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (VCC must be powered up simultaneously.) The two AUTO REFRESH command wake-ups should be repeated any time the tREF refresh requirement is exceeded.

3.In addition to meeting the transition rate specification, the clock and CKE must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.

4.Outputs measured at 1.5V with equivalent load:

5.AC timing and ICC tests have VIL = 0V and VIH = 3V, with timing referenced to 1.5V crossover point.

6.The clock frequency must remain constant (stable clock is defined as a signal cycling within timing constraints specified for the clock pin) during access or precharge states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may be used to reduce the data rate.

7.tHZ defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL. The last valid data element will meet tOH before going High-Z.

8.Guaranteed by design, but not tested.

9.AC characteristics assume tT = 1ns.

10.Auto precharge mode only. The precharge timing budget (tRP) begins 7.5ns/ 7ns after the first clock delay, after the last WRITE is executed.

11.Precharge mode only.

13 White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com

Loading...
+ 29 hidden pages