Texas Instruments TSB14C01PM, TSB14C01MHVB, TSB14C01MHV, TSB14C01IPM Datasheet

0 (0)

TSB14C01 5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

 

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

 

 

D Supports Provisions of IEEE 1394-1995

D Separate Transmitter and Receiver for

(1394) Standard for High-Performance

Greater Flexibility

Serial Bus²

D Data Interface to Link-Layer Controller

D Fully Interoperable With FireWire

(Link) Provided Through Two Parallel

Implementation of 1394

Signal Lines at 25/50 MHz

D Provides A Backplane Environment That

D 100-MHz or 50-MHz Oscillator Provides

Supports 50 or 100 Megabits per Second

Transmit, Receive-Data, and Link Clocks at

(Mbits/s)

25/50 MHz

D Logic Performs System Initialization and

D Single 5-V Supply Operation

Arbitration Functions

D Packaged in a High-Performance 64-Pin

D Encode and Decode Functions Included for

TQFP (PM) Package for 0°C to 70°C

Data-Strobe Bit-Level Encoding

Operation

D Incoming Data Resynchronized to Local

D Packaged in a 68-Pin CFP (HV) Package for

Clock

±55°C to 125°C Operation

description

The TSB14C01 provides the transceiver functions needed to implement a single port node in a backplanebased 1394 network. The TSB14C01 provides two terminals for transmitting, two terminals for receiving, and a single terminal to externally control the drivers for data and strobe. The TSB14C01 is not designed to drive the backplane directly, this function must be provided externally. The TSB14C01 is designed to interface with a link-layer controller (link), such as the TSB12C01A.

The TSB14C01 requires an external 98.304-MHz or 49.152-MHz reference oscillator input for S100/50 operation. The reference signal is internally divided to provide the 49.152-MHz ±100-ppm system clock signals used to control transmission of the outbound encoded strobe and data information. The 49.152-MHz clock signal is supplied to the associated link for synchronization of the two chips, when this device is in the S100 mode of operation, OSC_SEL is asserted high. When the TSB14C01 is in the S50 mode of operation, the clock rate supplied to the link is 24.576 MHz.

Data bits to be transmitted are received from the link on two parallel paths and are latched internally in the TSB14C01 in synchronization with the 49.152-MHz system clock. These bits are combined serially, encoded, and then transmitted at 98.304-Mbits/s (in S100 mode) as the outbound data-strobe information stream. During transmission, the encoded data information is transmitted on TDATA, and the encoded strobe information is transmitted on TSTRB.

During packet reception the encoded information is received on RDATA and strobe information on RSTRB. The received data-strobe information is decoded to recover the receive clock signal and the serial data bits. The serial data bits are split into two parallel streams, resynchronized to the local system clock, and sent to the associated link.

The TSB14C01 is a 5-V device and provides CMOS-level outputs.

AVAILABLE OPTIONS

 

PACKAGES

TA

 

 

CERAMIC FLAT PACK

THIN QUAD FLAT PACK

 

(HV)

(PM)

 

 

 

0°C to 70°C

Ð

TSB14C01PM

 

 

 

± 55°C to 125°C

TSB14C01MHV

Ð

 

 

 

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

² This serial bus implements technology covered by one or more patents of Apple Computer, Incorporated and SGS Thomson, Limited. FireWire is a trademark of Apple Computer, Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright 1997, Texas Instruments Incorporated

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

1

TSB14C01

5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

PM PACKAGE (TOP VIEW)

 

 

 

 

GND

RPREFIX

V

 

V

GND

V

TI1 V NC _XI50

GND

NC

 

_XI100 GND OSC_SEL

 

GND

 

 

 

 

 

 

 

 

 

 

CC

 

CC

 

 

CC

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARB_CLK

 

 

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

 

 

 

NC

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

 

PHYENA

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

 

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

 

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENA_PRI

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

 

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

 

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N_POR

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

 

RDATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

 

RSTRB

LREQ

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

TSB14C01

 

 

 

 

 

 

 

 

 

41

 

VCC

VCC

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

TDATA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCLK

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

 

TSTRB

TSCLK

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

 

GND

GND

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

 

N_OEB_D

CTL0

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

 

GND

CTL1

 

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

 

PTEST_INDRV

D0

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

 

VCC

D1

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

 

NC

 

 

 

1718 19

20 21 22 23 24 25 26 27 28

29 30 31

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

EN EXID

EN EXPRI

 

EX ID5

EX ID4

EX ID3

EX ID2 EX ID1 EX ID0 GND

EX PRI3

EX PRI2

 

EX PRI1 EX PRI0 NC

 

NC

 

 

 

 

 

 

V

 

 

 

 

 

NC ± No connection

2

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TSB14C01 5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

HV PACKAGE (TOP VIEW)

 

NC

GND

RPREFIX

CC

CC

GND

CC

TI1

CC

NC XI50

GND

NC XI100

GND

OSCSEL

GND

 

 

V

V

V

V

 

NC

9

8

7

6

5

4

3

2

1

68 67 66 65 64 63 62 61

NC

10

 

 

 

 

 

 

 

 

 

 

 

 

 

60

ARB_CLK

11

 

 

 

 

 

 

 

 

 

 

 

 

 

59

NC

PHYENA

12

 

 

 

 

 

 

 

 

 

 

 

 

 

58

NC

VCC

13

 

 

 

 

 

 

 

 

 

 

 

 

 

57

NC

ENA_PRI

14

 

 

 

 

 

 

 

 

 

 

 

 

 

56

NC

VCC

15

 

 

 

 

 

 

 

 

 

 

 

 

 

55

RDATA

N_POR

16

 

 

 

 

 

 

 

 

 

 

 

 

 

54

RSTRB

GND

17

 

 

 

 

 

TSB14C01M

 

 

 

 

53

VCC

LREQ

18

 

 

 

 

 

 

 

 

 

52

TDATA

VCC

19

 

 

 

 

 

 

 

 

 

 

 

 

 

51

TSTRB

SCLK

20

 

 

 

 

 

 

 

 

 

 

 

 

 

50

GND

TSCLK

21

 

 

 

 

 

 

 

 

 

 

 

 

 

49

N_OEB_D

GND

22

 

 

 

 

 

 

 

 

 

 

 

 

 

48

GND

CTL0

23

 

 

 

 

 

 

 

 

 

 

 

 

 

47

PTEST_INDRV

CTL1

24

 

 

 

 

 

 

 

 

 

 

 

 

 

46

VCC

D0

25

 

 

 

 

 

 

 

 

 

 

 

 

 

45

NC

D1

26

 

 

 

 

 

 

 

 

 

 

 

 

 

44

NC

 

27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

 

 

NC

NC

CC

EN EXID

EN EXPRI

EX ID5

EX ID4

EX ID3

EX ID2

EX ID1 EX ID0

GND

EX PRI3 EX PRI2

EX PRI1

EX PRI0

NC

 

 

V

 

NC ± No connection

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

3

Texas Instruments TSB14C01PM, TSB14C01MHVB, TSB14C01MHV, TSB14C01IPM Datasheet

TSB14C01

5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

system block diagram

 

 

 

 

 

N_OEB_D

 

 

 

 

D0 ± D1

2

 

 

 

 

 

 

/

 

 

 

 

 

 

 

TSB14C01

Tdata

BPdata

 

 

CTL0 ± CTL1 2

 

1394 Link-

 

 

 

 

Host

 

/

1394

Rdata

 

 

Layer

 

 

 

Interface

 

 

Backplane

 

 

 

Controller

 

 

 

 

 

 

LREQ

 

Physical-

 

 

 

 

 

 

Tstrb

BPstrb

 

 

 

 

 

Layer

 

 

 

 

 

 

 

 

 

 

 

 

Controller

Rstrb

 

 

 

 

SCLK

 

 

 

 

NOTE A: The backplane transceiver is customer supplied and is different for each type of backplane.

 

functional block diagram

 

 

 

 

 

 

 

 

 

 

SCLK

 

 

 

 

 

 

 

D0, D1

Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encode

 

 

SCLK

 

 

 

 

 

TxPktStrb

 

 

 

 

 

 

 

 

 

 

Physical ID

CLK

 

TxPktData

 

 

 

Pr0 ± Pr3

 

 

 

ARB/DATA

TSTRB

 

 

 

 

 

 

 

2

Fair/Urg Req

 

 

MUX

TDATA

 

Iso Req

TxArbStrb

 

 

D0 ± D1

/

 

 

Cycle Req

TxArbData

 

 

 

2

 

 

 

Ack Req

 

 

 

 

CTL0 ± CTL1

/

 

 

 

 

 

 

 

 

 

 

LREQ

 

Arb Won

ARB

 

 

LINK/PHY

Arb Lost

Control

 

 

 

 

 

 

 

 

 

Interface

Arb Res Gap

 

 

 

 

 

 

 

 

Sub Act Gap

RxStb

RSTRB

 

 

Ack Gap

RxData

 

 

RDATA

 

 

 

 

 

 

Bus Reset

 

Data

 

 

 

Resync/

 

 

CLK

CLK

CLK

 

Decode

 

 

 

 

 

 

 

(see Note A)

 

 

 

 

 

 

RxData

 

 

 

 

RxCLK

RxCLK

 

NOTE A: CLK is either terminal XI_50 or XI_100 depending on the mode selection.

4

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TSB14C01 5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

 

 

 

 

 

 

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

 

 

 

 

 

 

 

 

 

 

 

 

Terminal Functions

 

 

 

 

 

 

 

 

TERMINAL

 

 

 

 

 

 

NAME

PM

HV

TYPE

 

I/O

DESCRIPTION

 

NO.

NO.

 

 

 

 

 

 

 

 

 

 

 

 

 

ARB_CLK

1

11

TTL

 

O

Arbitration clock. ARB_CLK is the clock used for arbitration. ARB_CLK is

 

 

 

 

 

 

 

for test and debug. It can be put into a high-impedance state by

 

 

 

 

 

 

 

PTEST_INDRV. This terminal is not used in normal operation and is

 

 

 

 

 

 

 

always at 49.152 MHz.

 

 

 

 

 

 

 

 

 

CTL0, CTL1

13, 14

23, 24

TTL

 

I/O

Control I/O. These are bidirectional signals that communicate between the

 

 

 

 

 

 

 

TSB14C01 and the link that control passage of information between the

 

 

 

 

 

 

 

two devices.

 

 

 

 

 

 

 

 

 

D0, D1

15, 16

25, 26

TTL

 

I/O

Data I/O. These are bidirectional information signals that communicate

 

 

 

 

 

 

 

between the TSB14C01 and the link.

 

 

 

 

 

 

 

 

 

ENA_PRI

4

14

TTL

 

I

Enable priority. ENA_PRI is tied low to enable the 7-bit bus request. See

 

 

 

 

 

 

 

Table 1 for more information.

 

 

 

 

 

 

 

 

 

EN_EXID

18

30

TTL

 

I

Enable external ID. When EN_EXID is asserted high, the ID for this node

 

 

 

 

 

 

 

is set externally by EX_ID. When this terminal is tied/driven low, the

 

 

 

 

 

 

 

source of the ID comes from the internal ID register.

 

 

 

 

 

 

 

 

 

EN_EXPRI

19

31

TTL

 

I

Enable external priority. When EN_EXPRI is asserted high (external

 

 

 

 

 

 

 

priority enabled) the priority level for this node is set externally (see

 

 

 

 

 

 

 

Table 1). This terminal should be tied low when not used.

 

 

 

 

 

 

 

 

 

EX_ID5 ± EX_ID0

20,21,22,

32,33,34,

TTL

 

I

External ID. The ID for this node is determined by the value on the EX_ID

 

 

23,24,25

35,36,37

 

 

 

terminals. Bit 0 is the MSB.

 

 

 

 

 

 

 

 

 

EX_PRI3 ±

27,28,

39,40,

TTL

 

I

External priority. The priority for this node is determined by the values on

 

EX_PRI0

29,30

41,42

 

 

 

the EX_PRI terminals. See Table 1 for more information.

 

 

 

 

 

 

 

 

 

GND

7,12,26,

4,8,17,

Supply

 

Ð

Circuit ground

 

 

36,38,49,

22,38,48,

 

 

 

 

 

 

51,54,60,

50,61,63,

 

 

 

 

 

 

64

66

 

 

 

 

 

 

 

 

 

 

 

 

 

LREQ

8

18

TTL

 

I

Link request input. LREQ is an input from the link used by the link to

 

 

 

 

 

 

 

signal the TSB14C01 of a request to perform some service.

 

 

 

 

 

 

 

 

 

VCC

3,5,9,17,

1,3,5,6,

Supply

 

Ð

Circuit power

 

 

34,41,57,

13,15,19,

 

 

 

 

 

 

59,61,62

29,46,53

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

31,32,33,

9,10,27,

Ð

 

Ð

Not connected. These terminals must be left floating.

 

 

44,45,46,

28,43±45,

 

 

 

 

 

 

47,48,53,

56±60,

 

 

 

 

 

 

56

65,68

 

 

 

 

 

 

 

 

 

 

 

 

 

N_OEB_D

37

49

TTL

 

O

External driver enable. N_OEB_D is a negative active signal that enables

 

 

 

 

 

 

 

the external driver for TDATA and TSTRB.

 

 

 

 

 

 

 

 

 

N_POR

6

16

TTL

 

I

Logic reset input . Forcing N_POR low causes a reset condition and

 

 

 

 

 

 

 

resets the internal logic to the reset start state.

 

 

 

 

 

 

 

 

 

OSC_SEL

50

62

VCC /

 

I

Select clock frequency. OSC_SEL should be pulled up to VCC when the

 

 

 

 

GND

 

 

operating frequency is 50 MHz. When the operating frequency is 100 MHz

 

 

 

 

 

 

 

then it should be pulled to ground. It should not be left floating.

 

PHYENA

2

12

TTL

 

O

Phy enable. When the phy is driving it is low, PHYENA is the control to the

 

 

 

 

 

 

 

CTL0, CTL1, D0, and D1 drivers. PHYENA is for test and debug. It can

 

 

 

 

 

 

 

be put into a high-impedance state by PTEST_INDRV. This terminal is not

 

 

 

 

 

 

 

used in normal operation.

 

 

 

 

 

 

 

 

 

PTEST_INDRV

35

47

TTL

 

I

Test output enable. PTEST_INDRV enables/disables the drivers to the

 

 

 

 

 

 

 

test terminals ARB_CLK, PHYENA, and RPREFIX. During normal

 

 

 

 

 

 

 

operation, PTEST_INDRV should be tied to VCC to disable the drivers.

 

RDATA

43

55

TTL

 

I

Receive data. Incoming data is received at the data rate.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

5

TSB14C01

5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

Terminal Functions (continued)

 

TERMINAL

 

 

 

 

 

NAME

 

PM

HV

TYPE

I/O

DESCRIPTION

 

 

NO.

NO.

 

 

 

 

 

 

 

 

 

 

 

 

RPREFIX

 

63

7

TTL

O

Receiver prefix. When asserted high (enabled), RPREFIX alerts the

 

 

 

 

 

 

 

receiver of an incoming packet. RPREFIX is for test and debug and is not

 

 

 

 

 

 

 

used in normal operation.

 

 

 

 

 

 

 

 

 

RSTRB

 

42

54

TTL

I

Receive strobe. RSTRB decodes the received data.

 

 

 

 

 

 

 

 

 

SCLK

 

10

20

TTL

O

System clock output. A 49.152-MHz or 24.576-MHz clock signal

 

 

 

 

 

 

 

synchronized with the data transfers, and provided to the link.

 

 

 

 

 

 

 

 

 

TDATA

 

40

52

CMOS

O

Transmit data. Data to be transmitted is serialized on TDATA.

 

 

 

 

 

 

 

 

 

TI1

 

58

2

TTL

I

Test input 1. TI1 is used for test purposes only and should be tied to

 

 

 

 

 

 

 

ground for normal operation.

 

 

 

 

 

 

 

 

 

TSCLK

 

11

21

TTL

O

System clock output. A 49.152-MHz or 24.576-MHz clock signal that is 180

 

 

 

 

 

 

 

degrees out of phase with SCLK; it is available if needed.

 

 

 

 

 

 

 

 

 

TSTRB

 

39

51

CMOS

O

Transmit strobe. TSTRB encodes transmit data.

 

 

 

 

 

 

 

 

 

XI_50

 

55

67

CMOS

I

External oscillator input. An external 49.152-MHz oscillator can drive the

 

 

 

 

 

 

 

TSB14C01.

 

 

 

 

 

 

 

 

 

XI_100

 

52

64

CMOS

I

External oscillator input. An external 98.304-MHz oscillator can drive the

 

 

 

 

 

 

 

TSB14C01.

 

 

 

 

 

 

 

 

 

 

 

Table 1. External Priority Coding

 

 

 

 

EXTERNAL PRIORITY TERMINALS

DESCRIPTION

 

 

 

ENA_PRI

EN_EXPRI

EX_PRI0 ± EX_PRI3

 

 

 

 

 

 

 

L L L L

 

 

 

L L L H

 

X

H

.

The priority for this node is determined by the values on EX_PRI0 ± EX_PRI3.

.

The state of ENA_PRI can be either tied to VCC or GND.

 

 

 

 

.

 

 

 

H H H H

 

 

 

 

 

L

L

X

This sets a 7-bit bus request and is the cable environment format. Priority must be

 

 

 

set by executing a write request (see Table 10).

 

 

 

 

H

L

X

This sets an 11-bit bus request and is the backplane environment format. Priority

 

 

 

is dynamically set as part of the bus request (see Table 8)

6

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TSB14C01 5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)²

Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5 V to 6.0 V Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5 V to VCC + 0.5 V Output voltage range at any output, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5 V to VCC + 0.5 V Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table

Operating free air temperature, TA: TSB14C01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C TSB14C01M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±55°C to 125°C

Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C

²Stresses beyond those listed under ªabsolute maximum ratingsº may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under ªrecommended operating conditionsº is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

 

T 25°C

DERATING FACTOR³

T = 70°C

T = 125°C

PACKAGE

A

ABOVE TA = 25°C

A

A

POWER RATING

POWER RATING

POWER RATING

 

HV

1689 mW

13.5 mW/°C

1081 mW

337 mW

 

 

 

 

 

PM

1350 mW

10.8 mW/°C

864 mW

Ð

³This is the inverse of the traditional junction-to-ambient thermal resistance (RθJA) and uses a board-mounted RθJA of 92.5°C/W for the PM package and 74°C/W for the HV package.

recommended operating conditions

 

 

MIN

NOM

 

MAX

UNIT

 

 

 

 

 

 

 

Supply voltage, VCC

 

4.5

5

5.25

V

High-level input voltage, VIH

CMOS inputs

0.7 VCC

 

 

 

V

TTL input

2

 

 

VCC

V

 

 

 

Low-level input voltage, VIL

CMOS inputs

0

 

 

0.2 VCC

V

TTL input

0

 

 

0.8

V

 

 

 

 

 

 

 

 

 

 

Input voltage, VI

CMOS/TTL

0

 

 

VCC

V

High-level output current, IOH

CMOS Drivers

 

 

 

12

mA

 

 

 

 

 

TTL Drivers

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

Low-level output current, IOL

CMOS Drivers

 

 

 

24

mA

 

 

 

 

 

TTL Drivers

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

7

TSB14C01

5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

device

 

PARAMETER

TEST CONDITIONS

MIN

TYP

 

MAX

UNIT

 

 

 

 

 

 

 

 

 

VOH

High-level output voltage

IOH = max,

VCC = min

VCC± 0.8

 

 

 

V

VOL

Low-level output voltage

IOL = min,

VCC = max

 

 

 

0.5

V

 

Input current

VI = VCC or 0

 

 

 

 

± 1

μA

IOZ

Off-state output current

VI = VCC or 0

 

 

 

 

± 10

μA

thermal characteristics

 

PARAMETER

TEST CONDITION

MIN

 

TYP

MAX

UNIT

 

 

 

 

 

 

 

 

 

RθJA

Junction-to-free-air thermal resistance

TSB14C01

Board mounted, No air flow

 

 

83

 

°C/W

 

 

 

 

 

 

TSB14C01M

 

 

74

 

°C/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RθJC

Junction-to-case thermal resistance

TSB14C01

 

 

 

16

 

°C/W

 

 

 

 

 

 

 

TSB14C01M

 

 

 

3

 

°C/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

switching characteristics, VCC = 5 V, TA = 25°C (See Note 1)

 

PARAMETER

MEASURED

TEST CONDITION

MIN

 

TYP

MAX

UNIT

 

 

 

 

 

 

 

 

 

tsu

D, CTL, LREQ low or high before SCLK high

50% to 50%

See Figure 1

7

 

 

 

ns

th

D, CTL, LREQ low or high after SCLK high

50% to 50%

See Figure 1

1

 

 

 

ns

td

Delay time, SCLK high to D, CTL high or low

50% to 50%

See Figure 2

 

 

 

10

ns

NOTE 1: These parameters are ensured by design and are not production tested.

PARAMETER MEASUREMENT INFORMATION

SCLK

 

 

50%

 

 

tsu

th

D, CTL, LREQ

Figure 1. D, CTL, LREQ Input Setup and Hold Timing Waveforms

SCLK

 

 

 

50%

 

 

 

 

 

 

td

D, CTL

Figure 2. D, CTL Output Delay Relative to SCLK Timing Waveforms

8

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

TSB14C01 5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

APPLICATION INFORMATION

internal register configuration

The accessible internal registers of this device are listed in Table 2. Bit field descriptions for the registers are given in Table 3.

Table 2. Format for Registers

ADDRESS

0

1

2

3

4

5

6

7

 

 

 

 

 

 

 

 

 

0000

Physical

Physical

Physical

Physical

Physical

Physical

Reserved

Reserved

 

ID[0]

ID[1]

ID[2]

ID[3]

ID[4]

ID[5]

 

 

 

 

 

 

 

 

 

 

 

0001

INHB

IBR

 

 

RESERVED

 

 

 

 

 

 

 

 

 

 

 

0011

 

 

 

RESERVED

 

 

 

 

 

 

 

 

 

 

 

 

0100

Priority

Priority

Priority

Priority

 

RESERVED

 

 

level[0]

level[1]

level[2]

level[3]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Register Bit Field Key

 

 

 

 

FIELD

SIZE

TYPE

DESCRIPTION

 

(Bits)

 

 

 

 

 

 

Physical ID

6

Read/Write

Physical identification. Physical ID is the address of the local node and is set to zero on power up.

 

 

 

 

INHB

1

Read/Write

Inhibit Drivers. INHB is used to turn off the drivers to TDATA and TSTRB.

 

 

 

 

IBR

1

Read/Write

Initiate Bus Reset. IBR is turned on by the link and turned off by the phy when reset is complete.

 

 

 

 

Priority

4

Read/Write

Priority setting. The four bits contain the priority of the local node. A higher value in this field

 

 

 

indicates a higher priority.

 

 

 

 

transceiver selection

The system designer must select transceivers appropriate to the system requirements to be used with the TSB14C01 and the link layer selected. The following lists requirements for the transceivers needed.

DThe transceivers used must be appropriate to the backplane technology used.

The various backplane technologies require different electrical characteristics in their backplanes. For example BTL uses an operating voltage on the backplane of 2.1 V and a characteristic impedance of 33 Ω while GTL uses an operating voltage of 1.2 V and a characteristic impedance of 50 Ω (see GTL/BTL a Low Swing Solution for High-Speed Digital Logic, TI literature number SCEA003). When a backplane is designed to use BTL technology, then it would be appropriate to also use that technology for the two lines dedicated to the 1394 serial bus. The drivers selected also must be able to supply the current required for the expected backplane loading. For example, BTL operates correctly for a FutureBus configuration backplane at 50 Mbits/s or for a limited number of nodes in a custom configuration at 100 Mbits/s. See the GTL/BTL a Low Swing Solution for High-Speed Digital Logic, TI literature number SCEA003 or the documentation for the transceiver being considered.

DThe transceivers used must assert logic states on the backplane in an appropriate manner for the 1394 backplane arbitration.

Arbitration under 1394 backplane rules requires the drivers to assert the bus to indicate a logical 1 state, that is a logic 1 being driven by the TSB14C01. Conversely, the drivers should release the bus to indicate a logic 0 state, a logic 0 being driven by the TSB14C01. In other words, all drivers must operate in a Wired-OR mode during arbitration.

DThe transceivers used must be able to monitor the bus and drive the bus at the same time.

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

9

TSB14C01

5-V IEEE 1394-1995 BACKPLANE TRANSCEIVER/ARBITER

SLLS231B ± MARCH 1996 ± REVISED MAY 1997

During arbitration, each node that is arbitrating for the bus drives its code then its node number out onto the bus. During each bit period, each node reads back what has been placed on the bus. If it reads back the same data it was sending, the arbitrating node stays in contention for winning the bus. If it reads something different then what it was driving, the arbitrating node loses the bus and drops out of contention. This is the reason for requiring Wired-OR operation during arbitration. As long as each node is still sending 0s onto the bus during arbitration, all nodes are still contending to win the bus. The node with the highest priority (or if all priorities were zero then the highest node number) is the first to drive a 1 onto the bus during arbitration. The node that sends the first 1 (asserting the bus) and reads it back wins the bus. All other nodes read back a 1, which does not match the 0 (releasing the bus) they are sending, and drop out of contention. This arbitration process requires the transceiver selected to be able to read from the bus at the same time it is driving the bus.

For example, if three nodes, each with priority 0 and a node identifiers of 8, 7, and 2, were to arbitrate for the bus the following would occur:

Driven by Node #2

0

0

0

0

0

0

0

0

0

0

(TSB14C01)

 

 

 

 

 

 

 

 

 

 

Driven by Node #7

0

0

0

0

0

0

0

0

0

0

(TSB14C01)

 

 

 

 

 

 

 

 

 

 

Driven by Node #8

0

0

0

0

0

0

1

0

0

0

(TSB14C01)

 

 

 

 

 

 

 

 

 

 

Bus Data Line (voltage level on the bus)

Bus Read

NOTE A: This bus is reverse logic, a 1 being driven by the TSB14C01 is asserted by driving a 0 onto the bus by the transceiver.

Figure 3. Three Nodes Arbitrating for the Bus

Since the highest node number is 8 (1000b), node 8 outputs the first 1 (assert the bus) and wins the arbitration. The other nodes drop out and do not try to drive their node number onto the bus.

DThe transceivers used must be appropriate for the transfer speed required.

The 1394 bus has two data lines that use Data-Strobe Encoding on the bus. This requires that the transceivers be able to operate at a maximum frequency of one half of the maximum data transfer rate. When operating at 50 Mbits/s, the maximum frequency the drivers are required to operate at is 25 MHz. When operating at 100 Mbits/s, the maximum frequency the drivers are required to operate at is 50 MHz.

10

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

Loading...
+ 21 hidden pages