Texas Instruments TVP3010-135MGAB, TVP3010-135MGA, TVP3010-135FN, TVP3010-110FN, TVP3010-85FNR Datasheet

...
0 (0)

TVP3010C, TVP3010M

Data Manual

Video Interface Palette

SLAS082A

October 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (ªCritical Applicationsº).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

Contents

Section

Title

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±1

1.1 Features (TVP3010C and TVP3010M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±3 1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±4 1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±5 1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±7 1.5 Terminal Functions (TVP3010C and TVP3010M) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±7

2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±1

2.1 MPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±1 2.2 Color Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±4 2.2.1 Writing to Color-Palette RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±4 2.2.2 Reading From Color-Palette RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±4 2.2.3 Palette Page Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±4 2.2.4 Read Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±5

2.3Clock Selection and Output-Clock (SCLK, RCLK, and VCLK) Generation . . . . . 2±5

2.3.1 RCLK, SCLK, VCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±5 2.3.2 Frame-Buffer Clocking: Self-Clocked or Externally Clocked . . . . . . . . . 2±8 2.4 Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±12 2.4.1 Little-Endian and Big-Endian Data Format . . . . . . . . . . . . . . . . . . . . . . . 2±12 2.4.2 VGA Pass-Through Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±13 2.4.3 Pseudo-Color Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±13 2.4.4 Direct-Color Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±13 2.4.5 True-Color Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±14 2.4.6 Multiplex Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±22

2.5 On-Chip Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±23 2.5.1 Cursor RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±23 2.5.2 Two-Color 64 ×64 Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±24 2.5.3 64 ×64 Cursor Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±24 2.5.4 Crosshair Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±25 2.5.5 Dual-Cursor Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±26

2.6 Auxiliary Window, Port Select, and Color-Key Switching . . . . . . . . . . . . . . . . . . . . 2±27 2.6.1 Windowing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±28 2.6.2 Color-Key-Switching Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±30 2.7 Overscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±31

2.8 Horizontal Zooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±32 2.9 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±33 2.9.1 16-Bit CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±33 2.9.2 Sense-Comparator Output and Test Register . . . . . . . . . . . . . . . . . . . . . 2±33 2.9.3 Identification Code (ID) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±34 2.10 MUXOUT [SENSE]Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±34

iii

Section

 

Title

Page

2.11

Reset . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±34

 

2.11.1

Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±34

 

2.11.2

Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±34

2.12

Frame-Buffer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±35

2.13

Analog-Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±35

2.14

Video Control: Horizontal Sync, Vertical Sync, and Blank . . . . . . . . . . . . . . . . . . .

2±37

2.15

Split Shift Register Transfer VRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±37

2.16

Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±38

 

2.16.1

Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±38

 

2.16.2

General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±39

 

2.16.3

Cursor Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±40

 

2.16.4

Cursor Position X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±41

 

2.16.5

Sprite Origin X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±42

 

2.16.6

Window Start X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±43

 

2.16.7

Window Stop X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±44

 

2.16.8

Cursor Color 0, 1 RGB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±45

 

2.16.9

Cursor-RAM Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±46

 

2.16.10

Cursor RAM Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±46

 

2.16.11

AuxiliaryControl Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±47

 

2.16.12

Color-Key-Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±48

 

2.16.13

Color-Key (Red, Green, Blue, Overlay) Low and High Registers . . . .

2±49

 

2.16.14

Overscan Color RGB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±50

 

2.16.15

CRC LSB and MSB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±51

 

2.16.16

CRC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±51

3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±1

3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . 3±1 3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±1

3.3Electrical Characteristics for TVP3010C Over Recommended Ranges of

Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . 3±2

3.4Electrical Characteristics for TVP3010M Over Recommended Ranges of

Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . 3±3 3.5 Operating Characteristics (TVP3010C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±4 3.6 Operating Characteristics (TVP3010M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±5 3.7 Timing Requirements (TVP3010C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±6 3.8 Timing Requirements (TVP3010M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±7

3.9Switching Characteristics for TVP3010C Over Recommended Ranges of

Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . 3±8 3.10 Switching Characteristics for TVP3010M Over Recommended Ranges of

Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . 3±10 3.11 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±11

iv

Section

Title

Page

Appendix A Printed Circuit Board Layout Considerations . . . . . . . . . . . . . . . . . . . . . A±1 Appendix B RCLK Frequency < VCLK Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B±1 Appendix C Little-Endian and Big-Endian Data Formats . . . . . . . . . . . . . . . . . . . . . . . C±1 Appendix D Examples: Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D±1 Appendix E Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E±1

List of Illustrations

Figure

Title

Page

2±1

Dot Clock/VCLK/RCLK/SCLK Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 2±7

2±2

SCLK/VCLK Control Timing

 

 

(SSRT Disabled, RCLK/SCLK Frequency = VCLK Frequency) . . . . . . . . . . . . . . . .

2±8

2±3

SCLK/VCLK Control Timing

 

 

(SSRT Enabled, RCLK/SCLK Frequency = VCLK Frequency) . . . . . . . . . . . . . . . .

2±9

2±4

SCLK/VCLK Control Timing

 

 

(SSRT Disabled, RCLK/SCLK Frequency = 4 x VCLK Frequency) . . . . . . . . . . . .

2±10

2±5

SCLK/VCLK Control Timing

 

 

(SSRT Enabled, RCLK/SCLK Frequency = 4 x VCLK Frequency) . . . . . . . . . . . .

2±10

2±6

CursorRAM Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±24

2±7

Common Sprite-Origin Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±25

2±8

Dual-Cursor Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±26

2±9

One Possible Custom-Cursor Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±26

2±10

VGA in the Auxiliary Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±29

2±11

Multiple VGA Windows Using Port Select (PSEL) . . . . . . . . . . . . . . . . . . . . . . . . . .

2±30

2±12

Overscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±32

2±13

Equivalent Circuit of the Current Output (IOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±35

2±14

Composite Video Output (With 0 IRE, 8-Bit Output) . . . . . . . . . . . . . . . . . . . . . . . . .

2±36

2±15

Composite Video Output (With 7.5 IRE, 8-Bit Output) . . . . . . . . . . . . . . . . . . . . . . .

2±36

2±16

Split Shift Register Transfer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±37

3±1

MPU Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3±11

3±2

Video Input/Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3±12

3±3

SFLAG Timing (When SSRT Function is Enabled) . . . . . . . . . . . . . . . . . . . . . . . . . .

3±13

v

List of Tables

Table

Title

Page

2±1

Direct Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 2±1

2±2

Indirect Register Map (Extended Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 2±2

2±3

Allocation of Palette-Page Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 2±5

2±4

Input-Clock-Selection Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 2±7

2±5

Output-Clock-Selection Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 2±6

2±6

Multiplex Mode and Bus-Width Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±15

2±7

Pseudo-Color Mode Pixel-Latching Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±18

2±8

Direct-Color Mode Pixel-Latching Sequence (Little Endian) . . . . . . . . . . . . . . . . . .

2±19

2±9

Direct-Color Mode Pixel-Latching Sequence (Big Endian) . . . . . . . . . . . . . . . . . . .

2±20

2±10

True-Color Mode Pixel-Latching Sequence (Little Endian) . . . . . . . . . . . . . . . . . . .

2±21

2±11

True-Color Mode Pixel-Latching Sequence (Big Endian) . . . . . . . . . . . . . . . . . . . .

2±22

2±12

Two-Color 64 ×64 Cursor-RAM Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±24

2±13

Crosshair-Cursor Color Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±25

2±14

Cursor-Intersection Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±27

2±15

Windowing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±28

2±16

Zoom Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±32

2±17

Sense-Test Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±34

2±18

K1 and K2 Values Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±36

2±19

Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±38

2±20

General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±39

2±21

Cursor Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±40

2±22

Cursor Position X (LSB) and X (MSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±41

2±23

Sprite Origin X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±42

2±24

Window Start X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±43

2±25

Window Stop X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±44

2±26

Cursor-Color RGB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±45

2±27

Cursor RAM Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±46

2±28

Cursor RAM Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±46

2±29

Auxiliary-Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±47

2±30

Color-Key Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±48

2±31

Color-Key Low and High Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±49

2±32

Overscan-Color RGB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±50

2±33

CRC MSB and LSB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±51

2±34

CRC Control Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2±51

vi

1 Introduction

The TVP3010C and the TVP3010M palettes are commercial and military versions, respectively, of an advanced Video Interface Palette (VIP) from Texas Instruments implemented in the EPIC 0.8-micron CMOS process. Differences between the two versions are outlined in separate tables. In both versions, maximum flexibility is provided by the pixel multiplexing scheme. The scheme accommodates 64-, 32-, 16-, 8-, and 4-bit pixel buses without any circuit modification. This enables the system to be easily reconfigured for varying amounts of available video RAM. The device supports selection of littleor big-endian data format for the pixel-bus/frame-buffer interface. Data can be split into 1, 2, 4, or 8 bit-planes for pseudo-color mode or split into 12-, 16or 24-bit true-color and direct-color modes. For the 24-bit direct-color modes, an 8-bit overlay plane is available. The 16-bit direct-color and true-color modes can be configured to IBM XGA (5, 6, 5), TARGA (5, 5, 5, 1), or (6, 6, 4) as another existing format. An additional 12-bit mode (4, 4, 4, 4) is supported with 4 bits for each color and overlay. An on-chip, IBM XGA-compatible hardware cursor is incorporated so that further increases in graphics-system performance are possible. Both devices are software compatible with the INMOS IMSG176/8 and Brooktree Bt476/8 color palettes.

An internal-frequency doubler is incorporated, allowing convenient and cost-effective clock-source alternatives to be utilized. An auxiliary windowing function and a pixel-port select function are provided so that overlay or VGA graphics can be displayed on top of direct color inside or outside a specified auxiliary window. Color-keyed switching of direct color and overlay is also supported.

Clocking is provided through one of five TTL inputs, CLK0±CLK4, and is software selectable. Additionally, CLK1/CLK2 and CLK3/CLK4 can be selected as differential ECL clock sources. The video, shift-clock, and reference-clock outputs provide a software-selected divide ratio of the chosen clock input. The reference clock can optionally be provided as an output on CLK3, and a data-latch clock can optionally be input on CLK4.

The TVP3010C and the TVP3010M have three 256 8 color look-up tables with triple 8-bit video digital-to-analog converters (DACs) capable of directly driving a doubly-terminated 75-Ω line. The lookup tables are designed with a dual-ported RAM architecture that enables ultra-high speed operation. Sync generation is incorporated on the green output channel. Horizontal sync and vertical sync are fed through the device and optionally inverted to indicate screen resolution to the monitor. A palette-page register provides the additional bits of palette address when 1, 2, or 4 bit-planes are used. This allows the screen colors to be changed with only one microprocessor-interface unit (MPU) write cycle.

Each device features a separate VGA bus that allows data from the feature connector of most VGA-supported personal computers to be fed directly into the palette without the need for external data multiplexing. This allows a replacement graphics board to remain downwards compatible by utilizing the existing graphics circuitry often located on the motherboard.

Both the TVP3010 VIP and the TVP3010M VIP are highly system integrated. Either device can be connected to the serial port of a VRAM device without external buffer logic and each device can be connected to many graphics engines directly. The split shift register transfer function, which is supported by VRAM, is also supported by the TVP3010C and TVP3010M.

The system-integration concept is carried to manufacturing testing and field diagnosis levels. To support these testing and diagnostic levels, several highly-integrated test functions have been designed to enable simplified testing of the palette, the graphics board, and the graphics system.

EPIC is a trademark of Texas Instruments Incorporated.

XGA is a registered trademark of International Business Machines Corporation.

TARGA is a registered trademark of Truevision Incorporated.

INMOS is a trademark of INMOS International Limited.

Brooktree is a trademark of Brooktree Corporation.

1±1

The TVP3010C and TVP3010M are 32-bit devices and both are pin compatible with the TLC3407X VIP, allowing convenient performance upgrades when using devices in the TI Video Interface Palette family.

NOTE:

The TVP3010C and TVP3010M include circuits that are patented as well as circuit designs that have patents pending.

1±2

1.1Features (TVP3010C and TVP 3010M)

Second-Generation Video Interface Palette

Supports System Resolutions of:

±1600 × 1280 × 1, 2, 4, 8, 16 Bits/Pixel @ 60-Hz Refresh Rate

±1280 × 1024 × 1, 2, 4, 8, 16 Bits/Pixel @ 60-Hz and 72-Hz Refresh Rate

± 1024 × 768 × 1, 2, 4, 8, 16, 24 Bits/Pixel @ 60-Hz and 72-Hz Refresh Rate

±And Lower Resolutions

Direct-Color Modes:

±24-Bit/Pixel With 8-Bit Overlay

±16-Bit/Pixel (5, 6, 5) XGA Configuration

±16-Bit/Pixel (6, 6, 4) Configuration

±15-Bit/Pixel With 1-Bit Overlay (5, 5, 5, 1) TARGA Configuration

±12-Bit/Pixel With 4-Bit Overlay (4, 4, 4, 4)

True-Color Modes:

±24-Bit/Pixel With Gamma Correction

±16-Bit/Pixel (5, 6, 5) XGA Configuration With Gamma Correction

±16-Bit/Pixel (6, 6, 4) Configuration With Gamma Correction

±15-Bit/Pixel (5, 5, 5) TARGA Configuration With Gamma Correction

±12-Bit/Pixel (4, 4, 4) With Gamma Correction

RCLK/SCLK/LCLK Data Latching Mechanism to Allow Flexible Control of VRAM Timing

Direct Interfacing to Video RAM

Support for Split Shift Register Transfers

Supports 64-Bit-Wide Pixel Bus

On-Chip Hardware Cursor:

±64 × 64 × 2 Cursor (XGA Functionally Compatible)

±Full-Window Crosshair

±Dual-Cursor Mode

85-,110-,135-, and 170-MHz Versions

Supports Overscan for Creation of Custom Screen Borders

Versatile Pixel Bus Interface to Support Littleand Big-Endian Data Formats

Windowed-Overlay and VGA Capability

Color-Keyed Switching of Direct Color and Overlay

On-Chip Clock Selection

Internal Frequency Doubler

Triple 8-Bit D/A Converters

Analog Output Comparators

Triple 256 × 8 Color-Palette RAMs

RS-343A Compatible Outputs

Direct VGA Pass-Through Capability

Palette-Page Register

Horizontal Zooming Capability

Software Downward Compatible With IMSG176/8 and Bt476/8

Directly to Graphics Processors

EPIC 0.8-µm CMOS Process

1±3

1.2Functional Block Diagram

The following functional block diagram applies to both the TVP3010C and TVP3010M.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REF

 

 

 

 

 

 

 

 

24

 

 

 

 

 

 

 

Vref

 

FS ADJUST

 

 

 

 

 

 

 

8 ± 8 ± 8

 

12 - 24

 

 

 

 

1.235 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 ± 6 ± 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stuffing

 

 

 

Direct-Color

 

 

 

 

 

 

 

 

True-Color

16

 

 

 

 

 

 

 

 

 

 

 

 

5 ± 6 ± 5

 

 

 

 

 

 

 

 

 

 

32

32

 

Logic

 

 

Pipeline Delay

 

 

 

 

P(0 ± 31)

Input

Multiplexer

5 ± 5 ± 5

15

 

24

24

24

 

 

 

 

 

 

 

 

 

 

COMP

32

Latch

 

 

 

 

4 ± 4 ± 4

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 Pseudo-

 

 

 

 

 

 

8

 

256 ×8

 

 

 

 

 

 

 

 

Color

 

 

 

 

 

 

 

8

Red

8

 

 

 

 

 

 

 

MUX

2

 

 

 

 

 

 

8

RAM

 

DAC

IOR

 

 

 

 

 

Read

 

Page

 

 

 

 

 

 

 

 

 

1:1

4

 

 

 

 

 

 

256 ×8

 

 

8

 

 

 

 

 

8

Mask

8

Reg

8

 

 

 

 

 

 

 

 

 

 

2:1

8

 

8

 

Green

 

 

 

 

 

Input

 

 

 

 

 

 

 

 

8

8

 

 

 

VGA(0 ± 7)

 

 

4:1

 

 

 

 

 

 

 

RAM

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

8

Latch

8

 

8:1

 

 

 

 

 

 

 

 

 

256 ×8

 

 

 

 

 

 

 

 

16:1

 

 

 

 

 

 

 

8

 

Blue

8

 

 

 

 

 

 

 

32:1

 

 

 

 

 

 

 

8

8

RAM

Output

DAC

IOG

 

 

 

 

 

 

 

 

 

 

 

 

 

1 ×24

 

MUX

8

 

 

 

 

 

 

 

 

 

 

8

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64 ×64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cursor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

 

 

 

 

 

 

 

Frequency

 

 

 

 

Cursor

 

Color 0

 

 

 

 

 

 

 

 

 

 

Color-Key

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAM

 

1 ×24

 

 

 

 

 

 

 

 

 

 

Doubler

 

Switch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

Cursor

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control

 

Color 1

 

DAC

IOB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 ×24

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D(0 ± 7)

 

 

 

 

 

 

 

 

 

 

 

 

 

Overscan

24

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS(0 ± 2)

MPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Registers

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

Test Function

 

3

and

 

 

Clock Select

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD

Control

 

 

 

and

 

 

 

 

 

 

 

 

 

 

Sense Comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logic

 

 

 

Control

 

 

 

 

 

 

 

 

 

 

 

MUXOUT [SENSE]

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

Auxiliary Window

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Video-Signal

HSYNCOUT

 

 

 

 

 

2

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

Port Select

Control

VSYNCOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK0

CLK1/CLK2

SFLAG

CLK3 [LCLK]

CLK3 [RCLK] SCLK VCLK

8/6 [OVS]

RS3 [PSEL]

HSYNC

 

VSYNC

SYSBL

VGABL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1±4

1.3Terminal Assignments

84-PIN PLCC PACKAGE

P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28

P29 P30

P31 DV

GND SCLK

VCLK CLK0 CLK1 CLK2

 

 

DD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P17

 

11 10

9

 

8

 

7

 

6

 

5

 

4

 

3

 

2

 

1

 

84 83 82 81 80 79

78 77 76 75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P16

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

73

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P15

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P14

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P13

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P12

 

17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P11

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P10

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P9

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P8

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P7

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P6

 

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P5

 

24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3

 

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1

 

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0

 

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

55

 

 

 

RD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS0

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS1

RS2

RS3[PSEL]

D0

D1

D2

D3

D4

D5

D6

D7

GND DV HSYNCOUT VSYNCOUT IOR IOG

 

IOB ADJUSTFS COMP REF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

 

 

 

 

 

CLK3[RCLK]

CLK3[LCLK]

VGA7

VGA6

VGA5

VGA4

VGA3

VGA2

VGA1

VGA0

8/6[OVS]

MUXOUT [SENSE] SFLAG

VGABL

SYSBL

VSYNC

HSYNC

AVDD

GND

AVDD

GND

1±5

1.3Terminal Assignments (continued)

84-PIN GA PACKAGE (TOP VIEW)

12

RS0

 

D0

D1

D3

 

D5

D7

AVDD

HSYNC-

IOR

IOB

 

 

FS

 

 

REF

 

 

OUT

ADJUST

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS2

RS3

D2

 

D4

D6

 

VSYNC-

IOG

COMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

WR

 

GND

 

AVDD

 

 

DVDD

 

 

OUT

 

 

 

 

 

 

 

 

 

 

[PSEL]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0

 

 

RS1

 

 

 

 

 

 

 

GND

 

GND

 

 

 

 

 

 

10

 

 

RD

 

 

 

 

 

 

 

 

 

 

HSYNC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2

 

P1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

VSYNC

 

 

 

 

SYSBL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

P4

 

P3

 

 

 

 

 

 

 

 

 

 

 

 

SFLAG

 

 

 

 

 

 

 

 

 

 

 

 

VGABL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P6

 

P5

 

 

 

 

 

 

 

 

 

8/6

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUXOUT

 

 

 

 

 

 

 

 

 

 

 

 

 

[OVS]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[SENSE]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

P8

 

P7

 

 

 

 

 

 

 

 

 

 

VGA1

 

 

VGA0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

P9

P10

 

 

 

 

 

 

 

 

 

 

VGA3

 

 

VGA2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

P11

P12

 

 

(ESD symbol or alignment

 

 

 

 

VGA5

 

 

VGA4

 

 

 

 

 

 

 

 

 

 

dot on top)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

P13

P15

P17

 

 

 

 

 

 

 

CLK2

 

 

CLK3

 

 

 

 

VGA6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[LCLK]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

P14

P16

P19

P22

 

P24

P27

P29

P31

GND

CLK0

 

CLK1

 

 

VGA7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

P18

P20

P21

P23

 

P25

P26

P28

P30

AVDD

SCLK

 

VCLK

 

 

CLK3

 

 

 

 

[RCLK]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

B

C

D

 

E

F

G

H

J

K

 

 

L

 

 

M

1±6

1.4Ordering Information

TVP3010 XXX ± X ± XX

Pixel Clock Frequency Indicator Must contain three letters:

±85: 85-MHz pixel clock ±110: 110-MHz pixel clock ±135: 135-MHz pixel cock ±170: 170-MHz pixel clock

Military Extension M

Commercial Extension C

Package

Must contain two Letters:

FN: square plastic J-leaded chip carrier

GA: 84-pin (12 x 12) ceramic pin-grid array

1.5Terminal Functions (TVP3010C and TVP3010M)

 

 

 

TERMINAL

 

I/O

DESCRIPTION

 

NAME

NO. (FN)

NO. (GA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AVDD

55, 57

J1, L11, G12

 

Analog power. All AVDD terminals must be connected.

 

CLK0

77

K2

I

Dot clock 0 input. CLK0 can be selected to drive the dot

 

 

 

 

 

(TTL

clock at frequencies up to 140 MHz. When VGA mode is

 

 

 

 

 

compatible)

active, the default clock source is CLK0. The maximum

 

 

 

 

 

 

frequency in VGA mode is 85 MHz.

 

 

 

 

 

 

 

 

 

 

CLK1, CLK2

75, 76

L2, K3

I

Dual-mode dot clock input. These inputs are essentially

 

 

 

 

 

(TTL/ECL

ECL-compatible inputs, but two TTL clocks may be used

 

 

 

 

 

compatible)

on the CLK1 and CLK2 if so selected in the input clock

 

 

 

 

 

 

select register. These inputs may be selected as the dot

 

 

 

 

 

 

clock up to the device limit while in the ECL mode or up to

 

 

 

 

 

 

140 MHz in the TTL mode.

 

 

 

 

 

 

 

 

 

 

CLK3[RCLK]

74

M1

I/O

Dot clock 3 TTL input or reference clock output. When

 

 

 

 

 

 

configured as CLK3, this terminal is similar to CLK0 and

 

 

 

 

 

 

can be selected to drive the dot clock at frequencies up to

 

 

 

 

 

 

140 MHz. When configured as RCLK, this terminal outputs

 

 

 

 

 

 

the reference clock signal, which is similar to the SCLK

 

 

 

 

 

 

signal but not gated off during blanking. This signal can be

 

 

 

 

 

 

used for pixel-port timing reference or other system

 

 

 

 

 

 

synchronization. The terminal defaults to CLK3 after reset.

 

 

 

 

 

 

 

 

 

 

 

73

L3

I

Dot clock 4 TTL input or pixel-port latch clock.

 

 

 

CLK3[LCLK]

CLK3[LCLK]

 

 

 

 

 

 

can be configured to drive dot clock frequencies up to 140

 

 

 

 

 

 

MHz, or it can be configured as a latch-clock input to latch

 

 

 

 

 

 

pixel-port input data. It defaults to CLK4 after reset, and

 

 

 

 

 

 

LCLK is internally connected to RCLK to latch pixel-port

 

 

 

 

 

 

data.

 

 

 

 

 

 

 

COMP

52

K11

I

Compensation. COMP provides compensation for the

 

 

 

 

 

 

internal reference amplifier. A 0.1- F ceramic capacitor is

 

 

 

 

 

 

required between COMP and AVDD. The COMP capacitor

 

 

 

 

 

 

must be as close to the device as possible to avoid noise

 

 

 

 

 

 

pick up.

 

 

 

 

 

 

 

 

 

NOTE 1: All unused inputs should be tied to a logic level and not be allowed to float.

1±7

1.5Terminal Functions (TVP3010C and TVP3010M) Continued

 

 

 

TERMINAL

 

I/O

 

DESCRIPTION

 

NAME

NO. (FN)

NO. (GA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVDD

45, 81

M11

 

Digital power. All DVDD terminals must be connected

 

 

 

 

 

 

 

 

together.

 

 

 

 

 

 

 

 

 

 

 

 

D(0 ± 7)

36± 43

B12, C12,

I/O

MPU interface data bus. Data terminals are used to

 

 

 

 

 

 

D11, D12,

(TTL

transfer data in and out of the register map and

 

 

 

 

 

 

E11, E12,

compatible)

palette/overlay RAM.

 

 

 

 

 

 

F11, F12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FS ADJUST

51

L12

I

Full-scale adjustment. A resistor connected between

 

 

 

 

 

 

 

 

FS ADJUST and ground controls the full-scale range

 

 

 

 

 

 

 

 

of the DACs.

 

 

 

 

 

 

 

 

 

 

 

 

GND

44, 54,

J2, L10,

 

Ground. All GND terminals must be connected. The

 

 

 

 

 

56, 80

K10, G11

 

GNDs are connected internally.

 

 

 

 

 

 

 

 

 

 

 

 

HSYNCOUT

46

H12

O

Horizontal sync output after pipeline delay. For

 

 

 

 

 

 

 

(TTL

system mode the horizontal-sync output can be

 

 

 

 

 

 

 

compatible)

programmed, but for the VGA mode the output

 

 

 

 

 

 

 

 

carries the same polarity as the input.

 

 

 

 

 

 

 

 

 

 

 

 

IOR, IOG, IOB

48, 49, 50

J12, J11,

O

Analog current outputs. These outputs can drive a

 

 

 

 

 

 

K12

 

37.5-Ω load directly (doubly terminated 75-Ω line),

 

 

 

 

 

 

 

 

thus eliminating the requirement for any external

 

 

 

 

 

 

 

 

buffering.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63

M7

O

Multiplexer output control or DAC comparator output

 

MUXOUT

 

[SENSE]

 

 

 

 

 

 

 

 

(TTL

signal. When MUXOUT is configured as a multi-

 

 

 

 

 

 

 

compatible)

plexer output control, it is software programmable

 

 

 

 

 

 

 

 

through the configuration register. When the

 

 

 

 

 

 

 

 

multiplexer control register is set to VGA mode, this

 

 

 

 

 

 

 

 

output terminal and corresponding configuration

 

 

 

 

 

 

 

 

register bit are set low to indicate to external devices

 

 

 

 

 

 

 

 

that the VGA pass-through mode is being used.

 

 

 

 

 

 

 

 

Alternatively,

SENSE

can be configured as the DAC

 

 

 

 

 

 

 

 

comparator output. In this case, the SENSE is low

 

 

 

 

 

 

 

 

when one or more of the DAC output analog levels is

 

 

 

 

 

 

 

 

above the internal comparator reference of 350 mV

 

 

 

 

 

 

 

 

" 50 mV.

 

 

 

 

 

 

 

P(0 ± 31)

1 ± 29,

A10, B9, A9,

I

Pixel input port. The port can be used in various

 

 

 

 

 

82± 84

B8, A8, B7,

(TTL

modes as shown in the multiplexer control register.

 

 

 

 

 

 

A7, B6, A6,

compatible)

All the unused terminals need to be tied to GND.

 

 

 

 

 

 

A5, B5, A4,

 

 

 

 

 

 

 

 

 

 

B4, A3, A2,

 

 

 

 

 

 

 

 

 

 

B3, B2, C3,

 

 

 

 

 

 

 

 

 

 

A1, C2, B1,

 

 

 

 

 

 

 

 

 

 

C1, D2, D1,

 

 

 

 

 

 

 

 

 

 

E2, E1, F1,

 

 

 

 

 

 

 

 

 

 

F2, G1, G2,

 

 

 

 

 

 

 

 

 

 

H1, H2

 

 

 

 

NOTE 1: All unused inputs should be tied to a logic level and not be allowed to float.

1±8

1.5Terminal Functions (TVP3010C and TVP3010M) Continued

 

 

 

 

 

 

TERMINAL

 

I/O

 

 

DESCRIPTION

 

 

NAME

NO. (FN)

NO. (GA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REF

53

M12

 

Voltage reference for DACs. An internal voltage reference

 

 

 

 

 

 

 

 

 

of nominally 1.235 V is provided, which requires an

 

 

 

 

 

 

 

 

 

external 0.1- F ceramic capacitor between REF and

 

 

 

 

 

 

 

 

 

analog GND. However, the internal reference voltage can

 

 

 

 

 

 

 

 

 

be overdriven by an externally supplied reference voltage.

 

 

 

 

 

 

 

 

 

A typical connection is shown in Appendix A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

B10

I

Read strobe inputs When cleared to 0,

 

initiates a

 

RD

 

 

 

 

RD

 

 

 

 

 

 

 

 

(TTL

read from the register map. Reads are performed

 

 

 

 

 

 

 

 

compatible)

asynchronously and are initiated on the low-going edge of

 

 

 

 

 

 

 

 

 

RD (see Figure 3±1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS(0 ± 2)

32± 34

A12, C10,

I

Register-select inputs. The RS terminals specify the

 

 

 

 

 

 

 

B11

(TTL

location in the register map that is to be accessed (see

 

 

 

 

 

 

 

 

compatible)

Table 2±1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS3 [PSEL]

35

C11

I

Register-select input or port-select input. When configured

 

 

 

 

 

 

 

 

(TTL

as the RS3 input, this terminal has no effect. When

 

 

 

 

 

 

 

 

compatible)

configured as the port-select input, RS3 [PSEL] allows the

 

 

 

 

 

 

 

 

 

creation of VGA or overlay windows in a direct-color

 

 

 

 

 

 

 

 

 

background on a pixel-by-pixel basis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCLK

79

K1

O

Shift clock output. SCLK is selected as a division of the dot

 

 

 

 

 

 

 

 

(TTL

clock input. The output signals are gated off during

 

 

 

 

 

 

 

 

compatible)

blanking, although SCLK is still used internally to

 

 

 

 

 

 

 

 

 

synchronize with the activation of Blank.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SFLAG

62

M8

I

Split shift register transfer flag. The TVP3010 detects a

 

 

 

 

 

 

 

 

(TTL

low-to-high transition on SFLAG during a blanking

 

 

 

 

 

 

 

 

compatible)

sequence and immediately generates an SCLK pulse. This

 

 

 

 

 

 

 

 

 

early SCLK pulse replaces the first SCLK pulse in the

 

 

 

 

 

 

 

 

 

normal sequence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

M9

I

System blank input.

 

 

is active (low).

 

SYSBL

 

 

 

SYSBL

 

 

 

 

 

 

 

 

(TTL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compatible)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58, 59

M10, L9

I

Horizontal and vertical sync inputs. These signals

 

HSYNC

,

 

VSYNC

 

 

(TTL

generate the sync level on the green current output. They

 

 

 

 

 

 

 

 

compatible)

are active (low) inputs, but the HSYNCOUT and

 

 

 

 

 

 

 

 

 

VSYNCOUT outputs can be programmed through the

 

 

 

 

 

 

 

 

 

general control register.

 

 

 

 

 

 

 

 

 

 

VCLK

78

L1

O

Video clock output. VCLK is the user-programmable

 

 

 

 

 

 

 

 

(TTL

output for synchronization to the graphics processor.

 

 

 

 

 

 

 

 

compatible)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61

L8

I

VGA blank input.

 

 

is active (low).

 

VGABL

 

VGABL

 

 

 

 

 

 

 

 

(TTL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

capability)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGA(0 ± 7)

65± 72

M6, L6, M5,

I

VGA pass-through bus. These buses can be selected as

 

 

 

 

 

 

 

L5, M4, L4,

(TTL

the pixel bus for VGA mode, but it does not allow for any

 

 

 

 

 

 

 

M3, M2

capability)

multiplexing.

NOTE 1: All unused inputs should be tied to a logic level and not be allowed to float.

1±9

1.5Terminal Functions (TVP3010C and TVP3010M) Continued

 

 

 

 

 

TERMINAL

 

I/O

DESCRIPTION

 

 

 

 

NAME

NO. (FN)

NO. (GA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSYNCOUT

47

H11

O

Vertical sync output after pipeline delay. For system

 

 

 

 

 

 

 

(TTL

mode, the output can be programmed, but for the

 

 

 

 

 

 

 

capability)

VGA mode the output carries the same polarity as

 

 

 

 

 

 

 

 

the input.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

A11

I

Write strobe input. A low on

 

initiates a write to the

 

WR

 

WR

 

 

 

 

 

 

 

(TTL

register map. As with RD, write transfers are

 

 

 

 

 

 

 

capability)

asynchronous and initiated on the low-going edge of

 

 

 

 

 

 

 

 

WR, (see Figure 3±1).

 

 

 

 

 

 

 

 

 

8/6

[OVS]

64

L7

I

DAC resolution selection or overscan input. The 8/6

 

 

 

 

 

 

 

(TTL

terminal selects the data-bus width (8 or 6 bits) for

 

 

 

 

 

 

 

capability)

the DAC and is essentially provided in order to

 

 

 

 

 

 

 

 

maintain compatibility with the IMSG176. When 8/6

 

 

 

 

 

 

 

 

[OVS] is high, 8-bit bus transfers are used with D7

 

 

 

 

 

 

 

 

the MSB and D0 the LSB. For 6-bit bus operation,

 

 

 

 

 

 

 

 

while the color palette still has the 8-bit information,

 

 

 

 

 

 

 

 

D5 shifts to the bit 7 position with D0 shifted to the bit

 

 

 

 

 

 

 

 

2 position and the 2 LSBs are filled with zeros at the

 

 

 

 

 

 

 

 

output multiplexer to DAC. The palette-holding

 

 

 

 

 

 

 

 

register zeroes the two MSBs when it is read in the

 

 

 

 

 

 

 

 

6-bit mode. The terminal can also be configured to

 

 

 

 

 

 

 

 

function as the overscan input facilitating the

 

 

 

 

 

 

 

 

creation of custom screen borders. This terminal

 

 

 

 

 

 

 

 

defaults to 8/6 after reset.

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE 1: All unused inputs should be tied to a logic level and not be allowed to float.

1±10

2 Detailed Description

The TVP3010C and TVP3010M VIPs are identical in their operation. Both the TVP3010C and TVP3010M are 32-bit devices; both devices are terminal compatible with the TLC34076 and each device offers advanced features. To facilitate the enhanced functionality, some terminals have dual functions. The dual-function terminals are controlled by the configuration register discussed in subsection 2.16.1. At reset, all pins default to the TLC34076 terminal functions.

2.1MPU Interface

The microprocessor unit (MPU) interface is controlled using read and write strobes (RD, WR), three register-select terminals [RS(0±2)], and the 8/6-select terminal. The 8/6 pin selects between an 8- or 6-bit-wide data path to the color-palette RAM and is provided in order to maintain compatibility with the IMSG176. Since the 8/6 [OVS] pin is a dual-function pin, 2 bits are provided in the configuration register to control this function. Configuration-register bit 1 determines whether the 8/6 [OVS] pin operates as 8/6 or OVS. If configuration register bit 1 is cleared to 0 (default), then 8/6 operation is controlled by the pin. With 8/6 held low, data on the lowest 6 bits of the data bus are internally shifted up by 2 bits to occupy the upper 6 bits at the output multiplexer and the bottom 2 bits are then cleared to 0. This operation is carried out in order to utilize the maximum range of the DACs.

The direct register map is shown in Table 2±1. Extended registers can be accessed through the index register. The index register map is shown in Table 2±2. In general, the index register must first be loaded with the target address value. Successive reads or writes from and to the data register then access the target location. The MPU interface operates asynchronously, with data transfers being synchronized by internal logic.

NOTE:

RS3 is a do not care for register addressing but is used as the PSEL input (see Section 2.6).

Table 2±1. Direct Register Map

RS2

RS1

RS0

REGISTER ADDRESSED BY MPU

R / W

DEFAULT (HEX)

 

 

 

 

 

 

0

0

0

Palette Address Register ± Write Mode

R / W

XX

 

 

 

 

 

 

0

0

1

Color Palette Holding Register

R / W

XX

 

 

 

 

 

 

0

1

0

Pixel Read Mask

R / W

FF

 

 

 

 

 

 

0

1

1

Palette Address Register ± Read Mode

R / W

XX

 

 

 

 

 

 

1

0

0

Reserved

 

XX

 

 

 

 

 

 

1

0

1

Reserved

 

XX

 

 

 

 

 

 

1

1

0

Index Register

R / W

XX

 

 

 

 

 

 

1

1

1

Data Register

R / W

XX

 

 

 

 

 

 

2±1

Table 2±2. Indirect Register Map (Extended Registers)

INDEX REGISTER

R / W

DEFAULT

REGISTER ADDRESSED

(HEX)

(HEX)

BY INDEX REGISTER

 

 

 

 

 

00

R / W

00

Cursor Position X LSB

 

 

 

 

01

R / W

00

Cursor Position X MSB

 

 

 

 

02

R / W

00

Cursor Position Y LSB

 

 

 

 

03

R / W

00

Cursor Position Y MSB

 

 

 

 

04

R / W

1F

Sprite Origin X

 

 

 

 

05

R / W

1F

Sprite Origin Y

 

 

 

 

06

R / W

00

Cursor Control Register

 

 

 

 

07

 

 

Reserved

 

 

 

 

08

W

XX

Cursor RAM Address LSB

 

 

 

 

09

W

XX

Cursor RAM Address MSB

 

 

 

 

0A

R / W

XX

Cursor RAM Data

 

 

 

 

0B

 

 

Reserved

 

 

 

 

0C ± 0F

 

 

Reserved-Undefined

 

 

 

 

10

R / W

XX

Window Start X LSB

 

 

 

 

11

R / W

XX

Window Start X MSB

 

 

 

 

12

R / W

XX

Window Stop X LSB

 

 

 

 

13

R / W

XX

Window Stop X MSB

 

 

 

 

14

R / W

XX

Window Start Y LSB

 

 

 

 

15

R / W

XX

Window Start Y MSB

 

 

 

 

16

R / W

XX

Window Stop Y LSB

 

 

 

 

17

R / W

XX

Window Stop Y MSB

 

 

 

 

18

R / W

80

Multiplexer Control Register 1

 

 

 

 

19

R / W

98

Multiplexer Control Register 2

 

 

 

 

1A

R / W

00

Input-Clock Selection Register

 

 

 

 

1B

R / W

3E

Output-Clock Selection Register

 

 

 

 

1C

R / W

00

Palette Page Register

 

 

 

 

1D

R / W

20

General Control Register

 

 

 

 

1E

R / W

00

Configuration Register

 

 

 

 

1F

 

 

Reserved-Undefined

 

 

 

 

20

R / W

XX

Overscan Color Red

 

 

 

 

21

R / W

XX

Overscan Color Green

NOTE 1: Reserved registers should be avoided; otherwise, circuit behavior could deviate from that specified. Reserved-undefined registers are nonexistent locations on the register map.

2±2

Table 2±2. Indirect Register Map (Extended Registers) (Continued)

INDEX REGISTER

R / W

DEFAULT

REGISTER ADDRESSED

(HEX)

(HEX)

BY INDEX REGISTER

 

 

 

 

 

22

R / W

XX

Overscan Color Blue

 

 

 

 

23

R / W

XX

Cursor Color 0, Red

 

 

 

 

24

R / W

XX

Cursor Color 0, Green

 

 

 

 

25

R / W

XX

Cursor Color 0, Blue

 

 

 

 

26

R / W

XX

Cursor Color 1, Red

 

 

 

 

27

R / W

XX

Cursor Color 1, Green

 

 

 

 

28

R / W

XX

Cursor Color 1, Blue

 

 

 

 

29

R / W

09

Auxiliary-Control Register

 

 

 

 

2A

 

 

Reserved

 

 

 

 

2B

 

 

Reserved

 

 

 

 

2C

 

 

Reserved

 

 

 

 

2D

 

 

Reserved

 

 

 

 

2E

 

 

Reserved

 

 

 

 

2F

 

 

Reserved

 

 

 

 

30

R / W

XX

Color-Key OL/VGA Low

 

 

 

 

31

R / W

XX

Color-Key OL/VGA High

 

 

 

 

32

R / W

XX

Color-Key Red Low

 

 

 

 

33

R / W

XX

Color-Key Red High

 

 

 

 

34

R / W

XX

Color-Key Green Low

 

 

 

 

35

R / W

XX

Color-Key Green High

 

 

 

 

36

R / W

XX

Color-Key Blue Low

 

 

 

 

37

R / W

XX

Color-Key Blue High

 

 

 

 

38

R / W

10

Color-Key Control Register

 

 

 

 

39

 

 

Reserved-Undefined

 

 

 

 

3A

R / W

00

Sense-Test Register

 

 

 

 

3B

R

XX

Test-Data Register

 

 

 

 

3C

R

XX

CRC LSB

 

 

 

 

3D

R

XX

CRC MSB

 

 

 

 

3E

W

XX

CRC Control Register

 

 

 

 

3F

R

10

ID Register

 

 

 

 

FF

W

XX

Reset Register

 

 

 

 

NOTE 1: Reserved registers should be avoided; otherwise, circuit behavior could deviate from that specified. Reserved-undefined registers are nonexistent locations on the register map.

2±3

2.2Color Palette

The color palette is addressed by an internal 8-bit address register for reading/writing data from/to the RAM. This register is automatically incremented following a RAM transfer, allowing the entire palette to be read/written with only one access of the address register. When the address register increments beyond the last location in RAM, it is reset to the first location (address 0). All read and write accesses to the RAM are asynchronous to SCLK, VCLK, and dot clock but performed within one dot clock. Therefore, they do not cause any noticeable disturbance on the display.

The color RAM is 24 bits wide for each location and 8 bits wide for each color. Since the MPU access is 8 bits wide, the color data stored in the palette is 8 bits even when the 6-bit mode is chosen (8/6 = 0). If the 6-bit mode is chosen, the 2 MSBs of color data in the palette have the values previously written. However, if they are read back in the 6-bit mode, the 2 MSBs are 0s to be compatible with IMSG176 and Bt176. The output multiplexer shifts the six LSB to the six MSB positions and fills the 2 LSBs with 0s after the color palette. The multiplexer then feeds the data to the DAC. The test register and the CRC calculation both take data after the output multiplexer, enabling total system verification. The color-palette access is described in the following two sections, and it is fully compatible with IMSG176/8 and Bt476/8.

2.2.1Writing to Color-Palette RAM

To load the color palette, the MPU must first write to the address register (write mode) with the address where the modification is to start. This is then followed by three successive writes to the palette-holding register with 8 bits of red, green, and blue data. After the blue write cycle, the three bytes of color data are concatenated into a 24-bit word that is then written to the RAM location specified by the address register. The address register then increments to the next location, which the MPU may modify by simply writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous red, green, and blue write cycles until the entire block has been written.

2.2.2Reading From Color-Palette RAM

Reading from the palette is performed by writing to the address register (read mode) with the location to be read. This then initiates a transfer from the palette RAM into the holding register, followed by an increment of the address register. Three successive MPU reads from the holding register produce red, green, and blue color data (6 or 8 bits depending on the 8/6 mode) for the specified location. Following the blue read-cycle, the contents of the color-palette RAM at the address specified by the address register are copied into the holding register and the address register is again incremented. As with writing to the palette, a block of color values in consecutive locations may be read by writing the start address and performing continuous red, green, and blue read-cycles until the entire block has been read. Since the color-palette RAM is dual ported, the RAM may be read during active display without disturbing the video.

2.2.3Palette Page Register

The palette page register appears as an 8-bit register on the extended register map (see Section 2.1). Its purpose is to provide high-speed color changing by removing the need for palette reloading. When using 1, 2, or 4 bit-planes, the additional planes are provided from the page register. When using four bit-planes, the pixel inputs specify the lower 4 bits of the palette address with the upper 4 bits specified from the page register. This gives the user the capability of selecting from 16 palette pages with only one-chip access, thus allowing all the screen colors to be changed at the line frequency. A bit-to-bit correspondence is used; therefore, in the above configuration, page-register bits 7 through 4 map onto palette-address bits 7 through 4, respectively. This is illustrated in Table 2±3.

2±4

NOTE:

The additional bits from the page register are inserted after the read mask.

The palette page register specifies the additional bit-planes for the overlay field in direct-color modes with less than 8 bits per pixel overlay.

Table 2±3. Allocation of Palette Page Register Bits

NUMBER OF BIT PLANES

MSB

 

PALETTE-ADDRESS BITS

 

LSB

 

 

 

 

 

 

 

 

 

 

8

M²

M

 

M

M

M

M

M

M

4

P7³

P6

 

P5

P4

M

M

M

M

2

P7

P6

 

P5

P4

P3

P2

M

M

 

 

 

 

 

 

 

 

 

 

1

P7

P6

 

P5

P4

P3

P2

P1

M

² M = bit from pixel port

³Pn = n bit from page register

2.2.4Read Masking

The read-mask register is an 8-bit register used to enable or disable a bit-plane from addressing the color-palette RAM in the pseudo-color modes. Each palette address bit is logically ANDed with the corresponding bit from the read mask register before going to the palette page register and addressing the palette RAM.

In order to provide maximum flexibility to control palette data, the read mask operation is performed before the addition of the page register bits. Therefore, care must be taken in those modes that have less than 8 bits per pixel of pseudo-color or overlay data. Be aware of the palette page register settings in these modes.

2.3Clock Selection and Output-Clock (SCLK, RCLK, and VCLK) Generation

The TVP3010C and the TVP3010M VIP provide a maximum of five clock inputs. CLK0 is dedicated as a TTL input. The other four clock inputs can be selected as either two differential ECL input or two extra TTL inputs. The TTL inputs can be used for video rates up to 140 MHz. The dual-mode clock input (ECL/TTL) is primarily an ECL input but can be used as TTL-compatible inputs if the input-clock selection register is so programmed. The clock source used at power up is CLK0; an alternative source can be selected by software during normal operation. This chosen clock input can be used unmodified as the dot clock (representing pixel rate to the monitor). Alternatively, when the input-clock selection register is programmed to use the internal frequency-doubler, the chosen clock source is used as a reference for multiplication. Each device also allows for user programming of RCLK, SCLK and VCLK outputs (reference, shift and video clocks) by using the output-clock selection register. The input-clock and output-clock selection registers are located in the indirect register map (see Table 2±2).

The ECL inputs can be used as differential or single-ended inputs. When CLK1 or CLK3 is used as a single-ended ECL input, CLK2 or CLK4 needs to be externally terminated to set the input common-mode signal level. This can be done with a simple resistor divider, as is the case with fully differential ECL. Care needs to be taken when choosing the resistor values to ensure that the dc level on CLK2 or CLK4 is in the middle of the CLK1 or CLK3 ECL-input signal range.

2.3.1RCLK, SCLK, VCLK

Both VIP devices provide a user-programmable reference clock (RCLK), a shift clock (SCLK), and video (VCLK) clock outputs that can be set as divisions of the dot clock. RCLK is a continuously-running reference clock and is not disabled during the Blank signal. RCLK can be selected as divisions of 1, 2, 4, 8, 16, 32 or 64 of the

2±5

dot clock (see Table 2±4). It is provided as a clock reference and is typically connected back to the LCLK input to latch pixel-port data. Since pixel-port data is latched on the rising edge of LCLK, the RCLK frequency must be set as a function of the desired multiplexing ratio (that depends on the pixel-bus width and number of bit-planes, see Section 2.4).

Table 2±4. Output-Clock Selection Register Format

 

OUTPUT-CLOCK SELECTION-REGISTER BITS (see Note 2)

FUNCTION (see Notes 2, 3, 4, and 5)

 

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

0

x

x

x

VCLK /1 output ratio

 

 

 

 

 

 

 

 

 

 

 

 

0

 

0

1

x

x

x

VCLK /2 output ratio

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1

0

x

x

x

VCLK /4 output ration

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1

1

x

x

x

VCLK /8 output ratio

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

0

x

x

x

VCLK /16 output ratio

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

1

x

x

x

VCLK /32 output ratio

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

0

x

x

x

VCLK /64 output ratio

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

1

x

x

x

VCLK output held at logic 1²

 

 

x

 

x

x

0

0

0

RCLK /1 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

x

0

0

1

RCLK /2 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

x

0

1

0

RCLK /4 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

x

0

1

1

RCLK /8 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

x

1

0

0

RCLK /16 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

x

1

0

1

RCLK /32 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

 

x

 

x

x

1

1

0

RCLK /64 output ratio (see Notes 2 and 5)

 

 

 

 

 

 

 

 

 

 

 

0

x

 

x

x

1

1

0

RCLK /64, SCLK output held at logic 0²

 

0

x

 

x

x

1

1

1

RCLK, SCLK outputs held at logic 0

 

 

 

 

 

 

 

 

 

 

 

x

1

 

1

1

1

1

1

Clock counter reset (6)

 

² These lines indicate the reset conditions as required for VGA pass-through.

 

NOTES:

2. Register bit 6 enables (1) and disables (default = 0) the SCLK output buffer. Register bit 7 is a don't

 

 

 

care bit.

 

 

 

 

 

3.When the clocks are selected from one mode to the other, a minimum of 30 ns is needed before the new clocks are stabilized and running.

4.When the output-clock-selection register is written with 3F (hex), the clock counter is reset,

RCLK = SCLK = 0, and VCLK = 1.

5.SCLK is the same as RCLK except that it is disabled during blank. When the RCLK divide ratio is chosen, this sets the SCLK ratio as well.

SCLK is the same as RCLK but disabled during the Blank active period. SCLK is designed to be used as the shift clock to interface directly with the VRAM. If SCLK is not used, the output can be switched off and held low to protect against VRAM lockup due to invalid SCLK frequencies. The detailed SCLK control timing is discussed in subsection 2.3.2.

VCLK is designed to be used as the timing reference by the graphics processor or other custom-designed control logic to generate the graphics system control signals (SYSBL, HSYNC, and VSYNC). VCLK can be selected as divisions of 1, 2, 4, 8, 16, 32, or 64 of the dot clock and can also be held at high (see Table 2±4). The default setup is VCLK held at high since it is not used in VGA pass-through mode. Since these control signals are sampled by VCLK, VCLK must be enabled for these to function properly.

Even though RCLK/SCLK and VCLK can be selected independently, there is still a relationship between the two as discussed below. Many system considerations have been carefully covered in their design, leaving maximum freedom to the user.

2±6

Internally, RCLK, SCLK, and VCLK are generated from a common clock counter that is counted at the rising edge of the dot clock. Therefore, when VCLK is enabled, it is naturally in phase with RCLK and SCLK as shown in Figure 2±1.

Normally, the video-control signal inputs HSYNC, VSYNC, and SYSBL are latched on the falling edge of VCLK when in a non-VGA mode. When the configuration register is programmed for opposite VCLK polarity, these video-control signals are latched on the rising edge of VCLK.

The internal clock counter is initialized any time the output-clock selection register is written with 3F (hex). This provides a simple mechanism to synchronize multiple palettes or system devices by providing a known phase relationship for the various system clocks. It is left up to the user to provide some means of disabling the dot-clock input to the part while this reset is occurring if multiple parts are to be synchronized.

The reset default divide ratio for RCLK is 64:1 with SCLK held low and VCLK held at high. When choosing certain video timing parameters, exercise caution if the selected RCLK frequency is less than the selected VCLK frequency (see Appendix B for a more detailed discussion).

Dot Clock

VCLK (dot clock/4 as an example)

RCLK = SCLK (dot clock/2 as an example)

Figure 2±1. Dot Clock / VCLK / RCLK / SCLK Relationship

The input-clock-selection register selects the desired input-clock source. Table 2±5 details how to program the various options.

Table 2±5. Input-Clock Selection Register

INPUT-CLOCK-SELECT REGISTER

FUNCTION (see Note 7)

(HEX) (see Note 6)

 

 

 

00

Select CLK0 as TTL-clock source²

01

Select CLK1 as TTL-clock source

 

 

02

Select CLK2 as TTL-clock source

 

 

03

Select CLK3 as TTL-clock source

 

 

04

Select CLK4 as TTL-clock source

 

 

06

Select CLK3/CLK4 as ECL-clock source up to 140 MHz

 

 

07

Select CLK1/CLK2 as ECL-clock source up to device limit

 

 

10

Select CLK0 as doubled TTL-clock source

 

 

11

Select CLK1 as doubled TTL-clock source

 

 

12

Select CLK2 as doubled TTL-clock source

 

 

13

Select CLK3 as doubled TTL-clock source

 

 

14

Select CLK4 as doubled TTL-clock source

 

 

16

Select CLK3/CLK4 as doubled ECL-clock source

 

 

17

Select CLK1/CLK2 as doubled ECL-clock source

² CLK0 is chosen at reset as required for VGA pass-through. NOTES: 6. Register bits 3 and 7 are don't-care bits.

7.Register bits 5 and 6 are reserved.

8.When the clocks are selected from one input clock source to another, a minimum of 30 ns is needed before the new clocks are stabilized and running.

2±7

The output-clock-selection register is used to program the desired divided-down frequencies for the reference/shift and video clocks.

2.3.2Frame-Buffer Clocking: Self-Clocked or Externally Clocked

The TVP3010C and the TVP3010M have two pixel-data latching modes, allowing for flexibility in the frame-buffer interface timing. For the pixel port P(0±31), data is always latched on the rising edge of LCLK. If auxiliary-control register (ACR) bit 3 is set to 1 (default), the internal circuitry is configured for self-clocked mode. In this mode, the RCLK or SCLK output of the palette must be used as the timing reference to present data to the pixel port P(0±31). In self-clocked mode, RCLK can be directly tied back to LCLK or LCLK can be a delayed version of RCLK within the timing requirements of the VIP. The self-clocked mode of frame-buffer latching is similar to the operation of the TLC3407X video-interface palette devices.

The VIP internal Blank signal is generated from either VGABL or SYSBL, depending on whether the VGA port is enabled (multiplexer control register 2 (MCR2) bit 7 = 1) or disabled (MCR2 bit 7 = 0). The rising edge of CLK0 latches VGABL when the VGA port is enabled. The falling edge of VCLK is used to sample and latch the SYSBL input when the VGA port is disabled. When the internal Blank signal becomes active, SCLK is disabled as soon as possible. For example, if SCLK is high when the sampled SYSBL goes low, SCLK is allowed to complete the clock cycle and return to the low state. SCLK then is held low until the sampled SYSBL signal goes back high. At this time, SCLK is enabled to clock the first pixel data valid from VRAM. The VIP video-blanking circuitry is designed with sufficient pipeline delay to allow the internal sampled SYSBL and VGABL signals to align with the pipelined RGB data to the video DACs. The logic described previously works in situations where the SCLK period is shorter than, equal to, or longer than the VCLK period.

When in the self-clocked mode, the SCLK control timing is designed to interface directly with the external VRAM. The shift register in the system VRAM is supposed to be updated during the blank active period. When the SYSBL input is sampled high by the falling edge of VCLK, the VRAM shift clock (SCLK) is restarted to clock the VRAM and enable the first group of pixel data to appear on the pixel bus as well as at the TVP3010 pixel input port. The second SCLK causes the VRAM shift register to shift out the second group of data. At the same time, LCLK latches the first group of pixel data into the VIP (see Figure 2±2 for a detailed timing-diagram).

VCLK

In Phase

SYSBL

at Input Terminal

Latch Last Group

of Pixel Data

LD

Internal Delayed

LCLK = RCLK

Blank (internal signal before dot-clock pipeline delay)

Latch First Group of Pixel Data Latch Last Group of Pixel Data

1st

2nd

3rd

4th

5th

Group Group

Group Group Group

Pixel Data

Last Group of Pixel Data

6th

at Input Terminal

Group

 

SCLK

Figure 2±2. SCLK / VCLK Control Timing

(SSRT Disabled, RCLK / SCLK Frequency = VCLK Frequency)

The RCLK/SCLK phase relationship is designed so that timing specifications are satisfied for the case where SCLK is driving a typical 2-MB VRAM load and RCLK is connected to LCLK. If an external buffer is

2±8

required on SCLK so that it can drive a larger load, a similar buffer can be placed on RCLK to match the signal delay before connecting to LCLK. However, the delay from LCLK to RCLK cannot exceed one RCLK period ±7 ns, (see the timing-parameter specifications for more details).

When the VRAM split shift register operation is performed (see Figure 2±3 and Figure 2±4), the SCLK timing is adjusted to work with the SFLAG input. Basically, the split shift register operation inserts an SCLK during the blank period. This causes the first group of pixel data to appear at the pixel port during blank and allows the first group of data to be displayed as soon as the palette comes out of blank. Figures 2±3 and 2±5 show the case when the SSRT (split shift register transfer) function is enabled. When a rising edge occurs on the SFLAG input, one SCLK with a minimum 15-ns pulse duration is generated after the specified delay. Since this is designed to meet VRAM timing requirements, the SSRT-generated SCLK replaces the first SCLK in the regular shift register transfer case as described above (see Section 2.15 for a detailed explanation of the SSRT function).

VCLK

In Phase

SYSBL

at Input Terminal

SFLAG Input

 

 

 

 

 

 

 

 

Latch Last Group

 

Latch First Group of Pixel Data Latch Last Group

 

of Pixel Data

 

LD

 

 

 

 

 

 

of Pixel Data

Internal Delayed

 

 

 

 

 

 

 

LCLK = RCLK

 

 

 

 

 

 

 

Blank

 

 

 

 

 

 

 

(internal signal

 

 

 

 

 

 

 

before dot-clock

 

 

 

 

 

 

 

pipeline delay)

 

 

 

 

 

 

 

Pixel Data

Last

1st Group of

2nd

3rd

4th

5th

6th

at Input Terminal

Group

Pixel Data

Group

Group

Group

Group

Group

SCLK Between Split Shift-Register and Regular Shift-Register Transfer

SCLK

Figure 2±3. SCLK/VCLK Control Timing

(SSRT Enabled, RCLK/SCLK Frequency = VCLK Frequency)

2±9

Texas Instruments TVP3010-135MGAB, TVP3010-135MGA, TVP3010-135FN, TVP3010-110FN, TVP3010-85FNR Datasheet

VCLK

In Phase

SYSBL

at Input Terminal

Latch Last Group

of Pixel Data

LD

Internal Delayed LCLK = RCLK

Latch first Group of Pixel Data

Blank (internal signal before dot-clock pipeline delay)

Pixel Data

Last Group of Pixel Data

1st

2nd

3rd

4th

5th

6th

7th

at Input Terminal

Group

Group

Group

Group

Group

Group

Group

 

SCLK

Figure 2±4. SCLK/VCLK Control Timing

(SSRT Disabled, RCLK/SCLK Frequency = 4 x VCLK Frequency)

VCLK

In Phase

SYSBL

at Input Terminal

SFLAG Input

 

Latch Last Group

Latch Second Group

LD

of Pixel Data

of Pixel Data

 

 

Internal Delayed

 

 

LCLK = RCLK

 

 

Blank

 

Latch First Group of Pixel Data

 

 

(internal signal

 

 

before dot-clock

 

 

pipeline delay)

 

 

Pixel Data

at Input Terminal

SCLK

Last

First Group of Pixel Data

2nd

3rd

4th

5th

6th

7th

Group

Group

Group

Group

Group

Group

Group

 

SCLK Between Split Shift-Register Transfer and Regular Shift-Register Transfer

Figure 2±5. SCLK/VCLK Control Timing

(SSRT Enabled, RCLK/SCLK Frequency = 4 x VCLK Frequency)

2±10

Externally clocked timing can be chosen for the pixel bus P(10±31) by clearing auxiliary control register bit 3 to 0. In externally clocked mode, the RCLK or SCLK output of the palette is not used as the timing reference to present data to the pixel bus. Instead, pixel data is presented to the palette with a synchronous clock and all palette timing is referenced to this clock. In this mode, the external clock should be connected to LCLK and the selected clock input. (When the VGA port is enabled, the CLK0 input is selected independent of the input-clock selection register.)

The externally clocked frame-buffer interface mode is intended for applications where windowed or pixel-by-pixel switching between the VGA port and the pixel port is desired in non-VRAM-based graphics systems. In such applications, the VGA port is enabled (multiplexer control register bit 7 set to 1) and the appropriate direct-color mode is set in the multiplexer control register. The auxiliary-window, port-select, and/or color-key switching functions are then configured and enabled to perform the desired switching. By setting the frame-buffer interface to the externally clocked mode, the pixel port and VGA port timing and pipeline delay are made the same. Also, since the VGA port is enabled, all video-control signal timing is referenced to CLK0, utilizing the VGABL, HSYNC, and VSYNC inputs.

The externally clocked frame-buffer interface timing can also be used in non-VGA switching applications, utilizing only the pixel port or only the VGA port. In either case, it is recommended that VGA video-control signals be used (i.e., VGABL, HSYNC, VSYNC). In this way, all pixel data and video-control signals are referenced to CLK0 and video blank and sync are aligned with pixel data.

NOTE:

When the pixel port is used in externally clocked mode (ACR3 = 0), RCLK must be set to VCLK/1 (DOT/1) in the output-clock selection register and a 1:1 multiplexing mode must be selected in the multiplexer control registers (see Table 2±6). The external clock should be connected to the LCLK input as well as the selected clock input. When the VGA port is also enabled (MCRB7 = 1), CLK0 is selected as the input clock independent of the input-clock selection-register setting.

VGA switching can only be performed using a 1:1 multiplexing mode.

Overlay switching can only be performed using a 1:1 multiplexing mode when the pixel port is set for externally clocked mode. When the pixel port is self-clocked, any of the multiplex ratios may be used (see subsection 2.4.6).

When VGA switching is to be performed using externally clocked mode (ACR3 = 0), the full VGA port frequency of 85 MHz may be utilized provided that the VGA port and the pixel port are both synchronized to the CLK0 input clock.

If VGA switching is to be performed using self-clocked mode (ACR3 = 1), the maximum pixel rate cannot exceed 50 MHz. This is because of internal delay from the CLK0 input to the RCLK output. For external clocked timing, the LCLK input needs to be enabled on terminal 73 (TVP3010C) or terminal L3 (TVP3010M) by programming the configuration register bit 5 to 1.

VGA-data pipeline delay is adjusted within each VIP depending on whether selfor externally clocked frame-buffer interface timing is used (see subsection 2.3.2 ). If the VIP is programmed for self-clocked timing, three additional dot-clock pipeline delays are inserted into the internal VGA-data path and into the internal blanking signal. The additional pipeline delay accounts for the difference between VGABL or SYSBL and the pixel-data inputs P(0±31) when used in the selfand externally clocked modes. This is so the VGA and pixel-port data remain synchronous in time when doing auxiliary window, port select, or color-keyed switching (see Section 2.6). When externally clocked timing is used, the VGA port and the pixel port are already synchronous since both data and blanking are presented to the palette during the same CLK0 clock cycle.

2±11

Loading...
+ 63 hidden pages