Microchip Technology Inc PIC12C671-04-P, PIC12C671-04-SM, PIC12C672-04I-P, PIC12C672-04I-SM, PIC12C672-10-P Datasheet

...
0 (0)

M PIC12C67X

8-Pin, 8-Bit CMOS Microcontroller with A/D Converter

Devices included in this Data Sheet:

PIC12C671 and PIC12C672 are 8-bit microcontrollers with 8-bit A/D Converter packaged in 8-lead packages. They are based on the 14-bit PIC16/17 architecture.

High-Performance RISC CPU:

Only 35 single word instructions to learn

All instructions are single cycle (1 s) except for program branches which are two-cycle

Operating speed: DC - 10 MHz clock input

DC - 1 s instruction cycle

Device

EPROM

RAM

 

 

 

 

 

 

PIC12C671

1024 x 14

128 x 8

PIC12C672

2048 x 14

128 x 8

14-bit wide instructions

8-bit wide data path

Interrupt capability

Special function hardware registers

Eight-level deep hardware stack

Direct, indirect and relative addressing modes for data and instructions

Internal 4 MHz oscillator with programmable calibration

Selectable clockout

In-circuit serial programming

4-channel 8-bit analog-to-digital converter

Peripheral Features:

8-bit real time clock/counter (TMR0) with 8-bit programmable prescaler

Power-On Reset (POR)

Power-up Timer (PWRT) and Oscillator Start-up Timer (OSC)

Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation

Programmable code-protection

Power saving SLEEP mode

Interrupt on pin change (GP0, GP1, GP3)

Internal pull-ups on I/O pins (GP0, GP1, GP3)

Selectable oscillator options:

-INTRC: Precision internal 4 MHz oscillator

-EXTRC: External low-cost RC oscillator

-

XT:

Standard crystal/resonator

-

HS:

High speed crystal/resonator

-

LP:

Power saving, low frequency crystal

• Internal pull-up on MCLR pin

CMOS Technology:

Low power, high speed CMOS EPROM technology

Fully static design

Wide operating voltage range:

-Commercial: 2.5V to 5.5V

-Industrial: 2.5V to 5.5V

-Extended: 4.5V to 5.5V

Low power consumption

-< 2 mA @ 5V, 4 MHz

-15 A typical @ 3V, 32 KHz

-< 1 A typical standby current

Pin Diagram

PDIP, SOIC

VDD

1

PIC12C672

PIC12C671

8

VSS

GP5/OSC1/CLKIN

2

7

GP0/AN0

 

 

GP4/OSC2/AN3/

3

 

 

6

GP1/AN1/VREF

CLKOUT

 

 

4

 

 

5

 

GP3/MCLR/VPP

 

 

GP2/T0CKI/

 

 

 

 

 

AN2/INT

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 1

PIC12C67X

 

Table of Contents

 

1.0

General Description ............................................................................................................................................

3

2.0

PIC12C67X Device Varieties .............................................................................................................................

5

3.0

Architectural Overview .......................................................................................................................................

7

4.0

Memory Organization .......................................................................................................................................

11

5.0

I/O Ports ...........................................................................................................................................................

23

6.0

Timer0 Module .................................................................................................................................................

25

7.0

Analog - to - Digital Converter (A/D) Module ........................................................................................................

31

8.0

Special Features of the CPU ............................................................................................................................

39

9.0

Instruction Set Summary ..................................................................................................................................

55

10.0

Development Support .......................................................................................................................................

69

11.0

Electrical Characteristics for PIC12C67X ........................................................................................................

73

12.0

DC and AC Characteristics - PIC12C67X ........................................................................................................

89

13.0

Packaging Information ......................................................................................................................................

93

Appendix A: Compatibility .............................................................................................................................................

97

Index

............................................................................................................................................................................

101

PIC12C67X ..................................................................................................................Product Identification System

109

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

DS30561A-page 2

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

1.0GENERAL DESCRIPTION

The PIC12C67X device is a low-cost, high-perfor- mance, CMOS, fully-static, 8-bit microcontroller with integrated analog-to-digital (A/D) converter, in the PIC12CXXX Microcontroller family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC12C67X microcontrollers have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC12C67X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC12C67X devices have 128 bytes of RAM and 6 I/O pins. In addition a timer/counter is available. Also a 4-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC12C67X device has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. The PIC12C67X products are equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR), Power-up Timer (PWRT), and Oscillator Start-up Timer (OST) eliminate the need for external reset circuitry. There are five oscillator configurations to choose from, including INTRC precision internal oscillator mode and the power-saving LP (Low Power) oscillator. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.The SLEEP (powerdown) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable windowed package version is ideal for code development while the cost-effective One-Time- Programmable (OTP) version is suitable for production in any volume. The customer can take full advantage of Microchip’s price leadership in OTP microcontrollers while benefiting from the OTP’s flexibility.

The PIC12C67X device fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC12C67X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, communications and coprocessor applications).

1.1Family and Upward Compatibility

The PIC12C67X products are compatible with other members of the PIC16CXXX family.

1.2Development Support

The PIC12C67X device is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A “C”compiler and fuzzy logic support tools are also available.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 3

PIC12C67X

TABLE 1-1:

PIC12CXXX FAMILY OF DEVICES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC12C508

PIC12C509

 

PIC12C671

 

PIC12C672

 

 

 

 

 

 

 

 

 

 

Clock

Maximum Frequency

4

4

 

10

 

10

 

of Operation (MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Memory

EPROM Program Memory

512 x 12

1024 x 12

 

1024 x 14

 

2048 x 14

 

 

 

 

 

 

 

 

 

 

Data Memory (bytes)

25

41

 

128

 

128

 

 

 

 

 

Peripherals

Timer Module(s)

TMR0

TMR0

 

TMR0

 

TMR0

 

 

 

 

 

 

 

 

 

 

A/D Converter (8-bit) Channels

 

4

 

4

 

 

 

 

 

 

Wake-up from SLEEP on

Yes

Yes

 

Yes

 

Yes

 

 

pin change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interrupt Sources

 

4

 

4

 

 

 

 

 

 

 

 

 

 

 

I/O Pins

5

5

 

5

 

5

 

 

 

 

 

 

 

 

 

 

 

Input Pins

1

1

 

1

 

1

 

Features

 

 

 

 

 

 

 

 

Internal Pull-ups

Yes

Yes

 

Yes

 

Yes

 

 

 

 

 

 

 

 

 

 

 

Voltage Range (Volts)

2.5-5.5

2.5-5.5

 

2.5-5.5

 

2.5-5.5

 

 

 

 

 

 

 

 

 

 

 

In-Circuit Serial Programming

Yes

Yes

 

Yes

 

Yes

 

 

 

 

 

 

 

 

 

 

 

Number of Instructions

33

33

 

35

 

35

 

 

 

 

 

 

 

 

 

 

 

Packages

8-pin DIP, JW,

8-pin DIP, JW,

 

8-pin DIP, JW,

 

8-pin DIP, JW,

 

 

 

 

SOIC

SOIC

 

SOIC

 

SOIC

 

 

 

 

 

 

 

 

 

 

All PIC12CXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC12CXXX devices use serial programming with data pin GP0 and clock pin GP1.

DS30561A-page 4

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

2.0PIC12C67X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC12C67X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC12C67X, there are two device “types”as indicated in the device number:

1.C, as in PIC12C671. These devices have EPROM type memory and operate over the standard voltage range.

2.LC, as in PIC12LC671. These devices have EPROM type memory and operate over an extended voltage range.

2.1UV Erasable Devices

The UV erasable version, offered in windowed package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip'sPICSTART Plus and PRO MATE programmers both support the PIC12C67X. Third party programmers also are available; refer to the Microchip Third Party Guide for a list of sources.

CAUTION: Calibration values must be read before erasing.

2.2One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4Serialized Quick-Turnaround Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 5

PIC12C67X

NOTES:

DS30561A-page 6

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

3.0ARCHITECTURAL OVERVIEW

The high performance of the PIC12C67X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12C67X uses a Harvard architecture, in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses also allow instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (1 s @ 4 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC12C67X device.

Device

Program

Data Memory

Memory

 

 

 

 

 

 

 

 

PIC12C671

1K x 14

128 x 8

PIC12C672

2K x 14

128 x 8

The PIC12C67X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC12C67X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of ‘special optimal situations’ make programming with the PIC12C67X simple yet efficient. In addition, the learning curve is reduced significantly.

PIC12C67X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 7

PIC12C67X

FIGURE 3-1: PIC12C67X BLOCK DIAGRAM

Device

Program Memory

Data Memory (RAM)

 

 

 

 

 

 

PIC12C671

1K x 14

128 x 8

PIC12C672

2K x 14

128 x 8

 

 

 

 

13

Data Bus

8

 

Program Counter

 

 

 

 

EPROM

 

 

 

Program

 

RAM

 

Memory

8 Level Stack

 

 

128 bytes

 

 

(13 bit)

File

 

 

 

Registers

 

Program

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAM Addr (1)

 

 

 

 

9

 

 

 

 

Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addr MUX

 

 

Instruction reg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct Addr

7

 

8

 

 

Indirect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSR reg

 

 

 

8

 

STATUS reg

 

 

 

 

 

 

Power-up

3

MUX

 

 

 

 

 

Timer

 

 

 

Instruction

Oscillator

 

 

 

Decode &

Start-up Timer

 

ALU

 

Control

 

 

 

Watchdog

 

 

 

 

8

 

 

 

Timer

 

 

Timing

 

 

OSC1/CLKIN

Power-on

 

W reg

Generation

 

OSC2/CLKOUT

Reset

 

 

 

 

 

Internal

 

 

 

 

4 MHz Clock

 

MCLR

 

Timer0

 

 

 

 

 

 

VDD, VSS

 

 

GPIO

GP0/AN0

GP1/AN1/VREF

GP2/T0CKI/AN2/INT

GP3/MCLR/Vpp

GP4/OSC2/AN3/CLKOUT

GP5/OSC1/CLKIN

A/D

Note 1: Higher order bits are from the STATUS register.

DS30561A-page 8

Preliminary

1997 Microchip Technology Inc.

 

 

 

 

 

 

 

 

 

 

PIC12C67X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3-1:

PIC12C67X PINOUT DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name

 

DIP

SOIC

I/O/P

Buffer

 

 

Description

 

 

Pin #

Pin #

Type

Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GP0/AN0

 

7

7

I/O

TTL/ST

Bi-directional I/O port/serial programming data/analog

 

 

 

 

 

 

 

 

input 0. Can be software programmed for internal

 

 

 

 

 

 

 

 

weak pull-up and interrupt on pin change. This buffer is

 

 

 

 

 

 

 

 

a Schmitt Trigger input when used in serial program-

 

 

 

 

 

 

 

 

ming mode.

 

 

 

 

 

 

 

GP1/AN1/VREF

 

6

6

I/O

TTL/ST

Bi-directional I/O port/serial programming clock/analog

 

 

 

 

 

 

 

 

input 1/voltage reference. Can be software pro-

 

 

 

 

 

 

 

 

grammed for internal weak pull-up and interrupt on pin

 

 

 

 

 

 

 

 

change. This buffer is a Schmitt Trigger input when

 

 

 

 

 

 

 

 

used in serial programming mode.

 

 

 

 

 

 

GP2/T0CKI/AN2/INT

5

5

I/O

ST

Bi-directional I/O port/analog input 2. Can be config-

 

 

 

 

 

 

 

 

ured as T0CKI or external interrupt.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

4

I

TTL

Input port/master clear (reset) input/programming volt-

GP3/MCLR/V

PP

 

 

 

 

 

 

 

 

 

age input. When configured as

 

this pin is an

 

 

 

 

 

 

 

 

MCLR,

 

 

 

 

 

 

 

 

active low reset to the device. Voltage on

 

 

 

 

 

 

 

 

 

 

MCLR/VPP

 

 

 

 

 

 

 

 

must not exceed VDD during normal device operation.

 

 

 

 

 

 

 

 

Can be software programmed for internal weak pull-up

 

 

 

 

 

 

 

 

and interrupt on pin change. Weak pull-up always on if

 

 

 

 

 

 

 

 

configured as

 

.

 

 

 

 

 

 

 

 

MCLR

GP4/OSC2/AN3/

 

3

3

I/O

TTL

Bi-directional I/O port/oscillator crystal output/analog

CLKOUT

 

 

 

 

 

input 3. Connections to crystal or resonator in crystal

 

 

 

 

 

 

 

 

oscillator mode (XT and LP modes only, GPIO in other

 

 

 

 

 

 

 

 

modes). In EXTRC and INTRC modes, the pin output

 

 

 

 

 

 

 

 

can be configured to CLKOUT which has 1/4 the fre-

 

 

 

 

 

 

 

 

quency of OSC1 and denotes the instruction cycle

 

 

 

 

 

 

 

 

rate.

 

 

 

 

 

 

GP5/OSC1/CLKIN

2

2

I/O

TTL/ST

Bidirectional IO port oscillator crystal input/external

 

 

 

 

 

 

 

 

clock source input (GPIO in INTRC mode only, OSC1

 

 

 

 

 

 

 

 

in all other oscillator modes). Schmitt trigger in EXTRC

 

 

 

 

 

 

 

 

mode only.

 

 

 

 

 

 

 

VDD

 

1

1

P

Positive supply for logic and I/O pins

 

 

 

 

 

 

 

VSS

 

8

8

P

Ground reference for logic and I/O pins

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: I = input, O = output, I/O = input/output, P = power, — = not used, TTL = TTL input, ST = Schmitt Trigger input

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 9

PIC12C67X

3.1Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2Instruction Flow/Pipelining

An “Instruction Cycle” consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the “Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

OSC1

 

 

 

 

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

Internal

Q3

 

 

 

 

 

 

 

 

 

 

phase

 

 

 

 

 

 

 

 

 

 

clock

Q4

 

 

 

 

 

 

 

 

 

 

 

PC

 

PC

 

 

PC+1

 

 

 

 

PC+2

 

OSC2/CLKOUT

 

 

 

 

 

 

 

 

 

 

 

(EXTRC and

Fetch INST (PC)

 

 

 

 

 

 

 

 

 

INTRC modes)

 

 

Fetch INST (PC+1)

 

 

 

 

 

 

Execute INST (PC-1)

 

 

 

 

 

 

 

 

 

 

 

 

Execute INST (PC)

 

 

Fetch INST (PC+2)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC+1)

 

EXAMPLE 3-1:

INSTRUCTION PIPELINE FLOW

 

 

 

 

 

 

 

 

Tcy0

Tcy1

Tcy2

Tcy3

Tcy4

Tcy5

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

MOVLW

55h

 

Fetch 1

 

Execute 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

MOVWF

GPIO

 

 

 

Fetch 2

Execute 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

CALL

SUB_1

 

 

 

 

Fetch 3

Execute 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

BSF

GPIO, BIT3 (Forced NOP)

 

 

Fetch 4

Flush

 

 

5.

Instruction @ address SUB_1

 

 

 

Fetch SUB_1

Execute SUB_1

 

 

 

 

 

l instructions are single cycle, except for any program branches. These take two cycles since the fetch

 

struction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

 

 

 

 

 

 

 

 

 

 

 

 

 

DS30561A-page 10

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

4.0MEMORY ORGANIZATION

4.1Program Memory Organization

The PIC12C67X has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC12C671 the first 1K x 14 (0000h-03FFh) is implemented.

For the PIC12C672, the first 2K x 14 (0000h-07FFh) is implemented. Accessing a location above the physically implemented address will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC12C67X PROGRAM MEMORY MAP AND STACK

 

PC<12:0>

 

CALL, RETURN

13

 

RETFIE, RETLW

 

 

 

Stack Level 1

 

Stack Level 8

 

Reset Vector

0000h

Peripheral Interrupt Vector

0004h

 

 

0005h

On-chip Program

 

 

Memory

03FFh

 

 

0400h

(PIC12C672 only)

07FFh

 

 

0800h

 

 

1FFFh

4.2Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = 1 → Bank 1

RP0 (STATUS<5>) = 0 → Bank 0

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

Also note that F0h through FFh on the PIC12C67X is mapped into Bank 0 registers 70h-7Fh.

4.2.1GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 11

PIC12C67X

FIGURE 4-2: PIC12C67X REGISTER FILE MAP

 

 

File

 

 

 

 

 

File

 

Address

 

Address

 

 

00h

 

INDF(1)

 

INDF(1)

 

80h

 

 

01h

 

TMR0

 

OPTION

 

81h

 

 

02h

 

PCL

 

PCL

 

82h

 

 

03h

 

STATUS

 

STATUS

 

83h

 

 

04h

 

 

 

 

 

84h

 

 

 

FSR

 

FSR

 

 

 

05h

 

GPIO

 

TRIS

 

85h

 

 

06h

 

 

 

 

 

86h

 

 

07h

 

 

 

 

 

87h

 

 

08h

 

 

 

 

 

88h

 

 

09h

 

 

 

 

 

89h

 

 

0Ah

 

PCLATH

 

PCLATH

 

8Ah

 

 

0Bh

 

INTCON

 

INTCON

 

8Bh

 

 

0Ch

 

PIR1

 

PIE1

 

8Ch

 

 

0Dh

 

 

 

 

 

8Dh

 

 

0Eh

 

 

 

PCON

 

8Eh

 

 

0Fh

 

 

 

OSCCAL

 

8Fh

 

 

10h

 

 

 

 

 

90h

 

 

11h

 

 

 

 

 

91h

 

 

12h

 

 

 

 

 

92h

 

 

13h

 

 

 

 

 

93h

 

 

14h

 

 

 

 

 

94h

 

 

15h

 

 

 

 

 

95h

 

 

16h

 

 

 

 

 

96h

 

 

17h

 

 

 

 

 

97h

 

 

18h

 

 

 

 

 

98h

 

 

19h

 

 

 

 

 

99h

 

 

1Ah

 

 

 

 

 

9Ah

 

 

1Bh

 

 

 

 

 

9Bh

 

 

1Ch

 

 

 

 

 

9Ch

 

 

1Dh

 

 

 

 

 

9Dh

 

 

1Eh

 

ADRES

 

 

 

9Eh

 

 

1Fh

 

ADCON0

 

ADCON1

 

9Fh

 

 

20h

 

 

 

 

 

A0h

 

 

 

 

 

General

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Purpose

 

 

 

 

 

 

 

 

Register

 

BFh

 

 

 

 

General

 

 

 

 

 

 

 

Purpose

 

 

 

C0h

 

 

 

 

Register

 

 

 

 

 

 

 

 

 

 

 

 

EFh

 

 

70h

 

 

 

Mapped

 

F0h

 

 

 

 

 

 

 

 

 

 

7Fh

 

 

 

in Bank 0

 

FFh

 

 

 

 

 

 

 

 

 

Bank 0

Bank 1

 

 

 

 

 

 

 

 

 

Unimplemented data memory locations, read

 

 

 

 

 

 

as '0'.

 

 

 

 

Note 1:

Not a physical register.

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The special function registers can be classified into two sets (core and peripheral). Those registers associated with the “core”functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

DS30561A-page 12

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

TABLE 4-1:

PIC12C67X SPECIAL FUNCTION REGISTER SUMMARY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on

Address

Name

Bit 7

Bit 6

 

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Power-on

all other

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

Resets(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00h(1)

INDF

Addressing this location uses contents of FSR to address data memory (not a physical register)

0000 0000

0000 0000

01h

TMR0

Timer0 module’s register

 

 

 

 

 

 

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

02h(1)

PCL

Program Counter's (PC) Least Significant Byte

 

 

 

 

 

 

 

 

0000 0000

0000 0000

03h(1)

STATUS

IRP(4)

RP1(4)

 

RP0

 

TO

 

 

PD

 

 

Z

DC

C

0001 1xxx

000q quuu

04h(1)

FSR

Indirect data memory address pointer

 

 

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

05h

GPIO

 

GP5

GP4

GP3

GP2

GP1

GP0

--xx xxxx

--uu uuuu

06h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

07h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

08h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

09h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

0Ah(1,2)

PCLATH

 

Write Buffer for the upper 5 bits of the Program Counter

---0 0000

---0 0000

0Bh(1)

INTCON

GIE

PEIE

 

T0IE

INTE

GPIE

T0IF

INTF

GPIF

0000 000x

0000 000u

0Ch

PIR1

ADIF

 

 

 

 

-0-- ----

-0-- ----

0Dh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

0Eh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

0Fh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

10h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

11h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

12h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

13h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

14h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

15h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

16h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

17h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

18h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

19h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

1Ah

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

1Bh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

1Ch

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

1Dh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

1Eh

ADRES

A/D Result Register

 

 

 

 

 

 

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Fh

ADCON0

ADCS1

ADCS0

 

r

CHS1

CHS0

 

 

 

r

ADON

0000 0000

0000 0000

 

GO/DONE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', r = reserved. Shaded locations are unimplemented, read as ‘0’.

Note 1: These registers can be addressed from either bank.

2:The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3:Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4:The IRP and RP1 bits are reserved on the PIC12C67X, always maintain these bits clear.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 13

PIC12C67X

TABLE 4-1:

PIC12C67X SPECIAL FUNCTION REGISTER SUMMARY (CONT.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on

Address

Name

 

Bit 7

 

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

 

Bit 1

Bit 0

 

Power-on

all other

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

Resets(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80h(1)

INDF

Addressing this location uses contents of FSR to address data memory (not a physical register)

 

0000 0000

0000 0000

81h

OPTION

 

 

 

INTEDG

T0CS

T0SE

PSA

PS2

 

PS1

PS0

 

1111 1111

1111 1111

 

GPPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82h(1)

PCL

Program Counter's (PC) Least Significant Byte

 

 

 

 

 

 

 

 

 

0000 0000

0000 0000

83h(1)

STATUS

 

IRP(4)

 

RP1(4)

RP0

 

TO

 

 

PD

 

Z

 

DC

C

 

0001 1xxx

000q quuu

84h(1)

FSR

Indirect data memory address pointer

 

 

 

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

85h

TRIS

 

 

GPIO Data Direction Register

 

 

 

 

 

 

--11 1111

--11 1111

86h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

87h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

88h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

89h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

8Ah(1,2)

PCLATH

 

 

Write Buffer for the upper 5 bits of the PC

 

 

---0 0000

---0 0000

8Bh(1)

INTCON

 

GIE

 

PEIE

T0IE

INTE

GPIE

T0IF

INTF

GPIF

 

0000 000x

0000 000x

8Ch

PIE1

 

 

ADIE

 

 

 

 

-0-- ----

-0-- ----

8Dh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

8Eh

PCON

 

 

 

 

 

 

 

 

---- --0-

---- --u-

 

 

 

 

 

POR

8Fh

OSCCAL

 

CAL3

 

CAL2

CAL1

CAL0

CALFST

CALSLW

 

 

0111 00--

uuuu uu--

90h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

91h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

92h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

93h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

94h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

95h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

96h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

97h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

98h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

99h

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

9Ah

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

9Bh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

9Ch

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

9Dh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

9Eh

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

9Fh

ADCON1

 

 

 

 

PCFG2

PCFG1

PCFG0

 

---- -000

---- -000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', r = reserved. Shaded locations are unimplemented, read as ‘0’.

Note 1: These registers can be addressed from either bank.

2:The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3:Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4:The IRP and RP1 bits are reserved on the PIC12C67X, always maintain these bits clear.

DS30561A-page 14

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

4.2.2.1STATUS REGISTER

The STATUS register, shown in Figure 4-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC12C67X and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.

Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 4-3: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0

R/W-0

R/W-0

R-1

R-1

R/W-x

R/W-x

R/W-x

 

 

IRP

RP1

RP0

 

TO

 

 

PD

 

Z

DC

C

 

R = Readable bit

bit7

 

 

 

 

 

 

 

 

 

 

bit0

 

W = Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

U = Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

bit 7: IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh)

0 = Bank 0, 1 (00h - FFh)

The IRP bit is reserved, always maintain this bit clear.

bit

6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)

 

 

11 = Bank 3 (180h - 1FFh)

 

 

10 = Bank 2 (100h - 17Fh)

 

 

01 = Bank 1 (80h - FFh)

 

 

00 = Bank 0 (00h - 7Fh)

 

 

Each bank is 128 bytes. The RP1 bit is reserved, always maintain this bit clear.

bit

4:

 

 

 

Time-out bit

 

TO:

 

 

1

= After power-up, CLRWDT instruction, or SLEEP instruction

 

 

0

= A WDT time-out occurred

bit

3:

 

 

Power-down bit

 

PD:

 

 

1

= After power-up or by the CLRWDT instruction

 

 

0

= By execution of the SLEEP instruction

bit

2:

 

Z: Zero bit

 

 

1

= The result of an arithmetic or logic operation is zero

 

 

0

= The result of an arithmetic or logic operation is not zero

bit

 

 

 

 

 

 

 

1: DC: Digit carry/borrow

bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)(for borrow the polarity is reversed)

 

 

1

= A carry-out from the 4th low order bit of the result occurred

 

 

0

= No carry-out from the 4th low order bit of the result

bit

0:

 

 

 

bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)

 

C: Carry/borrow

 

 

1

= A carry-out from the most significant bit of the result occurred

 

 

0

= No carry-out from the most significant bit of the result occurred

Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 15

PIC12C67X

4.2.2.2

OPTION REGISTER

Note:

To achieve a 1:1 prescaler assignment for

 

 

The OPTION register is a readable and writable regis-

 

the TMR0 register, assign the prescaler to

ter which contains various control bits to configure the

 

the Watchdog Timer by setting bit PSA

TMR0/WDT prescaler, the External INT Interrupt,

 

(OPTION<3>).

TMR0, and the weak pull-ups on GPIO.

 

 

FIGURE 4-4: OPTION REGISTER (ADDRESS 81h)

 

 

R/W-1

 

 

R/W-1

 

R/W-1

 

 

R/W-1

 

R/W-1

R/W-1

R/W-1

R/W-1

 

 

 

 

 

 

 

 

 

 

INTEDG

 

T0CS

 

 

T0SE

 

PSA

PS2

PS1

 

PS0

 

R

= Readable bit

 

 

 

GPPU

 

 

 

 

bit7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit0

 

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

bit

7:

 

 

 

 

Weak pullup enable

 

 

 

 

 

 

 

 

 

 

 

 

 

GPPU:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Weak pullups disabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

= Weak pullups enabled (GP0, GP1, GP3)

 

 

 

 

 

 

 

 

bit

6:

 

INTEDG: Interrupt edge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Interrupt on rising edge of GP2/INT pin

 

 

 

 

 

 

 

 

 

 

 

 

0

= Interrupt on falling edge of GP2/INT pin

 

 

 

 

 

 

 

 

bit

5:

 

T0CS: TMR0 Clock Source Select bit

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Transition on GP2/T0CKI/AN2 pin

 

 

 

 

 

 

 

 

 

 

 

 

 

0

= Internal instruction cycle clock (CLKOUT)

 

 

 

 

 

 

 

 

bit

4:

 

T0SE: TMR0 Source Edge Select bit

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Increment on high-to-low transition on GP2/T0CKI/AN2 pin

 

 

 

 

 

 

 

 

 

 

0

= Increment on low-to-high transition on GP2/T0CKI/AN2 pin

 

 

 

 

 

 

bit

3:

 

PSA: Prescaler Assignment bit

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Prescaler is assigned to the WDT

 

 

 

 

 

 

 

 

 

 

 

 

 

0

= Prescaler is assigned to the Timer0 module

 

 

 

 

 

 

 

 

bit

2-0:

PS2:PS0: Prescaler Rate Select bits

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit Value

 

TMR0 Rate WDT Rate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

000

 

1 :

2

 

 

1

: 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

001

 

1 :

4

 

 

1

: 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

010

 

1 :

8

 

 

1

: 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

011

 

1 :

16

 

1

: 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

1 :

32

 

1

: 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

 

1 :

64

 

1

: 32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110

 

1 :

128

 

1

: 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

111

 

1 :

256

 

1

: 128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS30561A-page 16

Preliminary

1997 Microchip Technology Inc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC12C67X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.3

INTCON REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:

Interrupt flag bits get set when an interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The INTCON Register is a readable and writable regis-

 

condition occurs regardless of the state of

ter which contains various enable and flag bits for the

 

its corresponding enable bit or the global

TMR0 register overflow, GPIO Port change and Exter-

 

enable bit, GIE (INTCON<7>).

nal GP2/INT Pin interrupts.

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

 

 

 

 

 

 

R/W-0

 

 

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-x

 

 

 

 

 

GIE

 

 

PEIE

T0IE

 

INTE

 

GPIE

 

T0IF

 

INTF

GPIF

 

R

= Readable bit

 

 

bit7

 

 

 

 

 

 

 

 

 

 

 

 

bit0

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

bit 7:

 

GIE: Global Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Enables all un-masked interrupts

 

 

 

 

 

 

 

 

 

 

 

0

= Disables all interrupts

 

 

 

 

 

 

 

 

 

 

 

bit

6:

 

PEIE: Peripheral Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

1

= Enables all un-masked peripheral interrupts

 

 

 

 

 

 

 

 

 

0

= Disables all peripheral interrupts

 

 

 

 

 

 

 

 

 

bit

5:

 

T0IE: TMR0 Overflow Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

1

= Enables the TMR0 interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

0

= Disables the TMR0 interrupt

 

 

 

 

 

 

 

 

 

bit

4:

 

INTE: INT External Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

1

= Enables the external interrupt on GP2/INT pin

 

 

 

 

 

 

 

 

 

0

= Disables the external interrupt on GP2/INT pin

 

 

 

 

 

 

 

bit

3:

 

GPIE: GPIO Interrupt on Change Enable bit

 

 

 

 

 

 

 

 

 

1

= Enables the GPIO Interrupt on Change

 

 

 

 

 

 

 

 

 

0

= Disables the GPIO Interrupt on Change

 

 

 

 

 

 

 

bit

2:

 

T0IF: TMR0 Overflow Interrupt Flag bit

 

 

 

 

 

 

 

 

 

 

 

1

= TMR0 register has overflowed (must be cleared in software)

 

 

 

 

 

 

0

= TMR0 register did not overflow

 

 

 

 

 

 

 

 

 

bit

1:

 

INTF: INT External Interrupt Flag bit

 

 

 

 

 

 

 

 

 

 

 

1

= The external interrupt on GP2/INT pin occurred (must be cleared in software)

 

 

 

0

= The external interrupt on GP2/INT pin did not occur

 

 

 

 

 

 

bit

0:

 

GPIF: GPIO Interrupt on Change Flag bit

 

 

 

 

 

 

 

 

 

 

 

1

= GP0, GP1, or GP3 pins changed state (must be cleared in software)

 

 

 

 

 

 

0

= Neither GP0, GP1, nor GP3 pins have changed state

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 17

PIC12C67X

4.2.2.4

PIE1 REGISTER

Note: Bit PEIE (INTCON<6>) must be set to

 

 

This register contains the individual enable bits for the

enable any peripheral interrupt.

Peripheral interrupts.

 

FIGURE 4-6: PIE1 REGISTER (ADDRESS 8Ch)

U-0

R/W-0

U-0

U-0

U-0

U-0

U-0

U-0

 

 

 

ADIE

 

 

 

R

= Readable bit

bit7

 

 

 

 

 

 

 

 

bit0

 

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

- n

= Value at POR reset

bit 7:

Unimplemented: Read as '0'

 

 

 

 

 

 

 

 

bit 6:

ADIE: A/D Converter Interrupt Enable bit

 

 

 

 

 

 

 

1 = Enables the A/D interrupt

 

 

 

 

 

 

 

 

 

0 = Disables the A/D interrupt

 

 

 

 

 

 

 

 

bit 5-0: Unimplemented: Read as '0'

DS30561A-page 18

Preliminary

1997 Microchip Technology Inc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC12C67X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.5

PIR1 REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:

Interrupt flag bits get set when an interrupt

This register contains the individual flag bits for the

 

 

 

 

 

condition occurs regardless of the state of

Peripheral interrupts.

 

 

 

 

 

 

 

 

its corresponding enable bit or the global

 

 

 

 

 

 

 

 

 

 

 

enable bit, GIE (INTCON<7>). User soft-

 

 

 

 

 

 

 

 

 

 

 

ware should ensure the appropriate inter-

 

 

 

 

 

 

 

 

 

 

 

rupt flag bits are clear prior to enabling an

 

 

 

 

 

 

 

 

 

 

 

interrupt.

 

 

 

FIGURE 4-7: PIR1 REGISTER (ADDRESS 0Ch)

 

 

 

 

 

 

 

U-0

R/W-0

U-0

U-0

U-0

U-0

U-0

U-0

 

 

 

 

ADIF

 

 

 

 

R

= Readable bit

 

 

bit7

 

 

 

 

 

 

 

 

 

bit0

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

bit 7:

Unimplemented: Read as '0'

 

 

 

 

 

 

 

 

 

 

 

bit 6:

ADIF: A/D Converter Interrupt Flag bit

 

 

 

 

 

 

 

 

 

 

1 = An A/D conversion completed

 

 

 

 

 

 

 

 

 

 

0 = The A/D conversion is not complete

 

 

 

 

 

 

 

 

bit 5-0: Unimplemented: Read as '0'

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 19

PIC12C67X

4.2.2.6PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), an external MCLR Reset, and WDT Reset.

FIGURE 4-8: PCON REGISTER (ADDRESS 8Eh)

 

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

U-0

 

 

 

 

 

 

 

 

 

 

R

= Readable bit

 

 

 

 

POR

 

 

bit7

 

 

 

 

 

 

 

 

 

 

bit0

 

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n

= Value at POR reset

 

 

bit 7-2:

Unimplemented: Read as '0'

 

 

 

 

 

 

 

 

 

 

 

bit 1:

 

Power-on Reset Status bit

 

 

 

 

 

 

 

 

 

 

 

POR:

 

 

 

 

 

 

 

 

 

 

 

 

1 = No Power-on Reset occurred

 

 

 

 

 

 

 

 

 

 

 

 

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

 

 

bit 0:

Unimplemented: Read as '0'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS30561A-page 20

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

4.2.2.7OSCCAL REGISTER

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal 4 MHz oscillator. It contains four bits for fine calibration and two other bits to either increase or decrease frequency.

FIGURE 4-9: OSCCAL REGISTER (ADDRESS 8Fh)

 

R/W-0

 

 

R/W-1 R/W-1

R/W-1

R/W-0

R/W-0

U-0

U-0

 

 

 

 

 

CAL3

 

 

CAL2

CAL1

CAL0

CALFST

CALSLW

 

R

= Readable bit

 

 

bit7

 

 

 

 

 

 

 

 

 

bit0

 

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

bit 7-4:

 

CAL<3:0>: Fine calibration

 

 

 

 

 

 

 

 

 

bit

3:

 

CALFST: Calibration Fast

 

 

 

 

 

 

 

 

 

 

 

1

= Increase frequency

 

 

 

 

 

 

 

 

 

 

 

0

= No change

 

 

 

 

 

 

 

 

 

 

bit

2:

 

CALSLW: Calibration Slow

 

 

 

 

 

 

 

 

 

 

 

1

= Decrease frequency

 

 

 

 

 

 

 

 

 

 

 

0

= No change

 

 

 

 

 

 

 

 

 

 

bit 1-0: Unimplemented: Read as '0'

 

 

 

 

 

 

 

 

Note:

If CALFST = 1 and CALSLW = 1, CALFST has precedence.

 

 

 

 

 

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 21

PIC12C67X

4.3PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-10 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> → PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> → PCH).

FIGURE 4-10: LOADING OF PC IN DIFFERENT SITUATIONS

 

 

 

 

PCH

 

 

 

 

 

 

 

 

PCL

 

 

 

12

 

 

 

 

 

8

7

 

 

 

 

0

Instruction with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCL as

 

 

5

 

 

PCLATH<4:0>

 

8

Destination

 

 

 

 

 

ALU result

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCLATH

 

 

 

 

 

 

 

 

 

PCH

 

 

 

 

 

 

 

 

PCL

 

 

 

12

11

10

8

 

7

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GOTO, CALL

2

 

PCLATH<4:3>

 

 

 

11

Opcode <10:0>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCLATH

 

 

 

 

 

 

4.3.1COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note “Implementing aTable Read" (AN556).

4.3.2STACK

The PIC12C67X family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4Program Memory Paging

The PIC12C67X ignores both paging bits PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC12C67X is not recommended since this may affect upward compatibility with future products.

DS30561A-page 22

Preliminary

1997 Microchip Technology Inc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC12C67X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5

 

Indirect Addressing, INDF and FSR

 

EXAMPLE 4-1:

 

INDIRECT ADDRESSING

 

 

 

Registers

 

 

 

 

 

 

 

 

 

 

 

 

movlw

0x20

;initialize pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The INDF register is not a physical register. Addressing

 

 

movwf

FSR

;to RAM

 

 

the INDF register will cause indirect addressing.

 

 

NEXT

clrf

INDF

;clear INDF register

Indirect addressing is possible by using the INDF reg-

 

 

incf

FSR,F

;inc pointer

 

 

 

 

btfss

FSR,4

;all done?

 

 

ister. Any instruction using the INDF register actually

 

 

 

 

 

 

goto

NEXT

;no clear next

 

 

accesses the register pointed to by the File Select Reg-

 

 

 

 

 

CONTINUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ister, FSR. Reading the INDF register itself indirectly

 

 

:

 

 

 

 

 

 

 

;yes continue

 

 

(FSR = '0')will read 00h. Writing to the INDF register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

indirectly results in a no-operation (although status bits

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

may be affected). An effective 9-bit address is obtained

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by concatenating the 8-bit FSR register and the IRP bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(STATUS<7>), as shown in Figure 4-11. However, IRP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is not used in the PIC12C67X.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simple program to clear RAM locations 20h-2Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

using indirect addressing is shown in Example 4-1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4-11: DIRECT/INDIRECT ADDRESSING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct Addressing

 

 

 

 

 

 

 

 

 

 

 

 

Indirect Addressing

 

 

(1)RP1 RP0

6

 

from opcode

0

 

 

 

 

 

IRP(1)

7

 

FSR register

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bank select

location select

 

 

 

00

 

01

10

11

 

bank select

 

 

 

location select

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00h

 

 

 

 

 

00h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not used

Data Memory

7Fh

 

 

7Fh

 

Bank 0

Bank 1 Bank 2 Bank 3

For register file map detail see Figure 4-2.

Note 1: The RP1 and IRP bits are reserved, always maintain these bits clear.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 23

PIC12C67X

NOTES:

DS30561A-page 24

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

5.0I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO,W) always read the I/O pins independent of the pin’s input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set.

5.1GPIO

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0). Bits 7 and 6 are unimplemented and read as '0's.Please note that GP3 is an input only pin. The configuration word can set several I/O’s to alternate functions. When acting as alternate functions the pins will read as ‘0’ during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with interrupt on change. The interrupt on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, the weak pull-up is always on. Interrupt on change for this pin is not set and GP3 will read as '0'Interrupt. on change is enabled by setting INTCON<3>. Note that external oscillator use overrides the GPIO functions on GP4 and GP5.

5.2TRIS Register

This register controls the data direction for GPIO. A '1' from a TRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and its TRIS bit will always read as '1'.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low.

Upon reset, the TRIS register is all '1's, making all pins inputs.

5.3I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-2. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are nonlatching. Any input must be present until read by an input instruction (e.g., MOVF GPIO,W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

Note: On a Power-on Reset, GP0, GP1, GP2, GP4 are configured as analog inputs and read as '0'.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

Data

 

 

 

Bus

D

Q

 

 

 

WR

Data

VDD

 

Latch

 

 

 

Port

CK

Q

 

 

 

 

 

P

 

W

 

N

I/O

Reg

D

Q

pin(1)

 

 

 

TRIS

VSS

 

 

Latch

 

TRIS ‘f’

 

 

CK

Q

 

 

 

 

Reset

 

 

RD Port

Note 1: I/O pins have protection diodes to VDD and VSS.

GP3 is input only with no data latch and no output drivers.

TABLE 5-1:

SUMMARY OF PORT REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-on

all other

Address

Name

 

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Reset

Resets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85h

TRIS

 

 

GPIO Data Direction Register

 

 

--11

1111

--11

1111

81h

OPTION

 

 

 

INTEDG

T0CS

T0SE

PSA

PS2

PS1

PS0

1111

1111

1111

1111

GPPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

03h

STATUS

 

IRP(1)

RP1(1)

RP0

 

 

 

 

 

 

Z

DC

C

0001

1xxx

000q

quuu

 

TO

PD

05h

GPIO

 

 

GP5

GP4

GP3

GP2

GP1

GP0

--xx xxxx

--uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded cells not used by Port Registers, read as ‘0’, — = unimplemented, read as '0',x = unknown, u = unchanged, q = see tables in Section 7.7 for possible values.

Note 1: The IRP and RP1 bits are reserved on the PIC12C67X, always maintain these bits clear.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 25

PIC12C67X

5.4I/O Programming Considerations

5.4.1BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU. Then the BSF operation takes place on bit5 and GPIO is written to the output latches. If another bit of GPIO is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-1 shows the effect of two sequential read- modify-write instructions on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial GPIO Settings

;GPIO<5:3> Inputs

;GPIO<2:0> Outputs

;

 

GPIO latch

GPIO pins

;

 

----------

----------

BCF

GPIO, 5

;--01 -ppp

 

--11

pppp

BCF

GPIO, 4

;--10

-ppp

 

--11

pppp

MOVLW

007h

;

 

 

 

 

TRIS

GPIO

;--10

-ppp

 

--11

pppp

;

 

 

 

 

 

 

;Note that the user may have

expected the pin

;values to be --00 pppp. The

2nd BCF caused

;GP5 to be latched as the pin value (High).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin (“wired-or”,“wired-and”). The resulting high output currents may damage the chip.

FIGURE 5-2: SUCCESSIVE I/O OPERATION

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Instruction

PC

 

PC + 1

 

PC + 2

PC + 3

 

 

 

 

 

 

 

fetched

MOVWF GPIO

MOVF GPIO,W

 

NOP

NOP

 

 

GP5:GP0

 

 

 

 

 

 

 

 

 

Port pin

Port pin

 

 

 

written here

sampled here

 

Instruction

 

 

 

 

 

 

 

executed

 

MOVWF GPIO

MOVF GPIO,W

NOP

 

 

 

 

(Write to

(Read

 

 

 

GPIO)

GPIO)

 

This example shows a write to GPIO followed by a read from GPIO.

Data setup time = (0.25 TCY – TPD)

where: TCY = instruction cycle.

TPD = propagation delay

Therefore, at higher clock frequencies, a write followed by a read may be problematic.

DS30561A-page 26

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

6.0TIMER0 MODULE

The Timer0 module timer/counter has the following features:

8-bit timer/counter

Readable and writable

8-bit software programmable prescaler

Internal or external clock select

Interrupt on overflow from FFh to 00h

Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit T0CS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing

FIGURE 6-1: TIMER0 BLOCK DIAGRAM

bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6- 4 for Timer0 interrupt timing.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data bus

 

 

 

FOSC/4

 

 

0

 

 

 

 

 

 

1

PSout

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sync with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

TMR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

 

 

GP2/T0CKI/

 

 

 

 

 

 

 

 

 

 

 

Programmable

 

 

0

 

clocks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSout

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2

 

 

 

 

 

 

 

 

 

 

Prescaler

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2 cycle delay)

 

 

 

 

 

 

 

 

T0SE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

Set interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS2, PS1, PS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

flag bit T0IF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0CS

 

 

 

 

 

 

 

on overflow

Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION<5:0>).

2: The prescaler is shared with Watchdog Timer (refer to Figure 6-6 for detailed block diagram).

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

 

 

 

 

 

 

 

 

 

 

 

PC

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter)

 

PC-1

 

 

PC

 

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMR0

T0

 

 

 

T0+1

 

 

T0+2

 

 

NT0

 

 

NT0

 

 

NT0

 

 

 

NT0+1

 

 

NT0+2

T0

Instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Executed

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

reads NT0 + 2

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 27

Microchip Technology Inc PIC12C671-04-P, PIC12C671-04-SM, PIC12C672-04I-P, PIC12C672-04I-SM, PIC12C672-10-P Datasheet

PIC12C67X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

 

 

 

 

 

 

 

 

 

 

PC

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter)

 

PC-1

 

 

PC

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMR0

T0

 

 

 

 

 

T0+1

 

 

 

 

 

 

 

 

 

 

 

NT0

 

 

 

 

 

 

 

 

 

NT0+1

 

Instruction

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Execute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6-4:

TIMER0 INTERRUPT TIMING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

OSC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLKOUT(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer0

FEh

 

 

FFh

 

 

 

00h

 

 

01h

 

 

 

02h

 

 

T0IF bit

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTCON<2>)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GIE bit (INTCON<7>)

INSTRUCTION

FLOW

PC

 

PC

PC +1

PC +1

0004h

0005h

Instruction

 

Inst (PC)

Inst (PC+1)

 

Inst (0004h)

Inst (0005h)

 

 

fetched

 

 

 

 

Instruction

 

Inst (PC-1)

Inst (PC)

Dummy cycle

Dummy cycle

Inst (0004h)

 

 

executed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 1: Interrupt flag bit T0IF is sampled here (every Q1).

2:Interrupt latency = 4Tcy where Tcy = instruction cycle time.

3:CLKOUT is available only in RC oscillator mode.

DS30561A-page 28

Preliminary

1997 Microchip Technology Inc.

PIC12C67X

6.2Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (TOSC). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

External Clock Input or Prescaler output (2)

External Clock/Prescaler Output after sampling

Increment Timer0 (Q4)

Timer0

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

 

 

 

 

 

 

 

 

 

 

 

 

 

Small pulse

 

 

 

 

 

 

 

 

 

 

 

 

 

misses sampling

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0

 

 

 

T0 + 1

 

 

 

T0 + 2

 

Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.

2:External clock if no prescaler selected, Prescaler output otherwise.

3:The arrows indicate the points in time where sampling occurs.

1997 Microchip Technology Inc.

Preliminary

DS30561A-page 29

PIC12C67X

6.3Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as “prescaler”throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1,x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

CLKOUT (=Fosc/4)

 

 

 

 

 

 

 

Data Bus

 

 

 

0

M

1

 

 

8

 

 

 

 

 

 

GP2/T0CKI/

 

 

U

M

 

 

 

 

 

 

SYNC

 

AN2

 

 

 

X

 

U

TMR0 reg

 

 

1

0

2

 

 

 

 

 

 

 

X

Cycles

 

 

 

 

 

 

 

 

T0SE

 

 

 

T0CS

 

 

 

 

 

 

 

 

PSA

 

Set flag bit T0IF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on Overflow

 

0

M

 

8-bit Prescaler

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

U

 

 

 

 

 

 

Watchdog

X

 

 

8

 

 

 

 

 

 

 

 

 

 

Timer

 

 

 

 

 

 

 

 

 

 

 

 

8 - to - 1MUX

 

PS2:PS0

 

 

 

PSA

 

 

 

 

 

 

WDT Enable bit

 

 

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M U X

 

PSA

 

 

 

 

 

 

WDT

 

 

 

 

 

 

 

 

Time-out

 

 

 

Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).

 

 

 

DS30561A-page 30

Preliminary

1997 Microchip Technology Inc.

Loading...
+ 82 hidden pages