Microchip Technology Inc PIC16C84-04-P, PIC16C84-04-SO, PIC16C84-04I-P, PIC16C84-04I-SO, PIC16C84-10-P Datasheet

...
0 (0)

M PIC16C84

8-bit CMOS EERPOM Microcontroller

High Performance RISC CPU Features:

Only 35 single word instructions to learn

All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle

Operating speed: DC - 10 MHz clock input

DC - 400 ns instruction cycle

14-bit wide instructions

8-bit wide data path

1K x 14 EEPROM program memory

36 x 8 general purpose registers (SRAM)

64 x 8 on-chip EEPROM data memory

15 special function hardware registers

Eight-level deep hardware stack

Direct, indirect and relative addressing modes

Four interrupt sources:

-External RB0/INT pin

-TMR0 timer overflow

-PORTB<7:4> interrupt on change

-Data EEPROM write complete

1,000,000 data memory EEPROM ERASE/WRITE cycles

EEPROM Data Retention > 40 years

Peripheral Features:

13 I/O pins with individual direction control

High current sink/source for direct LED drive

-25 mA sink max. per pin

-20 mA source max. per pin

TMR0: 8-bit timer/counter with 8-bit programmable prescaler

Special Microcontroller Features:

Power-on Reset (POR)

Power-up Timer (PWRT)

Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation

Code protection

Power saving SLEEP mode

Selectable oscillator options

Serial In-System Programming - via two pins

Pin Diagram

PDIP, SOIC

RA2

1

 

18

RA1

RA3

2

PIC16C84

17

RA0

RA4/T0CKI

3

16

OSC1/CLKIN

 

MCLR

4

 

15

OSC2/CLKOUT

VSS

5

 

14

VDD

RB0/INT

6

 

13

RB7

RB1

7

 

12

RB6

RB2

8

 

11

RB5

RB3

9

 

10

RB4

CMOS Technology:

Low-power, high-speed CMOS EEPROM technology

Fully static design

Wide operating voltage range:

-Commercial: 2.0V to 6.0V

- Industrial: 2.0V to 6.0V

Low power consumption:

-< 2 mA typical @ 5V, 4 MHz

-60 A typical @ 2V, 32 kHz

-26 A typical standby current @ 2V

1997 Microchip Technology Inc.

DS30445C-page 1

PIC16C84

 

Table of Contents

 

1.0

General Description .......................................................................................................................................................................

3

2.0

PIC16C84 Device Varieties ...........................................................................................................................................................

5

3.0

Architectural Overview ...................................................................................................................................................................

7

4.0

Memory Organization...................................................................................................................................................................

11

5.0

I/O Ports.......................................................................................................................................................................................

19

6.0

Timer0 Module and TMR0 Register.............................................................................................................................................

25

7.0

Data EEPROM Memory...............................................................................................................................................................

31

8.0

Special Features of the CPU .......................................................................................................................................................

35

9.0

Instruction Set Summary..............................................................................................................................................................

51

10.0

Development Support ..................................................................................................................................................................

67

11.0

Electrical Characteristics for PIC16C84.......................................................................................................................................

71

12.0

DC & AC Characteristics Graphs/Tables for PIC16C84 ..............................................................................................................

83

13.0

Packaging Information .................................................................................................................................................................

97

Appendix A: Feature Improvements - From PIC16C5X To PIC16C84 ............................................................................................

99

Appendix B: Code Compatibility - from PIC16C5X to PIC16C84....................................................................................................

99

Appendix C: What’s New In This Data Sheet .................................................................................................................................

100

Appendix D: What’s Changed In This Data Sheet .........................................................................................................................

100

Appendix E: Conversion Considerations - PIC16C84 to PIC16F83/F84 And PIC16CR83/CR84..................................................

101

Index ..................................................................................................................................................................................................

103

On-Line Support.................................................................................................................................................................................

105

PIC16C84 Product Identification System ...........................................................................................................................................

107

Sales and Support..............................................................................................................................................................................

107

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

DS30445C-page 2

1997 Microchip Technology Inc.

PIC16C84

1.0GENERAL DESCRIPTION

The PIC16C84 is a low-cost, high-performance, CMOS, fully-static, 8-bit microcontroller.

All PIC16/17 microcontrollers employ an advanced RISC architecture. PIC16CXX devices have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with a separate 8-bit wide data bus. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set is used to achieve a very high performance level.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and up to a 2:1 speed improvement (at 10 MHz) over other 8-bit microcontrollers in their class.

The PIC16C84 has 36 bytes of RAM, 64 bytes of Data EEPROM memory, and 13 I/O pins. A timer/counter is also available.

The PIC16CXX family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers power savings. The user can wake the chip from sleep through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

The PIC16C84 EEPROM program memory allows the same device package to be used for prototyping and production. In-circuit reprogrammability allows the code to be updated without the device being removed from the end application. This is useful in the development of many applications where the device may not be easily accessible, but the prototypes may require code updates. This is also useful for remote applications where the code may need to be updated (such as rate information).

Table 1-1 lists the features of the PIC16C84. A simplified block diagram of the PIC16C84 is shown in Figure 3-1.

The PIC16C84 fits perfectly in applications ranging from high speed automotive and appliance motor control to low-power remote sensors, electronic locks, security devices and smart cards. The EEPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, security codes, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C84 very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, serial communication, capture and compare, PWM functions and co-processor applications).

The serial in-system programming feature (via two pins) offers flexibility of customizing the product after complete assembly and testing. This feature can be used to serialize a product, store calibration data, or program the device with the current firmware before shipping.

1.1Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to the PIC16C84 (Appendix B).

1.2Development Support

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer and a full-featured programmer. A “C”compiler and fuzzy logic support tools are also available.

1997 Microchip Technology Inc.

DS30445C-page 3

PIC16C84

TABLE 1-1

PIC16C8X FAMILY OF DEVICES

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC16F83

PIC16CR83

PIC16F84

PIC16CR84

 

 

 

 

 

 

 

Clock

 

Maximum Frequency

10

10

10

10

 

of Operation (MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flash Program Memory

512

1K

 

 

 

 

 

 

 

 

 

EEPROM Program Memory

Memory

 

 

 

 

 

 

 

ROM Program Memory

512

1K

 

 

 

 

 

 

 

 

 

Data Memory (bytes)

36

36

68

68

 

 

 

 

 

 

 

 

 

Data EEPROM (bytes)

64

64

64

64

Peripherals

 

 

 

 

 

 

 

Timer Module(s)

TMR0

TMR0

TMR0

TMR0

 

 

 

 

 

 

 

 

 

Interrupt Sources

4

4

4

4

 

 

 

 

 

 

 

 

 

I/O Pins

13

13

13

13

Features

 

 

 

 

 

 

 

Voltage Range (Volts)

2.0-6.0

2.0-6.0

2.0-6.0

2.0-6.0

 

 

 

 

 

 

 

 

 

Packages

18-pin DIP,

18-pin DIP,

18-pin DIP,

18-pin DIP,

 

 

 

SOIC

SOIC

SOIC

SOIC

 

 

 

 

 

 

 

All PICmicro™ F amily devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.

DS30445C-page 4

1997 Microchip Technology Inc.

PIC16C84

2.0PIC16C84 DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements the proper device option can be selected using the information in this section. When placing orders, please use the “PIC16C84 Product Identification System” at the back of this data sheet to specify the correct part number.

There are two device “types”as indicated in the device number.

1.C, as in PIC16C84. These devices have EEPROM program memory and operate over the standard voltage range.

2.LC, as in PIC16LC84. These devices have EEPROM program memory and operate over an extended voltage range.

When discussing memory maps and other architectural features, the use of C also implies the LC versions.

2.1Electrically Erasable Devices

These devices are offered in the lower cost plastic package, even though the device can be erased and reprogrammed. This allows the same device to be used for prototype development and pilot programs as well as production.

A further advantage of the electrically erasable version is that they can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART Plus or PRO MATE II programmers.

1997 Microchip Technology Inc.

DS30445C-page 5

PIC16C84

NOTES:

DS30445C-page 6

1997 Microchip Technology Inc.

PIC16C84

3.0ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC16CXX opcodes are 14-bits wide, enabling single word instructions. The full 14-bit wide program memory bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (400 ns @ 10 MHz) except for program branches.

The PIC16C84 addresses 1K x 14 program memory. All program memory is internal.

PIC16CXX devices can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. An orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of ‘special optimal situations’ make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C84 has 36 x 8 SRAM and 64 x 8 EEPROM data memory.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram for the PIC16C84 is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.

1997 Microchip Technology Inc.

DS30445C-page 7

Microchip Technology Inc PIC16C84-04-P, PIC16C84-04-SO, PIC16C84-04I-P, PIC16C84-04I-SO, PIC16C84-10-P Datasheet

PIC16C84

 

 

 

 

 

 

FIGURE 3-1:

PIC16C84 BLOCK DIAGRAM

 

 

 

 

 

 

13

 

Data Bus 8

 

 

EEPROM

 

Program Counter

 

 

EEPROM Data Memory

 

 

 

 

 

Program

 

 

 

 

 

 

 

Memory

 

 

 

 

 

 

 

1K x 14

 

 

 

RAM

 

 

EEPROM

 

8 Level Stack

File Registers

EEDATA

Data Memory

 

 

 

 

 

(13-bit)

36 x 8

 

 

64 x 8

 

 

 

 

 

 

 

Program

 

 

 

 

 

 

 

Bus 14

 

 

 

7

RAM Addr

 

EEADR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction reg

 

 

Addr Mux

 

 

 

 

 

 

 

 

 

 

5

Direct Addr

7

Indirect

TMR0

 

 

 

 

 

Addr

 

 

 

 

 

 

 

 

 

 

 

 

 

FSR reg

 

 

 

 

 

 

STATUS reg

 

RA4/T0CKI

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

Power-up

 

MUX

 

 

 

 

 

 

I/O Ports

 

 

 

Timer

 

 

 

 

 

 

 

 

 

Instruction

Oscillator

 

 

 

 

Decode &

Start-up Timer

ALU

 

 

 

Control

 

 

 

 

 

Power-on

 

 

 

 

 

 

 

 

 

RA3:RA0

 

 

Reset

 

 

 

 

Timing

Watchdog

W reg

 

 

RB7:RB1

Generation

Timer

 

 

 

 

 

 

 

 

 

 

 

 

 

RB0/INT

OSC2/CLKOUT

MCLR

VDD, VSS

 

 

 

 

OSC1/CLKIN

 

 

 

 

 

 

DS30445C-page 8

1997 Microchip Technology Inc.

 

 

 

 

 

 

 

 

PIC16C84

 

 

 

 

 

 

 

 

 

TABLE 3-1

PIC16C8X PINOUT DESCRIPTION

 

 

 

 

 

 

 

 

 

 

Pin Name

 

DIP

SOIC

I/O/P

Buffer

Description

 

 

No.

No.

Type

Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC1/CLKIN

 

16

16

I

ST/CMOS (1)

Oscillator crystal input/external clock source input.

 

OSC2/CLKOUT

 

15

15

O

Oscillator crystal output. Connects to crystal or resonator in crys-

 

 

 

 

 

 

 

 

tal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which

 

 

 

 

 

 

 

 

has 1/4 the frequency of OSC1, and denotes the instruction cycle

 

 

 

 

 

 

 

 

rate.

 

 

 

 

 

 

 

 

 

 

 

 

 

4

4

I/P

ST

Master clear (reset) input/programming voltage input. This pin is an

 

MCLR

 

 

 

 

 

 

 

 

active low reset to the device.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORTA is a bi-directional I/O port.

 

RA0

 

17

17

I/O

TTL

 

 

RA1

 

18

18

I/O

TTL

 

 

RA2

 

1

1

I/O

TTL

 

 

RA3

 

2

2

I/O

TTL

 

 

RA4/T0CKI

 

3

3

I/O

ST

Can also be selected to be the clock input to the TMR0 timer/

 

 

 

 

 

 

 

 

counter. Output is open drain type.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORTB is a bi-directional I/O port. PORTB can be software pro-

 

 

 

 

 

 

 

 

grammed for internal weak pull-up on all inputs.

 

RB0/INT

 

6

6

I/O

TTL

RB0/INT can also be selected as an external interrupt pin.

 

RB1

 

7

7

I/O

TTL

 

 

RB2

 

8

8

I/O

TTL

 

 

RB3

 

9

9

I/O

TTL

 

 

RB4

 

10

10

I/O

TTL

Interrupt on change pin.

 

RB5

 

11

11

I/O

TTL

Interrupt on change pin.

 

RB6

 

12

12

I/O

TTL/ST (2)

Interrupt on change pin. Serial programming clock.

 

RB7

 

13

13

I/O

TTL/ST (2)

Interrupt on change pin. Serial programming data.

 

VSS

 

5

5

P

Ground reference for logic and I/O pins.

 

 

 

 

 

 

 

VDD

 

14

14

P

Positive supply for logic and I/O pins.

 

 

 

 

 

 

 

 

 

Legend:

I= input

O = output

I/O = Input/Output

P = power

 

 

— = Not used

TTL = TTL input

ST = Schmitt Trigger input

Note 1:

This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2:This buffer is a Schmitt Trigger input when used in serial programming mode.

1997 Microchip Technology Inc.

DS30445C-page 9

PIC16C84

3.1Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

3.2Instruction Flow/Pipelining

An “Instruction Cycle” consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the “Instruction Register” in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

OSC1

 

 

 

 

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

Internal

Q3

 

 

 

 

 

 

 

 

 

 

phase

 

 

 

 

 

 

 

 

 

 

clock

Q4

 

 

 

 

 

 

 

 

 

 

 

PC

 

PC

 

 

PC+1

 

 

 

 

PC+2

 

OSC2/CLKOUT

 

 

 

 

 

 

 

 

 

 

 

(RC mode)

Fetch INST (PC)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Execute INST (PC-1)

 

 

Fetch INST (PC+1)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC)

 

 

Fetch INST (PC+2)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC+1)

 

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

1.

MOVLW

55h

Fetch 1

Execute 1

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

MOVWF

PORTB

 

Fetch 2

Execute 2

 

 

 

 

 

 

 

 

 

 

 

 

3.

CALL

SUB_1

 

 

Fetch 3

Execute 3

 

 

 

 

 

 

 

 

 

 

 

4.

BSF

PORTA, BIT3

 

 

 

Fetch 4

Flush

 

 

 

 

 

 

 

 

 

 

Fetch SUB_1 Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

DS30445C-page 10

1997 Microchip Technology Inc.

4.0MEMORY ORGANIZATION

There are two memory blocks in the PIC16C84. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the “core”are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 7.0.

4.1Program Memory Organization

The PIC16CXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16C84, only the first 1K x 14 (0000h-03FFh) are physically implemented (Figure 4-1). Accessing a location above the physically implemented address will cause a wraparound. For example, locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h will be the same instruction.

The reset vector is at 0000h and the interrupt vector is at 0004h.

PIC16C84

FIGURE 4-1: PROGRAM MEMORY MAP

AND STACK

PC<12:0>

CALL, RETURN

13

 

 

 

 

 

 

 

RETFIE, RETLW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stack Level 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stack Level 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Vector

 

0000h

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral Interrupt Vector

0004h

 

User Memory Space

 

 

 

 

 

 

 

 

 

 

 

 

3FFh

1FFFh

1997 Microchip Technology Inc.

DS30445C-page 11

PIC16C84

4.2Data Memory Organization

The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device.

Portions of data memory are banked. This is for both the SFR area and the GPR area. The GPR area is banked to allow greater than 116 bytes of general purpose RAM. The banked areas of the SFR are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the STATUS Register. Figure 4-2 shows the data memory map organization.

Instructions MOVWF and MOVF can move values from the W register to any location in the register file (“F”), and vice-versa.

The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR) (Section 4.5). Indirect addressing uses the present value of the RP1:RP0 bits for access into the banked areas of data memory.

Data memory is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected by clearing the RP0 bit (STATUS<5>). Setting the RP0 bit selects Bank 1. Each Bank extends up to 7Fh (128 bytes). The first twelve locations of each Bank are reserved for the Special Function Registers. The remainder are General Purpose Registers implemented as static RAM.

4.2.1GENERAL PURPOSE REGISTER FILE

All devices have some amount of General Purpose Register (GPR) area. Each GPR is 8 bits wide and is accessed either directly or indirectly through the FSR (Section 4.5).

The GPR addresses in bank 1 are mapped to addresses in bank 0. As an example, addressing location 0Ch or 8Ch will access the same GPR.

4.2.2SPECIAL FUNCTION REGISTERS

The Special Function Registers (Figure 4-2 and Table 4-1) are used by the CPU and Peripheral functions to control the device operation. These registers are static RAM.

The special function registers can be classified into two sets, core and peripheral. Those associated with the core functions are described in this section. Those related to the operation of the peripheral features are described in the section for that specifi feature.

FIGURE 4-2: REGISTER FILE MAP

File Address

 

File Address

00h

Indirect addr.(1)

Indirect addr.(1)

 

 

80h

01h

TMR0

OPTION

 

 

81h

02h

 

 

 

 

82h

PCL

PCL

 

 

03h

 

 

 

 

83h

STATUS

STATUS

 

 

04h

 

 

 

 

84h

FSR

FSR

 

 

05h

PORTA

TRISA

 

 

85h

06h

 

 

 

 

86h

PORTB

TRISB

 

 

07h

 

 

 

 

87h

08h

EEDATA

EECON1

 

 

88h

09h

EEADR

EECON2(1)

 

 

89h

0Ah

PCLATH

PCLATH

 

 

8Ah

0Bh

 

 

 

 

8Bh

INTCON

INTCON

 

 

0Ch

 

 

 

 

8Ch

 

 

36

 

 

 

 

 

 

General

Mapped

 

 

 

 

 

Purpose

(accesses)

 

 

 

 

 

registers

in Bank 0

 

 

 

 

 

(SRAM)

 

 

 

 

2Fh

 

 

 

 

AFh

30h

 

 

 

 

B0h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7Fh

 

 

FFh

 

 

Bank 0

Bank 1

 

Unimplemented data memory location; read as '0'.

 

Note 1:

Not a physical register.

DS30445C-page 12

1997 Microchip Technology Inc.

PIC16C84

TABLE 4-1

REGISTER FILE SUMMARY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on all

Address

Name

 

 

Bit 7

Bit 6

Bit 5

Bit 4

 

Bit 3

 

Bit 2

 

Bit 1

 

Bit 0

 

Power-on

other resets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

(Note3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00h

INDF

 

 

 

 

Uses contents of FSR to address data memory (not a physical register)

 

 

---- ----

---- ----

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01h

TMR0

 

 

 

 

 

 

8-bit real-time clock/counter

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02h

PCL

 

 

 

 

 

Low order 8 bits of the Program Counter (PC)

 

 

 

 

0000

0000

0000

0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

03h

STATUS (2)

 

IRP

RP1

RP0

 

TO

 

 

 

PD

 

 

Z

 

DC

 

C

 

0001

1xxx

000q

quuu

04h

FSR

 

 

 

 

 

Indirect data memory address pointer 0

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05h

PORTA

 

 

RA4/T0CKI

 

RA3

 

RA2

 

RA1

 

RA0

 

---x xxxx

---u uuuu

06h

PORTB

 

 

RB7

RB6

RB5

RB4

 

RB3

 

RB2

 

RB1

 

RB0/INT

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07h

 

 

Unimplemented location, read as '0'

 

 

 

 

 

 

 

 

 

 

 

---- ----

---- ----

08h

EEDATA

 

 

 

 

 

 

EEPROM data register

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

09h

EEADR

 

 

 

 

 

 

EEPROM address register

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0Ah

PCLATH

 

 

 

 

Write buffer for upper 5 bits of the PC (1)

 

 

---0 0000

---0 0000

0Bh

INTCON

 

GIE

EEIE

T0IE

INTE

 

RBIE

 

T0IF

 

INTF

 

RBIF

 

0000

000x

0000

000u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80h

INDF

 

 

 

 

Uses contents of FSR to address data memory (not a physical register)

 

 

---- ----

---- ----

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81h

OPTION_

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1111

1111

1111 1111

RBPU

INTEDG

T0CS

T0SE

 

PSA

 

PS2

 

PS1

 

PS0

 

REG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82h

PCL

 

 

 

 

 

Low order 8 bits of Program Counter (PC)

 

 

 

 

0000

0000

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83h

STATUS (2)

 

IRP

RP1

RP0

 

 

TO

 

 

 

PD

 

 

Z

 

DC

 

C

 

0001

1xxx

000q

quuu

84h

FSR

 

 

 

 

 

Indirect data memory address pointer 0

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85h

TRISA

 

 

PORTA data direction register

 

 

 

 

---1 1111

---1 1111

86h

TRISB

 

 

 

 

 

 

PORTB data direction register

 

 

 

 

 

 

1111

1111

1111 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87h

 

 

Unimplemented location, read as '0'

 

 

 

 

 

 

 

 

 

 

 

---- ----

---- ----

88h

EECON1

 

EEIF

 

WRERR

 

WREN

 

WR

 

RD

 

---0 x000

---0 q000

89h

EECON2

 

 

 

 

EEPROM control register 2 (not a physical register)

 

 

 

 

---- ----

---- ----

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0Ah

PCLATH

 

 

 

 

Write buffer for upper 5 bits of the PC (1)

 

 

---0 0000

---0 0000

0Bh

INTCON

 

GIE

EEIE

T0IE

INTE

 

RBIE

 

T0IF

 

INTF

 

RBIF

 

0000

000x

0000 000u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend:

x = unknown, u = unchanged. - = unimplemented read as '0',q = value depends on condition.

 

 

 

 

Note 1:

The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents

 

of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> is never transferred

 

to PCLATH.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2:The TO and PD status bits in the STATUS register are not affected by a MCLR reset.

3:Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

1997 Microchip Technology Inc.

DS30445C-page 13

PIC16C84

4.2.2.1STATUS REGISTER

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory.

As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged).

Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 9-2) because these instructions do not affect any status bit.

Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C84 and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.

Note 2: The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Note 3: When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic

FIGURE 4-3: STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0

 

R/W-0

R/W-0

R-1

R-1

R/W-x

R/W-x

R/W-x

 

IRP

 

RP1

 

RP0

 

 

 

 

 

 

 

 

Z

DC

 

C

 

R = Readable bit

 

 

TO

PD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W = Writable bit

bit7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U = Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

bit 7:

IRP: Register Bank Select bit (used for indirect addressing)

 

 

 

 

 

 

 

 

 

 

0

= Bank 0, 1 (00h - FFh)

 

 

 

 

 

 

 

 

 

 

 

 

1

= Bank 2, 3 (100h - 1FFh)

 

 

 

 

 

 

 

 

 

 

 

 

The IRP bit is not used by the PIC16C8X. IRP should be maintained clear.

bit

6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)

 

 

 

00 = Bank 0 (00h - 7Fh)

 

 

 

 

 

 

 

 

 

 

 

 

01 = Bank 1 (80h - FFh)

 

 

 

 

 

 

 

 

 

 

 

 

10 = Bank 2 (100h - 17Fh)

 

 

 

 

 

 

 

 

 

 

 

 

11 = Bank 3 (180h - 1FFh)

 

 

 

 

 

 

 

 

 

 

 

 

Each bank is 128 bytes. Only bit RP0 is used by the PIC16C8X. RP1 should be maintained clear.

bit

4:

TO: Time-out bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= After power-up, CLRWDT instruction, or SLEEP instruction

 

 

 

 

 

 

0

= A WDT time-out occurred

 

 

 

 

 

 

 

 

 

 

bit

3:

PD: Power-down bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= After power-up or by the CLRWDT instruction

 

 

 

 

 

 

 

 

0

= By execution of the SLEEP instruction

 

 

 

 

 

 

 

bit

2:

Z: Zero bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= The result of an arithmetic or logic operation is zero

 

 

 

 

 

 

0

= The result of an arithmetic or logic operation is not zero

 

 

 

 

bit

1:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DC: Digit carry/borrow

bit (for ADDWF and ADDLW instructions) (For borrow the polarity is reversed)

 

 

1

= A carry-out from the 4th low order bit of the result occurred

 

 

 

 

 

 

0

= No carry-out from the 4th low order bit of the result

 

 

 

 

bit

0:

 

 

 

bit (for ADDWF and ADDLW instructions)

 

 

 

 

C: Carry/borrow

 

 

 

 

 

 

1

= A carry-out from the most significant bit of the result occurred

 

 

 

0

= No carry-out from the most significant bit of the result occurred

 

Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

DS30445C-page 14

1997 Microchip Technology Inc.

PIC16C84

4.2.2.2

OPTION_REG REGISTER

 

The OPTION_REG register is a readable and writable

Note: When the prescaler is assigned to

the WDT (PSA = '1'),TMR0 has a 1:1

register which contains various control bits to configure

prescaler assignment.

the TMR0/WDT prescaler, the external INT interrupt,

 

TMR0, and the weak pull-ups on PORTB.

 

FIGURE 4-4: OPTION_REG REGISTER (ADDRESS 81h)

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

 

RBPU

 

INTEDG

T0CS

T0SE

PSA

PS2

PS1

PS0

 

bit7

 

 

 

 

 

 

bit0

bit 7: RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled (by individual port latch values)

bit

6:

INTEDG: Interrupt Edge Select bit

 

 

1

= Interrupt on rising edge of RB0/INT pin

 

 

0

= Interrupt on falling edge of RB0/INT pin

bit

5:

T0CS: TMR0 Clock Source Select bit

 

 

1

= Transition on RA4/T0CKI pin

 

 

0

= Internal instruction cycle clock (CLKOUT)

bit

4:

T0SE: TMR0 Source Edge Select bit

 

 

1

= Increment on high-to-low transition on RA4/T0CKI pin

 

 

0

= Increment on low-to-high transition on RA4/T0CKI pin

bit

3:

PSA: Prescaler Assignment bit

 

 

1

= Prescaler assigned to the WDT

 

 

0

= Prescaler assigned to TMR0

bit

2-0:

PS2:PS0: Prescaler Rate Select bits

 

 

 

Bit Value

TMR0 Rate

WDT Rate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

000

1

: 2

1

: 1

 

 

 

 

 

001

1

: 4

1

: 2

 

 

 

 

 

010

1

: 8

1

: 4

 

 

 

 

 

011

1

: 16

1

: 8

 

 

 

 

 

100

1

: 32

1

: 16

 

 

 

 

 

101

1

: 64

1

: 32

 

 

 

 

 

110

1

: 128

1

: 64

 

 

 

 

 

111

1

: 256

1

: 128

 

R = Readable bit

W = Writable bit

U= Unimplemented bit, read as ‘0’

-n = Value at POR reset

1997 Microchip Technology Inc.

DS30445C-page 15

PIC16C84

4.2.2.3INTCON REGISTER

The INTCON

register

is a

readable

and writable

Note:

Interrupt flag bits get set when an interrupt

 

condition occurs regardless of the state of

register which contains the various enable bits for all

 

 

its corresponding enable bit or the global

interrupt sources.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

enable bit, GIE (INTCON<7>).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4-5:

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R/W-0

 

R/W-0

R/W-0

 

R/W-0

R/W-0

R/W-0

R/W-0

R/W-x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GIE

 

EEIE

 

T0IE

 

INTE

RBIE

 

T0IF

 

INTF

RBIF

 

R

= Readable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

= Writable bit

 

 

bit7

 

 

 

 

 

 

 

 

 

 

 

 

bit0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

bit 7:

GIE: Global Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Enables all un-masked interrupts

 

 

 

 

 

 

 

 

 

 

 

0

= Disables all interrupts

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: For the operation of the interrupt structure, please refer to Section 8.5.

 

 

 

bit

6:

EEIE: EE Write Complete Interrupt Enable bit

 

 

 

 

 

 

 

 

 

1

= Enables the EE write complete interrupt

 

 

 

 

 

 

 

 

 

0

= Disables the EE write complete interrupt

 

 

 

 

 

 

 

bit

5:

T0IE: TMR0 Overflow Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

1

= Enables the TMR0 interrupt

 

 

 

 

 

 

 

 

 

 

 

0

= Disables the TMR0 interrupt

 

 

 

 

 

 

 

 

 

bit

4:

INTE: RB0/INT Interrupt Enable bit

 

 

 

 

 

 

 

 

 

 

 

1

= Enables the RB0/INT interrupt

 

 

 

 

 

 

 

 

 

 

 

0

= Disables the RB0/INT interrupt

 

 

 

 

 

 

 

 

 

bit

3:

RBIE: RB Port Change Interrupt Enable bit

 

 

 

 

 

 

 

 

 

1

= Enables the RB port change interrupt

 

 

 

 

 

 

 

 

 

 

 

0

= Disables the RB port change interrupt

 

 

 

 

 

 

 

 

 

bit

2:

T0IF: TMR0 overflow interrupt flag bit

 

 

 

 

 

 

 

 

 

 

 

1

= TMR0 has overflowed (must be cleared in software)

 

 

 

 

 

 

 

 

0

= TMR0 did not overflow

 

 

 

 

 

 

 

 

 

 

 

bit

1:

INTF: RB0/INT Interrupt Flag bit

 

 

 

 

 

 

 

 

 

 

 

1

= The RB0/INT interrupt occurred

 

 

 

 

 

 

 

 

 

 

 

0

= The RB0/INT interrupt did not occur

 

 

 

 

 

 

 

 

 

bit

0:

RBIF: RB Port Change Interrupt Flag bit

 

 

 

 

 

 

 

 

 

 

 

1

= When at least one of the RB7:RB4 pins changed state (must be cleared in software)

 

 

 

0

= None of the RB7:RB4 pins have changed state

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS30445C-page 16

1997 Microchip Technology Inc.

PIC16C84

4.3Program Counter: PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte is the PCL register, which is a readable and writable register. The high byte of the PC (PC<12:8>) is not directly readable nor writable and comes from the PCLATH register. The PCLATH (PC latch high) register is a holding register for PC<12:8>. The contents of PCLATH are transferred to the upper byte of the program counter when the PC is loaded with a new value. This occurs during a CALL, GOTO or a write to PCL. The high bits of PC are loaded from PCLATH as shown in Figure 4-6.

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

 

 

 

 

PCH

 

 

 

PCL

 

 

 

 

 

 

 

12

 

 

 

 

 

8

7

 

 

 

 

0

INST with PCL

PC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as dest

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

PCLATH<4:0>

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

ALU result

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCLATH

 

 

 

 

 

 

 

 

 

 

PCH

 

 

 

 

 

PCL

 

 

 

 

 

 

 

12

11 10

8

7

 

 

 

 

0

 

 

 

PC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GOTO, CALL

2

 

PCLATH<4:3>

 

 

 

11

Opcode <10:0>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCLATH

 

 

 

 

 

 

 

 

 

 

4.3.1COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 word block). Refer to the application note “Implementing aTable Read” (AN556).

4.3.2PROGRAM MEMORY PAGING

The PIC16C84 has 1K of program memory. The CALL and GOTO instructions have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. For future PIC16CXX program memory expansion, there must be another two bits to specify the program memory page. These paging bits come from the PCLATH<4:3> bits (Figure 4-6). When doing a CALL or a GOTO instruction, the user must ensure that these page bits (PCLATH<4:3>) are programmed to the desired program memory page. If a CALL instruction (or interrupt) is executed, the entire 13-bit PC is “pushed” onto the stack (see next section). Therefore, manipulation of the PCLATH<4:3> is not required for the return instructions (which “pops”the PC from the stack).

Note: The PIC16C84 ignores the PCLATH<4:3> bits, which are used for program memory pages 1, 2 and 3 (0800h - 1FFFh). The use of PCLATH<4:3> as general purpose R/W bits is not recommended since this may affect upward compatibility with future products.

4.4Stack

The PIC16C84 has an 8 deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable.

The entire 13-bit PC is “pushed” onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is “popped” in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a push or a pop operation.

Note: There are no instruction mnemonics called push or pop. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

The stack operates as a circular buffer. That is, after the stack has been pushed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

If the stack is effectively popped nine times, the PC value is the same as the value from the first pop.

Note: There are no status bits to indicate stack overflow or stack underflow conditions.

1997 Microchip Technology Inc.

DS30445C-page 17

PIC16C84

4.5Indirect Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

Register file 05 contains the value 10h

Register file 06 contains the value 0Ah

Load the value 05 into the FSR register

A read of the INDF register will return the value of 10h

Increment the value of the FSR register by one (FSR = 06)

A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

 

movlw

0x20

;initialize pointer

 

movwf

FSR

; to RAM

NEXT

clrf

INDF

;clear INDF register

 

incf

FSR

;inc pointer

 

btfss

FSR,4

;all done?

 

goto

NEXT

;NO, clear next

CONTINUE

 

 

 

 

:

 

;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-7. However, IRP is not used in the PIC16C84.

FIGURE 4-7:

DIRECT/INDIRECT ADDRESSING

 

 

 

 

 

 

 

Direct Addressing

 

 

 

Indirect Addressing

 

RP1 RP0

6

from opcode

0

 

 

IRP

7

(FSR)

0

bank select

location select

 

 

 

bank select

location select

 

 

 

 

 

 

 

 

 

00

01

10

11

 

 

 

 

 

00h

 

 

 

 

00h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not used

not used

 

 

 

 

 

0Bh

 

 

 

 

 

 

 

 

 

0Ch

 

 

 

 

 

 

 

 

Data

 

Addresses

 

 

 

 

 

 

 

map back

 

 

 

 

 

 

Memory

 

 

 

 

 

 

 

 

to Bank 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2Fh

 

 

 

 

 

 

 

 

 

30h

 

 

 

 

 

 

 

 

 

7Fh

 

 

 

 

7Fh

 

 

 

 

 

Bank 0

Bank 1

Bank 2

Bank 3

 

 

 

DS30445C-page 18

1997 Microchip Technology Inc.

PIC16C84

5.0I/O PORTS

The PIC16C84 has two ports, PORTA and PORTB. Some port pins are multiplexed with an alternate function for other features on the device.

5.1PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The RA4 pin is multiplexed with the TMR0 clock input.

FIGURE 5-1: BLOCK DIAGRAM OF PINS RA3:RA0

Data

 

 

 

bus

 

 

 

D

Q

 

 

WR

 

VDD

 

 

 

 

Port

Q

 

 

CK

P

 

 

 

 

Data Latch

 

 

 

 

N

I/O pin

D

Q

 

 

WR

 

VSS

 

TRIS

Q

 

 

CK

 

 

TRIS Latch

TTL

 

 

 

 

 

 

input

 

 

 

buffer

 

 

RD TRIS

 

 

 

Q

D

 

EN

RD PORT

Note: I/O pins have protection diodes to VDD and VSS.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF

PORTA

; Initialize PORTA by

;setting output

;data latches

BSF

STATUS, RP0

; Select Bank 1

MOVLW

0x0F

; Value used to

 

 

; initialize data

 

 

; direction

MOVWF

TRISA

; Set RA<3:0> as inputs

;RA4 as outputs

;TRISA<7:5> are always

;read as '0'.

FIGURE 5-2: BLOCK DIAGRAM OF PIN RA4

Data

 

 

 

 

bus

D

Q

 

 

 

 

 

WR

 

 

 

 

PORT

CK

Q

 

RA4 pin

 

N

 

 

 

 

 

 

 

 

Data Latch

 

 

 

 

 

VSS

 

 

D

Q

 

 

WR

 

 

 

 

TRIS

CK

Q

 

 

 

 

 

 

 

 

Schmitt

 

 

TRIS Latch

Trigger

 

 

input

 

 

 

 

 

 

 

 

buffer

 

 

 

RD TRIS

 

 

 

 

Q

D

 

 

 

 

EN

 

RD PORT

 

 

 

 

TMR0 clock input

 

 

Note: I/O pin has protection diodes to VSS only.

Note: For crystal oscillator configurations operating below 500 kHz, the device may generate a spurious internal Q-clock when PORTA<0> switches state. This does not occur with an external clock in RC mode. To avoid this, the RA0 pin should be kept static, i.e. in input/output mode, pin RA0 should not be toggled.

1997 Microchip Technology Inc.

DS30445C-page 19

PIC16C84

TABLE 5-1

PORTA FUNCTIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name

 

Bit0

 

Buffer Type

 

 

 

 

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA0

 

 

bit0

 

 

TTL

Input/output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA1

 

 

bit1

 

 

TTL

Input/output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA2

 

 

bit2

 

 

TTL

Input/output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA3

 

 

bit3

 

 

TTL

Input/output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA4/T0CKI

 

bit4

 

 

ST

Input/output or external clock input for TMR0.

 

 

 

 

 

 

 

 

 

 

 

Output is open drain type.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: TTL = TTL input, ST = Schmitt Trigger input

 

 

 

 

 

 

TABLE 5-2

SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on all

Address

Name

 

Bit 7

Bit 6

 

Bit 5

Bit 4

 

Bit 3

Bit 2

Bit 1

Bit 0

Power-on

 

 

 

other resets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05h

PORTA

 

 

RA4/T0CKI

 

RA3

RA2

RA1

RA0

---x xxxx

---u uuuu

85h

TRISA

 

 

TRISA4

 

TRISA3

TRISA2

TRISA1

TRISA0

---1 1111

---1 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'Shaded. cells are unimplemented, read as '0'

DS30445C-page 20

1997 Microchip Technology Inc.

PIC16C84

5.2PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' on any bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. A '0' on any bit in the TRISB register puts the contents of the output latch on the selected pin(s).

Each of the PORTB pins have a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION_REG<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB’s pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The pins value in input mode are compared with the old value latched on the last read of PORTB. The “mismatch”outputs of the pins are OR’ed together to generate the RB port change interrupt.

FIGURE 5-3: BLOCK DIAGRAM OF PINS RB7:RB4

 

 

 

 

 

VDD

RBPU(1)

 

 

 

 

P

weak

 

 

Data Latch

 

pull-up

Data bus

 

 

 

 

 

D

Q

 

 

 

 

 

 

 

 

WR Port

 

 

 

 

 

I/O

 

CK

 

 

 

pin(2)

 

 

TRIS Latch

 

 

 

 

 

D

Q

 

 

 

WR TRIS

CK

 

 

 

TTL

 

 

 

 

 

Input

 

 

 

 

 

 

 

 

 

 

 

 

Buffer

 

 

RD TRIS

Latch

 

 

 

 

 

Q

D

 

 

 

RD Port

 

 

EN

 

 

 

 

 

 

 

Set RBIF

 

 

 

 

 

 

 

 

From other

 

Q

D

 

 

 

RB7:RB4 pins

 

 

 

 

 

 

 

 

 

 

 

 

 

EN

 

 

 

 

 

 

RD Port

 

Note

1: TRISB = '1' enables weak pull-up

 

 

 

 

(if RBPU = '0' in the OPTION_REG register).

 

 

2: I/O pins have diode protection to VDD and VSS.

 

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

a)Read (or write) PORTB. This will end the mismatch condition.

b)Clear flag bit RBIF.

A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression (see AN552 in the Embedded Control Handbook).

Note 1: If a change on the I/O pin should occur when a read operation of PORTB is being executed (start of the Q2 cycle), the RBIF interrupt flag bit may not be set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF PINS RB3:RB0

VDD

RBPU(1)

weak

P

pull-up

Data bus

Data Latch

 

D

Q

 

 

 

WR Port

 

 

I/O

CK

 

pin(2)

 

TRIS Latch

 

 

D

Q

 

WR TRIS

CK

 

TTL

 

 

Input

 

 

 

 

 

 

Buffer

 

RD TRIS

 

 

 

Q

D

 

RD Port

 

EN

RB0/INT

 

 

 

RD Port

Note 1: TRISB = '1' enables weak pull-up

(if RBPU = '0' in the OPTION_REG register).

2: I/O pins have diode protection to VDD and VSS.

1997 Microchip Technology Inc.

DS30445C-page 21

PIC16C84

EXAMPLE 5-1: INITIALIZING PORTB

CLRF

PORTB

; Initialize

PORTB by

 

 

; setting output

 

 

; data latches

BSF

STATUS, RP0

; Select Bank 1

MOVLW

0xCF

; Value used to

 

 

; initialize data

 

 

; direction

 

MOVWF

TRISB

; Set RB<3:0> as inputs

 

 

; RB<5:4> as outputs

 

 

; RB<7:6> as inputs

TABLE 5-3

PORTB FUNCTIONS

 

 

 

 

 

 

Name

Bit

Buffer Type

 

I/O Consistency Function

 

 

 

 

 

 

 

 

 

 

RB0/INT

bit0

TTL

 

Input/output pin or external interrupt input. Internal software

 

 

 

 

programmable weak pull-up.

 

 

 

 

 

RB1

bit1

TTL

 

Input/output pin. Internal software programmable weak pull-up.

 

 

 

 

 

RB2

bit2

TTL

 

Input/output pin. Internal software programmable weak pull-up.

 

 

 

 

 

RB3

bit3

TTL

 

Input/output pin. Internal software programmable weak pull-up.

 

 

 

 

 

RB4

bit4

TTL

 

Input/output pin (with interrupt on change). Internal software programma-

 

 

 

 

ble weak pull-up.

 

 

 

 

 

RB5

bit5

TTL

 

Input/output pin (with interrupt on change). Internal software programma-

 

 

 

 

ble weak pull-up.

 

 

 

 

 

RB6

bit6

TTL/ST(1)

 

Input/output pin (with interrupt on change). Internal software programma-

 

 

 

 

ble weak pull-up. Serial programming clock.

 

 

 

 

 

RB7

bit7

TTL/ST(1)

 

Input/output pin (with interrupt on change). Internal software programma-

 

 

 

 

ble weak pull-up. Serial programming data.

 

 

 

 

 

Legend: TTL = TTL input, ST = Schmitt Trigger.

Note 1: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4

SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on all

Address

Name

 

 

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Power-on

 

 

other resets

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06h

PORTB

 

 

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

86h

TRISB

 

TRISB7

TRISB6

TRISB5

TRISB4

TRISB3

TRISB2

TRISB1

TRISB0

1111 1111

1111 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81h

OPTION_

 

 

 

INTEDG

T0CS

T0SE

PSA

PS2

PS1

PS0

1111 1111

1111 1111

RBPU

REG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

DS30445C-page 22

1997 Microchip Technology Inc.

PIC16C84

5.3I/O Programming Considerations

5.3.1BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch is unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin (“wired-or”,“wired-and”). The resulting high output current may damage the chip.

5.3.2SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5- 5). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such that the pin voltage stabilizes (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

Example 5-1 shows the effect of two sequential read- modify-write instructions (e.g., BCF, BSF, etc.) on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs ; PORTB<3:0> Outputs ;PORTB<7:6> have external pull-ups and are ;not connected to other circuitry

;

 

 

;

PORT latch

PORT pins

;

----------

---------

BCF PORTB, 7

; 01pp ppp

11pp ppp

BCF PORTB, 6

; 10pp ppp

11pp ppp

BSF STATUS, RP0

;

 

BCF TRISB, 7

; 10pp ppp

11pp ppp

BCF TRISB, 6

; 10pp ppp

10pp ppp

;

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

FIGURE 5-5: SUCCESSIVE I/O OPERATION

 

Q1

Q2

 

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

PC

 

PC

 

 

 

PC + 1

 

 

 

 

PC + 2

 

 

PC + 3

 

Instruction

MOVWF PORTB

MOVF PORTB,W

 

 

 

 

 

 

 

 

 

 

fetched

 

 

NOP

 

 

NOP

 

 

write to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORTB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RB7:RB0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction

 

 

 

 

 

 

 

 

 

 

 

TPD

sampled here

 

NOP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOVWF PORTB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOVF PORTB,W

 

 

 

 

 

 

 

 

 

 

 

write to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORTB

 

 

 

 

 

 

 

 

 

 

 

 

Note:

This example shows a write to PORTB followed by a read from PORTB.

Note that:

data setup time = (0.25TCY - TPD)

where TCY = instruction cycle TPD = propagation delay

Therefore, at higher clock frequencies, a write followed by a read may be problematic.

1997 Microchip Technology Inc.

DS30445C-page 23

PIC16C84

NOTES:

DS30445C-page 24

1997 Microchip Technology Inc.

PIC16C84

6.0TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module timer/counter has the following features:

8-bit timer/counter

Readable and writable

8-bit software programmable prescaler

Internal or external clock select

Interrupt on overflow from FFh to 00h

Edge select for external clock

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the Timer0 module (Figure 6-1) will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode TMR0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the T0 source

edge select bit, T0SE (OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 Module and the Watchdog Timer. The prescaler assignment is controlled, in software, by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 Module. The prescaler is not readable or writable. When the prescaler (Section 6.3) is assigned to the Timer0 Module, the prescale value (1:2, 1:4, ..., 1:256) is software selectable.

6.1TMR0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets the T0IF bit (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). The T0IF bit must be cleared in software by the Timer0 Module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt (Figure 6-4) cannot wake the processor from SLEEP since the timer is shut off during SLEEP.

FIGURE 6-1: TMR0 BLOCK DIAGRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data bus

 

 

 

FOSC/4

 

 

0

 

 

 

 

 

1

PSout

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sync with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

TMR0 register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

 

 

RA4/T0CKI

 

 

 

 

 

 

 

 

 

 

 

Programmable

 

0

 

clocks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSout

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pin

 

 

 

 

 

 

 

 

 

 

Prescaler

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2 cycle delay)

 

 

 

 

 

 

 

 

T0SE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set bit T0IF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS2, PS1, PS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on Overflow

 

 

 

 

 

 

 

 

 

 

 

 

 

T0CS

Note 1: Bits T0CS, T0SE, PS2, PS1, PS0 and PSA are located in the OPTION register. 2: The prescaler is shared with the Watchdog Timer (Figure 6-6)

FIGURE 6-2: TMR0 TIMING: INTERNAL CLOCK/NO PRESCALER

 

 

 

 

 

 

 

 

 

 

 

 

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

PC

 

PC-1

 

 

PC

 

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMR0

T0

 

 

 

T0+1

 

 

T0+2

 

 

NT0

 

 

NT0

 

 

NT0

 

 

 

NT0+1

 

 

NT0+2

T0

Instruction

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Executed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

reads NT0 + 2

1997 Microchip Technology Inc.

DS30445C-page 25

PIC16C84

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6-3: TMR0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

 

 

 

 

 

 

 

 

 

 

 

 

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

PC

 

PC-1

 

 

PC

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMR0

T0

 

 

 

 

 

T0+1

 

 

 

 

 

 

 

 

 

 

 

NT0

 

 

 

 

 

 

 

 

 

NT0+1

 

Instruction

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Execute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6-4:

TMR0 INTERRUPT TIMING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

OSC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLKOUT(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMR0 timer

FEh

 

 

FFh

 

 

00h

 

 

01h

 

 

 

02h

 

 

T0IF bit 4

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTCON<2>)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GIE bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(INTCON<7>)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTION FLOW

 

 

 

 

 

 

 

Interrupt Latency(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC

PC

 

 

 

PC +1

 

 

PC +1

 

 

0004h

 

 

0005h

 

Instruction

Inst (PC)

 

 

Inst (PC+1)

 

 

 

 

 

 

Inst (0004h)

 

 

Inst (0005h)

 

fetched

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction

Inst (PC-1)

 

 

Inst (PC)

 

 

Dummy cycle

 

 

Dummy cycle

 

 

Inst (0004h)

 

executed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 1: T0IF interrupt flag is sampled here (every Q1).

2:Interrupt latency = 3.25Tcy, where Tcy = instruction cycle time.

3:CLKOUT is available only in RC oscillator mode.

4:The timer clock (after the synchronizer circuit) which increments the timer from FFh to 00h immediately sets the T0IF bit. The TMR0 register will roll over 3 Tosc cycles later.

DS30445C-page 26

1997 Microchip Technology Inc.

PIC16C84

6.2Using TMR0 with External Clock

When an external clock input is used for TMR0, it must meet certain requirements. The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the actual incrementing of the TMR0 register after synchronization.

6.2.1EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of pin RA4/T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (plus a small RC delay) and low for at least 2Tosc (plus a small RC delay). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by an asynchronous ripple counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (plus a small RC delay) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the AC Electrical Specifications of the desired device.

6.2.2TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 Module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

6.3Prescaler

An 8-bit counter is available as a prescaler for the Timer0 Module, or as a postscaler for the Watchdog Timer (Figure 6-6). For simplicity, this counter is being referred to as “prescaler”throughout this data sheet. Note that there is only one prescaler available which is mutually exclusive between the Timer0 Module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 Module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 Module, all instructions writing to the Timer0 Module (e.g., CLRF 1, MOVWF 1, BSF 1,x ....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Ext. Clock Input or

Prescaler Out (Note 2)

(Note 3)

Ext. Clock/Prescaler

Output After Sampling

Increment TMR0 (Q4)

TMR0

T0

T0 + 1

T0 + 2

Note 1: Delay from clock input change to TMR0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on TMR0 input = ± 4Tosc max.

2:External clock if no prescaler selected, Prescaler output otherwise.

3:The arrows ↑ indicate where sampling occurs. A small clock pulse may be missed by sampling.

1997 Microchip Technology Inc.

DS30445C-page 27

PIC16C84

FIGURE 6-6: BLOCK DIAGRAM OF THE TMR0/WDT PRESCALER

CLKOUT (= Fosc/4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA4/T0CKI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

M

 

 

 

 

 

 

SYNC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

U

 

 

 

 

 

 

 

 

 

TMR0 register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

Cycles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0SE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set bit T0IF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on overflow

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

8-bit Prescaler

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Watchdog

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 - to - 1MUX

 

 

 

 

 

 

 

 

PS2:PS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WDT Enable bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M U X

 

 

 

 

 

 

 

PSA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WDT time-out

Note: T0CS, T0SE, PSA, PS2:PS0 are bits in the OPTION register.

DS30445C-page 28

1997 Microchip Technology Inc.

PIC16C84

6.3.1SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed “on the y”fl during program execution).

Note: To avoid an unintended device RESET, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be taken even if the WDT is disabled. To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0WDT)

BCF

STATUS, RP0

;Bank 0

CLRF

TMR0

;Clear TMR0

 

 

; and Prescaler

BSF

STATUS, RP0

;Bank 1

CLRWDT

 

;Clears WDT

MOVLW

b'xxxx1xxx'

;Select new

MOVWF

OPTION

; prescale value

BCF

STATUS, RP0

;Bank 0

EXAMPLE 6-2: CHANGING PRESCALER (WDTTIMER0)

CLRWDT

 

;Clear WDT and

 

 

; prescaler

BSF

STATUS, RP0

;Bank 1

MOVLW

b'xxxx0xxx'

;Select TMR0, new

 

 

; prescale value

 

 

’ and clock source

MOVWF

OPTION

;

BCF

STATUS, RP0

;Bank 0

TABLE 6-1

REGISTERS ASSOCIATED WITH TIMER0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on all

Address

Name

 

 

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Power-on

 

 

other resets

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01h

TMR0

 

 

 

 

 

 

Timer0 module’s register

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0Bh

INTCON

 

 

GIE

EEIE

T0IE

INTE

RBIE

T0IF

INTF

RBIF

0000

000x

0000

0000

81h

OPTION

 

 

 

 

INTEDG

T0CS

T0SE

PSA

PS2

PS1

PS0

1111

1111

1111

1111

 

RBPU

85h

TRISA

 

 

TRISA4

TRISA3

TRISA2

TRISA1

TRISA0

---1

1111

---1

1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: x = unknown, u = unchanged. - = unimplemented read as '0'Shaded. cells are not associated with Timer0.

1997 Microchip Technology Inc.

DS30445C-page 29

PIC16C84

NOTES:

DS30445C-page 30

1997 Microchip Technology Inc.

Loading...
+ 79 hidden pages