Microchip Technology Inc PIC12CE519-04-SN, PIC12CE519-04I-SN, PIC12CE519-JW, PIC12CE518-04-SN, PIC12CE518-04I-SN Datasheet

...
0 (0)

PIC12CE5XX

8-Pin, 8-Bit CMOS Microcontroller with EEPROM Data Memory

Devices Included in this Data Sheet:

• PIC12CE518

• PIC12CE519

High-Performance RISC CPU:

Only 33 single word instructions to learn

All instructions are single cycle (1 s) except for program branches which are two-cycle

Operating speed: DC - 4 MHz clock input

 

DC - 1

s instruction cycle

 

 

 

Memory

 

Device

 

 

 

 

EPROM

 

RAM

EEPROM

 

 

 

Program

 

Data

Data

 

 

 

 

 

 

 

 

 

 

PIC12CE518

512 x 12

 

25 x 8

16 x 8

 

 

 

 

PIC12CE519

1024 x 12

41 x 8

16 x 8

 

 

 

 

 

12-bit wide instructions

8-bit wide data path

Special function hardware registers

Two-level deep hardware stack

Direct, indirect and relative addressing modes for data and instructions

Peripheral Features:

8-bit real-time clock/counter (TMR0) with 8-bit programmable prescaler

1,000,000 erase/write cycle EEPROM data memory

EEPROM data retention > 40 years

Pin Diagram:

PDIP, SOIC, Windowed CERDIP

VDD

1

PIC12CE519

PIC12CE518

8

VSS

GP5/OSC1/CLKIN

2

7

GP0

 

 

GP4/OSC2

3

 

 

6

GP1

GP3/MCLR/VPP

4

 

 

5

GP2/T0CKI

Special Microcontroller Features:

In-Circuit Serial Programming (ICSP™) of program memory (via two pins)

Internal 4 MHz RC oscillator with programmable calibration

Power-on Reset (POR)

Device Reset Timer (DRT)

Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation

Programmable code-protection

Power saving SLEEP mode

Wake-up from SLEEP on pin change

Internal weak pull-ups on I/O pins

Internal pull-up on MCLR pin

Selectable oscillator options:

-INTRC: Internal 4 MHz RC oscillator

-EXTRC: External low-cost RC oscillator

-

XT:

Standard crystal/resonator

-

LP:

Power saving, low frequency crystal

CMOS Technology:

Low-power, high-speed CMOS EPROM/EEPROM technology

Fully static design

Wide temperature range:

-Commercial: 0°C to +70°C

-Industrial: -40°C to +85°C

-Extended: -40°C to +125°C

Wide operating voltage range: -Commercial: 2.5V to 5.5V -Industrial: 2.5V to 5.5V -Extended: 2.5V to 5.5V

Low power consumption

-< 2 mA typical @ 5V, 4 MHz

-15 A typical @ 3V, 32 kHz

-< 1 A typical standby current

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 1

PIC12CE5XX

 

TABLE OF CONTENTS

 

1.0

General Description .....................................................................................................................................................................

3

2.0

PIC12CE5XX Device Varieties ....................................................................................................................................................

5

3.0

Architectural Overview ................................................................................................................................................................

7

4.0

Memory Organization ................................................................................................................................................................

11

5.0

I/O Port ......................................................................................................................................................................................

19

6.0

EEPROM Peripheral Operation .................................................................................................................................................

21

7.0

Timer0 Module and TMR0 Register ..........................................................................................................................................

27

8.0

Special Features of the CPU .....................................................................................................................................................

31

9.0

Instruction Set Summary ...........................................................................................................................................................

43

10.0

Development Support ................................................................................................................................................................

55

11.0

Electrical Characteristics - PIC12CE5XX ..................................................................................................................................

61

12.0

DC and AC Characteristics - PIC12CE5XX ..............................................................................................................................

77

13.0

Packaging Information ...............................................................................................................................................................

81

Index

....................................................................................................................................................................................................

87

PIC12CE5XX ........................................................................................................................................Product Identification System

89

 

To Our Valued Customers

 

Most Current Data Sheet

 

To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:

 

 

http://www.microchip.com

 

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip’s Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

Fill out and mail in the reader response form in the back of this data sheet.

E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

DS40172B-page 2

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

1.0GENERAL DESCRIPTION

The 8-pin PIC12CE5XX from Microchip Technology is a family of low-cost, high performance, 8-bit, fully static, EPROM/EEPROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/ single cycle instructions. All instructions are single cycle (1 s) except for program branches which take two cycles. The PIC12CE5XX delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC12CE5XX products are equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are four oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC12CE5XX are available in the cost-effective One-Time-Programmable (OTP) versions which are suitable for production in any volume. The customer can take full advantage of Microchip’s price leadership in OTP microcontrollers while benefiting from the OTP’s flexibility.

The PIC12CE5XX products are supported by a full-fea- tured macro assembler, a software simulator, an in-cir- cuit emulator, a ‘C’ compiler, fuzzy logic support tools, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM PC and compatible machines.

1.1Applications

The PIC12CE5XX series fits perfectly in applications ranging from sensory systems, gas detectors and security systems to low-power remote transmitters/ receivers. The EPROM programming technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. While the EEPROM data memory technology allows for the changing of calibrations factors and security codes, the small footprint 8-pin packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC12CE5XX series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of “glue”logic and PLD’s in larger systems, coprocessor applications).

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 3

PIC12CE5XX

TABLE 1-1:

PIC12CXXX & PIC12CEXXX FAMILY OF DEVICES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC12C508(A)

PIC12C509(A)

 

PIC12CE518

PIC12CE519

 

PIC12C671

 

PIC12C672

 

PIC12CE673

 

PIC12CE674

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum

4

4

 

4

4

 

10

 

10

 

10

 

10

 

 

Clock

Frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of Operation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPROM

512 x 12

1024 x 12

 

512 x 12

1024 x 12

 

1024 x 14

 

2048 x 14

 

1024 x 14

 

2048 x 14

 

 

 

Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Memory

Memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAM Data

25

41

 

25

41

 

128

 

128

 

128

 

128

 

 

 

 

 

 

 

 

 

 

 

Memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(bytes)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EEPROM

 

16

16

 

 

 

16

 

16

 

 

 

Data Memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(bytes)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripherals

Timer

 

TMR0

TMR0

 

TMR0

TMR0

 

TMR0

 

TMR0

 

TMR0

 

TMR0

 

 

Module(s)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A/D Con-

 

 

4

 

4

 

4

 

4

 

 

 

verter (8-bit)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Channels

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wake-up

Yes

Yes

 

Yes

Yes

 

Yes

 

Yes

 

Yes

 

Yes

 

 

 

from SLEEP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interrupt

 

 

 

 

4

 

4

 

4

 

4

 

 

 

Sources

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Features

I/O Pins

5

5

 

5

5

 

5

 

5

 

5

 

5

 

 

 

Input Pins

1

1

 

1

1

 

1

 

1

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

Yes

Yes

 

Yes

Yes

 

Yes

 

Yes

 

Yes

 

Yes

 

 

 

Pull-ups

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In-Circuit

Yes

Yes

 

Yes

Yes

 

Yes

 

Yes

 

Yes

 

Yes

 

 

 

Serial

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programming

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of

33

33

 

33

33

 

35

 

35

 

35

 

35

 

 

 

Instructions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Packages

8-pin DIP,

8-pin DIP,

 

8-pin DIP,

8-pin DIP,

 

8-pin DIP,

 

8-pin DIP,

 

8-pin DIP,

 

8-pin DIP,

 

 

 

 

 

JW, SOIC

JW, SOIC

 

JW, SOIC

JW, SOIC

 

JW, SOIC

 

JW, SOIC

 

JW

 

JW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All PIC12CXXX & PIC12CEXXX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

All PIC12CXXX & PIC12CEXXX devices use serial programming with data pin GP0 and clock pin GP1.

DS40172B-page 4

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

2.0PIC12CE5XX DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12CE5XX Product Identification System at the back of this data sheet to specify the correct part number.

2.1UV Erasable Devices

The UV erasable version, offered in windowed cerdip package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

Microchip'sPICSTART PLUS and PRO MATE programmers all support programming of the PIC12CE5XX. Third party programmers also are available; refer to the Microchip Third Party Guide for a list of sources.

2.2One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates or small volume applications.

The OTP devices, packaged in plastic packages permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4Serialized Quick-Turnaround Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 5

PIC12CE5XX

NOTES:

DS40172B-page 6

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

3.0ARCHITECTURAL OVERVIEW

The high performance of the PIC12CE5XX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12CE5XX uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12-bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (1 s @ 4MHz) except for program branches.

The PIC12CE5XX can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC12CE5XX has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of ‘special optimal situations’ make programming with the PIC12CE5XX simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC12CE5XX contains a 16 X 8 EEPROM memory array for storing non-volatile information such as calibration data or security codes. This memory has an endurance of 1,000,000 erase/write cycles and a retention of 40+ years.

The table below lists program memory (EPROM), data memory (RAM), and non-volatile (EEPROM) for each PIC12CE5XX device.

 

 

Memory

 

Device

EPROM

RAM

EEPROM

 

Program

Data

Data

 

 

 

 

PIC12CE518

512 x 12

25 x 8

16 x 8

PIC12CE519

1024 X 12

41 X 8

16 X 8

The PIC12CE5XX device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 7

PIC12CE5XX

FIGURE 3-1: PIC12CE5XX BLOCK DIAGRAM

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

Data Bus

8

 

 

 

 

 

EPROM

 

 

Program Counter

 

 

 

 

 

 

 

 

 

 

 

512 x 12 or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1024 x 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program

 

 

 

 

 

 

 

 

 

 

 

RAM

 

 

 

 

 

 

 

 

 

 

STACK1

 

 

 

 

 

 

25 x 8 or

 

 

 

 

 

 

 

 

Memory

 

 

 

 

 

 

 

 

41 x 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STACK2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

File

 

 

 

 

 

Program

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Registers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAM Addr

 

 

 

9

 

 

 

 

 

 

 

Bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addr MUX

 

 

 

 

 

 

Instruction reg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct Addr 5

 

 

 

 

 

 

 

 

 

 

 

5-7

 

 

Indirect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSR reg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

STATUS reg

 

 

 

 

 

 

 

3

MUX

 

 

Device Reset

 

 

 

 

 

 

Instruction

Timer

 

 

 

 

 

 

 

Decode &

Power-on

 

ALU

 

Control

 

 

Reset

 

 

 

 

8

 

 

 

 

 

OSC1/CLKIN

Timing

Watchdog

 

W reg

OSC2

Generation

Timer

 

 

 

 

 

 

 

Internal RC

 

 

 

 

OSC

MCLR

 

Timer0

 

 

 

 

 

 

VDD, VSS

 

 

GPIO

 

 

GP0

 

GP1

 

GP2/T0CKI

 

GP3/MCLR/VPP

 

GP4/OSC2

 

GP5/OSC1/CLKIN

SCL

SDA

16 X 8

 

EEPROM

Data

 

Memory

 

DS40172B-page 8

Preliminary

1998 Microchip Technology Inc.

 

 

 

 

 

 

 

 

 

PIC12CE5XX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3-1:

PIC12CE5XX PINOUT DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name

 

DIP

SOIC

I/O/P

Buffer

 

Description

 

 

Pin #

Pin #

Type

Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GP0

 

7

7

I/O

TTL/ST

 

Bi-directional I/O port/ serial programming data. Can

 

 

 

 

 

 

 

 

 

be software programmed for internal weak pull-up and

 

 

 

 

 

 

 

 

 

wake-up from SLEEP on pin change. This buffer is a

 

 

 

 

 

 

 

 

 

Schmitt Trigger input when used in serial programming

 

 

 

 

 

 

 

 

 

mode.

GP1

 

6

6

I/O

TTL/ST

 

Bi-directional I/O port/ serial programming clock. Can

 

 

 

 

 

 

 

 

 

be software programmed for internal weak pull-up and

 

 

 

 

 

 

 

 

 

wake-up from SLEEP on pin change. This buffer is a

 

 

 

 

 

 

 

 

 

Schmitt Trigger input when used in serial programming

 

 

 

 

 

 

 

 

 

mode.

GP2/T0CKI

 

5

5

I/O

ST

 

Bi-directional I/O port. Can be configured as T0CKI.

 

 

 

 

4

4

I

TTL/ST

 

Input port/master clear (reset) input/programming volt-

GP3/MCLR/V

PP

 

 

 

 

 

 

 

 

 

 

 

age input. When configured as

MCLR,

this pin is an

 

 

 

 

 

 

 

 

 

active low reset to the device. Voltage on

 

 

 

 

 

 

 

 

 

 

 

 

MCLR/VPP

 

 

 

 

 

 

 

 

 

must not exceed VDD during normal device operation.

 

 

 

 

 

 

 

 

 

Can be software programmed for internal weak pull-up

 

 

 

 

 

 

 

 

 

and wake-up from SLEEP on pin change. Weak pull-

 

 

 

 

 

 

 

 

 

up always on if configured as

 

 

Input buffers are

 

 

 

 

 

 

 

 

 

MCLR.

 

 

 

 

 

 

 

 

 

Schmitt Trigger when configured in

MCLR

mode.

GP4/OSC2

 

3

3

I/O

TTL

 

Bi-directional I/O port/oscillator crystal output. Con-

 

 

 

 

 

 

 

 

 

nections to crystal or resonator in crystal oscillator

 

 

 

 

 

 

 

 

 

mode (XT and LP modes only, GPIO in other modes).

GP5/OSC1/CLKIN

2

2

I/O

TTL/ST

 

Bidirectional IO port/oscillator crystal input/external

 

 

 

 

 

 

 

 

 

clock source input (GPIO in Internal RC mode only,

 

 

 

 

 

 

 

 

 

OSC1 in all other oscillator modes). TTL input when

 

 

 

 

 

 

 

 

 

GPIO, ST input in external RC oscillator mode.

VDD

 

1

1

P

 

Positive supply for logic and I/O pins

VSS

 

8

8

P

 

Ground reference for logic and I/O pins

Legend: I = input, O = output, I/O = input/output, P = power, — = not used, TTL = TTL input, ST = Schmitt Trigger input

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 9

PIC12CE5XX

3.1Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

OSC1

 

 

 

 

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

Internal

Q3

 

 

 

 

 

 

 

 

 

 

phase

 

 

 

 

 

 

 

 

 

 

clock

 

 

 

 

 

 

 

 

 

 

 

Q4

 

 

 

 

 

 

 

 

 

 

 

PC

 

PC

 

 

PC+1

 

 

 

 

PC+2

 

 

Fetch INST (PC)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC-1)

 

 

Fetch INST (PC+1)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC)

 

 

Fetch INST (PC+2)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC+1)

 

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

1.

MOVLW

03H

Fetch 1

Execute 1

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

MOVWF

GPIO

 

Fetch 2

Execute 2

 

 

 

 

 

 

 

 

 

 

 

 

3.

CALL

SUB_1

 

 

Fetch 3

Execute 3

 

 

 

 

 

 

 

 

 

 

 

4.

BSF

GPIO, BIT1

 

 

 

Fetch 4

Flush

 

 

 

 

 

 

 

 

 

 

Fetch SUB_1 Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

DS40172B-page 10

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

4.0MEMORY ORGANIZATION

PIC12CE5XX memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one STATUS register bit. For the PIC12CE519 with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).

4.1Program Memory Organization

The PIC12CE5XX devices have a 12-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space.

Only the first 512 x 12 (0000h-01FFh) for the PIC12CE518 and 1K x 12 (0000h-03FFh) for the PIC12CE519 are physically implemented. Refer to Figure 4-1. Accessing a location above these boundaries will cause a wrap-around within the first 512 x 12 space (PIC12CE518) or 1K x 12 space (PIC12CE519). The effective reset vector is at 000h, (see Figure 4-1). Location 01FFh (PIC12CE518) or location 03FFh (PIC12CE519), the hardwired reset vector location, contains the internal clock oscillator calibration value. This value is set at Microchip and should never be overwritten. Upon reset, the MOVLW XX is executed, the PC wraps to location 0000h, thus making 0000h the effective reset vector.

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12CE5XX

 

 

 

 

 

PC<11:0>

 

 

CALL, RETLW

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stack Level 1

 

 

 

 

 

 

 

Stack Level 2

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Vector (note 1)

0000h

 

 

 

 

 

 

 

 

On-chip Program

 

 

 

 

 

 

 

Memory

 

 

MemoryUser Space

 

512 Word (PIC12CE518)

 

 

 

 

 

 

01FFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0200h

 

 

 

 

 

On-chip Program

 

 

 

 

 

 

 

Memory

 

 

1024 Word (PIC12CE519)

03FFh

 

 

0400h

 

7FFh

Note 1: Address 0000h becomes the effective reset vector. Location 01FFh (PIC12CE518) or location 03FFh (PIC12CE519) contains the MOVLW XX INTRC oscillator

calibration value.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 11

PIC12CE5XX

4.2Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.

For the PIC12CE518, the register file is composed of 7 special function registers and 25 general purpose registers (Figure 4-2).

For the PIC12CE519, the register file is composed of 7 special function registers, 41 general purpose registers, and 16 general purpose registers that may be addressed using a banking scheme (Figure 4-3).

4.2.1GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-3: PIC12CE519 REGISTER FILE MAP

FIGURE 4-2: PIC12CE518 REGISTER FILE MAP

File Address

 

00h

INDF(1)

01h

TMR0

 

 

02h

PCL

03h

STATUS

 

 

04h

FSR

05h

OSCCAL

 

 

06h

GPIO

07h

 

 

 

General

 

Purpose

 

Registers

1Fh

 

Note 1: Not a physical register. See Indirect Data Addressing, Section 4.8.

FSR<6:5>

 

 

00

 

 

01

 

 

 

 

 

 

 

 

File Address

 

 

 

 

 

 

 

 

 

 

00h

 

 

INDF(1)

20h

 

 

 

 

01h

 

 

TMR0

 

 

 

 

 

02h

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

03h

 

 

STATUS

Addresses map

 

 

 

 

back to

 

 

04h

 

 

FSR

 

 

 

 

 

 

addresses

 

 

05h

 

 

OSCCAL

 

in Bank 0.

 

 

06h

 

 

GPIO

 

 

 

 

 

07h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General

 

 

 

 

 

 

 

 

 

Purpose

 

 

 

 

 

 

 

 

 

 

 

Registers

 

 

2Fh

 

0Fh

 

 

 

 

 

 

 

 

10h

30h

 

 

 

 

 

 

 

 

General

 

 

 

 

 

 

 

General

 

 

 

 

 

Purpose

 

 

Purpose

 

 

 

 

 

 

 

Registers

 

 

Registers

 

 

 

 

 

1Fh

3Fh

 

 

 

 

 

Bank 0

 

Bank 1

Note 1: Not a physical register. See Indirect

Data Addressing, Section 4.8.

DS40172B-page 12

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

4.2.2SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1).

The special registers can be classified into two sets. The special function registers associated with the “core”functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 4-1:

SPECIAL FUNCTION REGISTER (SFR) SUMMARY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-On

all other

Address

Name

Bit 7

Bit 6

Bit 5

 

Bit 4

 

Bit 3

Bit 2

Bit 1

Bit 0

Reset

Resets(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A

TRIS

 

GP5

 

GP4

 

GP3

GP2

GP1

GP0

--11 1111

--11 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contains control bits to configure Timer0, Timer0/WDT prescaler, wake-

 

 

 

 

N/A

OPTION

 

up on change, and weak pull-ups

 

 

 

 

 

 

1111

1111

1111

1111

 

 

 

 

 

 

00h

INDF

 

Uses contents of FSR to address data memory (not a physical register)

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01h

TMR0

 

8-bit real-time clock/counter

 

 

 

 

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02h(1)

PCL

 

Low order 8 bits of PC

 

 

 

 

 

 

 

 

 

 

1111

1111

1111 1111

03h

STATUS

 

GPWUF

PA0

 

 

 

 

 

 

 

 

Z

DC

C

0001

1xxx

q00q quuu(3)

 

TO

PD

04h

FSR

 

Indirect data memory address pointer

 

 

 

 

 

 

 

 

 

 

(12CE518)

 

 

 

 

 

 

111x

xxxx

111u uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

04h

FSR

 

Indirect data memory address pointer

 

 

 

 

 

 

 

 

 

 

(12CE519)

 

 

 

 

 

 

110x

xxxx

11uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05h

OSCCAL

 

CAL5

CAL4

CAL3

 

CAL2

 

CAL1

CAL0

1000

00--

uuuu uu--

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06h

GPIO

 

SCL

SDA

GP5

 

GP4

 

GP3

GP2

GP1

GP0

11xx xxxx

11uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded boxes = unimplemented or unused, = unimplemented, read as '0' (if applicable) x = unknown, u = unchanged, q = see the tables in Section 8.7 for possible values.

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 for an explanation of how to access these bits.

Note 2: Other (non-power up) resets include external reset through MCLR, WDT, and wake-up on pin change reset. Note 3: If reset was due to wake-up on pin change then bit 7 = 1. All other resets will cause bit 7 = 0.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 13

PIC12CE5XX

4.2.3EEPROM DATA MEMORY

The PIC12CE518 and PIC12CE519 each have 16 bytes of EEPROM data memory. The EEPROM data memory supports a bi-directional 2-wire bus and data transmission protocol. Refer to Section 6.0 on EEPROM Peripherals.

4.3STATUS Register

This register contains the arithmetic status of the ALU, the RESET status, and the page preselect bit for program memories larger than 512 words.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

FIGURE 4-4: STATUS REGISTER (ADDRESS:03h)

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions, which do affect STATUS bits, see Instruction Set Summary.

 

R/W-0

 

R/W-0

R/W-0

R-1

R-1

R/W-x

R/W-x

R/W-x

 

 

 

 

GPWUF

 

 

 

PA0

 

 

TO

 

 

 

PD

 

Z

 

DC

C

 

R = Readable bit

 

 

bit7

 

 

6

 

5

 

 

4

 

 

3

 

2

 

1

bit0

 

W = Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit 7:

GPWUF: GPIO reset bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Reset due to wake-up from SLEEP on pin change

 

 

 

 

 

 

 

 

0

= After power up or other reset

 

 

 

 

 

 

 

 

 

 

 

bit

6:

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit

5:

PA0: Program page preselect bits

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Page 1 (200h - 3FFh) - PIC12CE519

 

 

 

 

 

 

 

 

 

 

0

= Page 0 (000h - 1FFh) - PIC12CE518 and PIC12CE519

 

 

 

 

 

 

 

 

Each page is 512 bytes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program

 

 

 

 

page preselect is not recommended since this may affect upward compatibility with future products.

 

 

bit

4:

 

: Time-out bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= After power-up, CLRWDT instruction, or SLEEP instruction

 

 

 

 

 

 

 

0

= A WDT time-out occurred

 

 

 

 

 

 

 

 

 

 

 

bit

3:

 

: Power-down bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= After power-up or by the CLRWDT instruction

 

 

 

 

 

 

 

 

0

= By execution of the SLEEP instruction

 

 

 

 

 

 

 

 

bit

2:

Z: Zero bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= The result of an arithmetic or logic operation is zero

 

 

 

 

 

 

 

 

0

= The result of an arithmetic or logic operation is not zero

 

 

 

 

 

 

bit

1:

 

 

 

 

 

 

bit (for ADDWF and SUBWF instructions)

 

 

 

 

 

DC: Digit carry/borrow

 

 

 

 

 

 

 

ADDWF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= A carry from the 4th low order bit of the result occurred

 

 

 

 

 

 

 

 

0

= A carry from the 4th low order bit of the result did not occur

 

 

 

 

 

 

 

SUBWF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= A borrow from the 4th low order bit of the result did not occur

 

 

 

 

 

 

 

0

= A borrow from the 4th low order bit of the result occurred

 

 

 

 

 

bit

0:

 

 

 

bit (for ADDWF, SUBWF and RRF, RLF instructions)

 

 

 

 

 

C: Carry/borrow

 

 

 

 

 

 

 

ADDWF

 

 

 

 

 

 

 

 

 

SUBWF

 

 

 

RRF or RLF

 

 

 

 

1

= A carry occurred

 

 

 

 

1 = A borrow did not occur

Load bit with LSB or MSB, respectively

 

 

 

 

0

= A carry did not occur

 

 

 

 

0 = A borrow occurred

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS40172B-page 14

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

4.4OPTION Register

The OPTION register is a 8-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A RESET sets the OPTION<7:0> bits.

Note: If TRIS bit is set to ‘0’, the wake-up on change and pull-up functions are disabled for that pin; i.e., note that TRIS overrides OPTION control of GPPU and GPWU.

Note: If the T0CS bit is set to ‘1’, GP2 is forced to be an input even if TRIS GP2 = ‘0’.

FIGURE 4-5: OPTION REGISTER

 

W-1

 

 

 

W-1

W-1

W-1

W-1

W-1

W-1

W-1

 

 

 

 

GPWU

 

 

 

GPPU

 

 

T0CS

T0SE

PSA

PS2

 

PS1

PS0

 

W

= Writable bit

bit7

 

 

6

 

 

 

5

4

3

2

 

1

bit0

 

U

= Unimplemented bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Table 4-1 for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other resets.

bit 7:

 

 

 

 

Enable wake-up on pin change (GP0, GP1, GP3)

 

 

 

 

 

GPWU:

 

 

 

 

 

 

 

1

= Disabled

 

 

 

 

 

 

 

 

 

 

 

 

0

= Enabled

 

 

 

 

 

 

 

 

 

 

bit 6: GPPU: Enable weak pull-ups (GP0, GP1, GP3) 1 = Disabled

0 = Enabled

bit 5: T0CS: Timer0 clock source select bit 1 = Transition on T0CKI pin

0 = Transition on internal instruction cycle clock, Fosc/4

bit

4:

T0SE: Timer0 source edge select bit

 

 

1

= Increment on high to low transition on the T0CKI pin

 

 

0

= Increment on low to high transition on the T0CKI pin

bit

3:

PSA: Prescaler assignment bit

 

 

 

 

1

= Prescaler assigned to the WDT

 

 

0

= Prescaler assigned to Timer0

 

 

bit

2-0:

PS2:PS0: Prescaler rate select bits

 

 

 

Bit Value

Timer0 Rate

WDT Rate

 

 

 

 

 

 

 

 

 

 

 

 

000

1

: 2

1 :

1

 

 

 

 

001

1

: 4

1 :

2

 

 

 

 

010

1

: 8

1 :

4

 

 

 

 

011

1

: 16

1 :

8

 

 

 

 

100

1

: 32

1 :

16

 

 

 

 

101

1

: 64

1 :

32

 

 

 

 

110

1

: 128

1 :

64

 

 

 

 

111

1

: 256

1 :

128

 

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 15

PIC12CE5XX

4.5OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal 4 MHz oscillator. It contains six bits for calibration. Increasing the CAL value increases the frequency.

FIGURE 4-6: OSCCAL REGISTER (ADDRESS 05Fh)

 

R/W-1

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U-0

U-0

 

 

 

 

 

CAL5

CAL4

CAL3

CAL2

CAL1

CAL0

 

R

= Readable bit

 

 

bit7

 

 

 

 

 

 

bit0

 

W

= Writable bit

 

 

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

 

 

- n

= Value at POR reset

 

 

bit 7-2:

CAL<5:0>: Calibration

 

 

 

 

 

 

 

 

 

bit 1-0:

unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS40172B-page 16

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

4.6Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4- 7).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-7).

Instructions where the PCL is the destination, or Modify PCL instructions, include MOVWF PC, ADDWF PC, and BSF PC,5.

Note: Because PC<8> is cleared in the CALL instruction, or any Modify PCL instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long).

FIGURE 4-7: LOADING OF PC

BRANCH INSTRUCTIONS - PIC12CE518/CE519

GOTO Instruction

11

10

9

8

 

7

 

 

 

0

PC

 

 

 

 

 

 

 

 

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction Word

 

 

 

 

 

 

 

 

PA0

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATUS

CALL or Modify PCL Instruction

11

10

9

8

 

7

 

 

 

0

PC

 

 

 

 

 

 

 

 

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction Word

 

 

 

 

 

 

 

 

Reset to ‘0’

 

 

 

 

7

 

 

 

PA0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATUS

4.6.1EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page i.e., the oscillator calibration instruction. After executing MOVLW XX, the PC will roll over to location 00h, and begin executing user code.

The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is preselected.

Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7Stack

PIC12CE5XX devices have a 12-bit wide hardware push/pop stack.

A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALLs are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLWs are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Note 1: There are no STATUS bits to indicate stack overflows or stack underflow conditions.

Note 2: There are no instructions mnemonics called PUSH nor POP. These are actions that occur from the execution of the CALL and RETLW instructions.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 17

PIC12CE5XX

4.8Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

Register file 07 contains the value 10h

Register file 08 contains the value 0Ah

Load the value 07 into the FSR register

A read of the INDF register will return the value of 10h

Increment the value of the FSR register by one (FSR = 08)

A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

 

movlw

0x10

;initialize pointer

 

movwf

FSR

; to RAM

NEXT

clrf

INDF

;clear INDF register

 

incf

FSR,F

;inc pointer

 

btfsc

FSR,4

;all done?

 

goto

NEXT

;NO, clear next

CONTINUE

 

 

 

 

:

 

;YES, continue

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC12CE518: Does not use banking. FSR<7:5> are unimplemented and read as '1's.

PIC12CE519: Uses FSR<5>. Selects between bank 0 and bank 1. FSR<7:6> is unimplemented, read as '1’.

FIGURE 4-8: DIRECT/INDIRECT ADDRESSING

 

 

 

 

Direct Addressing

 

Indirect Addressing

 

 

 

(FSR)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 5

 

 

 

4 (opcode) 0

6 5 4

(FSR)

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bank

location select

location select

 

 

bank select

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00 01

00h

Addresses map back to addresses in Bank 0.

Data 0Fh

Memory(1) 10h

1Fh

3Fh

Bank 0

Bank 1(2)

Note 1: For register map detail see Section 4.2.

Note 2: PIC12CE519 only

DS40172B-page 18

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

5.0I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF GPIO,W) always read the I/O pins independent of the pin’s input/output modes. On RESET, all GPIO ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set.

5.1GPIO

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP5:GP0) for pin control. Bits 6 and 7 (SDA and SCL) are used by the EEPROM peripheral. Refer to Section 6.0 for use of SDA and SCL. Please note that GP3 is an input only pin. The configuration word can set several I/O’s to alternate functions. When acting as alternate functions the pins will read as ‘0’ during port read. Pins GP0, GP1, and GP3 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured

as MCLR, weak pull-up is always on and wake-up on change for this pin is not enabled.

5.2TRIS Register

The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from aTRIS register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3 which is input only and GP2 which may be controlled by the option register, see Figure 4-5.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low.

The TRIS registers are “write-only” and are set (output drivers disabled) upon RESET.

5.3I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO,W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

Data

 

 

 

Bus

D

Q

 

 

 

WR

Data

VDD

 

Latch

 

 

 

Port

CK

Q

 

 

 

 

 

P

 

W

 

N

I/O

Reg

D

Q

pin(1)

 

 

 

TRIS

VSS

 

 

Latch

 

TRIS ‘f’

 

 

CK

Q

 

 

 

 

Reset

(2)

 

 

 

 

RD Port

Note 1: I/O pins have protection diodes to VDD and VSS. Note 2: See Table 3-1 for buffer type.

TABLE 5-1:

SUMMARY OF PORT REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-On

all other

Address

 

Name

 

Bit 7

 

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Reset

Resets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A

 

TRIS

 

 

 

I/O control registers

 

 

--11

1111

--11 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A

 

OPTION

 

 

 

 

 

TOCS

TOSE

PSA

PS2

PS1

PS0

 

 

 

GPWU

GPPU

1111

1111

1111 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

03H

 

STATUS

GPWUF

 

PA0

 

TO

 

 

PD

 

Z

DC

C

0001

1xxx

q00q quuu(1)

06h

 

GPIO

 

SCL

 

SDA

GP5

GP4

GP3

GP2

GP1

GP0

11xx xxxx

11uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded cells not used by Port Registers, read as ‘0’, — = unimplemented, read as '0',x = unknown, u = unchanged, q = see tables in Section 8.7 for possible values.

Note 1: If reset was due to wake-up on pin change then bit 7 = 1. All other resets will cause bit 7 = 0.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 19

PIC12CE5XX

5.4I/O Programming Considerations

5.4.1BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU, bit5 to be set and the GPIO value to be written to the output latches. If another bit of GPIO is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read- modify-write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin (“wired-or”,“wired- and”). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial GPIO Settings

;GPIO<5:3> Inputs

;GPIO<2:0> Outputs

;

 

GPIO latch

GPIO pins

;

 

----------

----------

BCF

GPIO, 5

;--01

-ppp

--11

pppp

BCF

GPIO, 4

;--10

-ppp

--11

pppp

MOVLW

007h

;

 

 

 

TRIS

GPIO

;--10

-ppp

--11

pppp

;

 

 

 

 

 

;Note that the user may

have expected the pin

;values

to be --00 pppp. The 2nd BCF caused

;GP5 to

be latched as the pin value (High).

5.4.2SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-2: SUCCESSIVE I/O OPERATION

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Instruction

PC

 

PC + 1

 

PC + 2

PC + 3

 

 

 

 

 

 

 

fetched

MOVWF GPIO

MOVF GPIO,W

 

NOP

NOP

 

 

GP5:GP0

 

 

 

 

 

 

 

 

 

Port pin

Port pin

 

 

 

written here

sampled here

 

Instruction

 

 

 

 

 

 

 

executed

 

MOVWF GPIO

MOVF GPIO,W

NOP

 

 

 

 

(Write to

(Read

 

 

 

GPIO)

GPIO)

 

This example shows a write to GPIO followed by a read from GPIO.

Data setup time = (0.25 TCY – TPD)

where: TCY = instruction cycle.

TPD = propagation delay

Therefore, at higher clock frequencies, a write followed by a read may be problematic.

DS40172B-page 20

Preliminary

1998 Microchip Technology Inc.

Inputs: EEPROM Address EEADDR Outputs: EEPROM Data EEDATA Return 01 in W if OK,
else return 00 in W

PIC12CE5XX

6.0EEPROM PERIPHERAL OPERATION

The PIC12CE518 and PIC12CE519 each have 16 bytes of EEPROM data memory. The EEPROM memory has an endurance of 1,000,000 erase/write cycles and a data retention of greater than 40 years. The EEPROM data memory supports a bi-directional 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), that are mapped to bit6 and bit7, respectively, of the GPIO register (SFR 06h). Unlike the GP0-GP5 that are connected to the I/O pins, SDA and SCL are only connected to the internal EEPROM peripheral. For most applications, all that is required is calls to the following functions:

; Byte_Write: Byte write routine

 

;

Inputs: EEPROM Address

EEADDR

;

EEPROM Data

EEDATA

;Outputs: Return 01 in W if OK, else

return 00 in W

;

;Read_Current: Read EEPROM at address currently held by EE device.

;Inputs: NONE

;

Outputs:

EEPROM Data

EEDATA

;

 

Return

01

in W if OK, else

 

 

return

00

in W

 

;

; Read_Random: Read EEPROM byte at supplied address

;

;

;

The code for these functions is available on our website www.microchip.com. The code will be accessed by either including the source code FL51XINC.ASM or by linking FLASH5IX.ASM.

It is very important to check the return codes when using these calls, and retry the operation if unsuccessful. Unsuccessful return codes occur when the EE dta memeory is busy with the previos write, which can take up to 4 mS.

6.0.1SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the device.

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

The EEPROM interface is a 2-wire bus protocol consisting of data (SDA) and a clock (SCL). Although these lines are mapped into the GPIO register, they are not accessible as external pins; only to the internal EEPROM peripheral. SDA and SCL operation is also slightly different than GPO-GP5 as listed below. Namely, to avoid code overhead in modifying the TRIS register, both SDA and SCL are always outputs. To

read data from the EEPROM peripheral requires outputting a ‘1’ on SDA placing it in high-Z state, where only the internal 100K pull-up is active on the SDA line.

SDA:

Built-in 100K (typical) pull-up to VDD Open-drain (pull-down only)

Always an output Outputs a ‘1’ on reset

SCL:

Full CMOS output Always an output Outputs a ‘1’ on reset

The following example requires:

Code Space: 77 words

RAM Space: 5 bytes (4 are overlayable)

Stack Levels:1 (The call to the function itself. The functions do not call any lower level functions.)

Timing:

-WRITE_BYTE takes 328 cycles

-READ_CURRENT takes 212 cycles

-READ_RANDOM takes 416 cycles.

IO Pins: 0 (No external IO pins are used)

This code must reside in the lower half of a page. The code achieves it’s small size without additional calls through the use of a sequencing table. The table is a list of procedures that must be called in order. The table uses an ADDWF PCL,F instruction, effectively a computed goto, to sequence to the next procedure. However the ADDWF PCL,F instruction yields an 8 bit address, forcing the code to reside in the first 256 addresses of a page.

6.0.2SERIAL CLOCK

This SCL input is used to synchronize the data transfer from and to the device.

6.1BUS CHARACTERISTICS

The following bus protocol is to be used with the EEPROM data memory.

Data transfer may be initiated only when the bus is not busy.

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition.

Accordingly, the following bus conditions have been defined (Figure 6-1).

6.1.1BUS NOT BUSY (A)

Both data and clock lines remain HIGH.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 21

PIC12CE5XX

6.1.2START DATA TRANSFER (B)

A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.

6.1.3STOP DATA TRANSFER (C)

A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

6.1.4DATA VALID (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal.

The data on the line must be changed during the LOW period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited.

6.1.5ACKNOWLEDGE

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit.

Note: Acknowledge bits are not generated if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition (Figure 6-2).

DS40172B-page 22

Preliminary

1998 Microchip Technology Inc.

Microchip Technology Inc PIC12CE519-04-SN, PIC12CE519-04I-SN, PIC12CE519-JW, PIC12CE518-04-SN, PIC12CE518-04I-SN Datasheet

PIC12CE5XX

FIGURE 6-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

SCL

(A)

(B)

(C)

(D)

(C)

(A)

 

 

 

 

 

 

SDA

 

 

 

 

 

 

 

 

START

ADDRESS OR

DATA

STOP

 

 

 

CONDITION

ACKNOWLEDGE

ALLOWED

CONDITION

 

 

 

VALID

TO CHANGE

 

 

FIGURE 6-2: ACKNOWLEDGE TIMING

Acknowledge

Bit

SCL

1

2

3

4

5

6

7

8

9

1

2

3

SDA

 

 

Data from transmitter

 

 

 

 

 

Data from transmitter

Transmitter must release the SDA line at this point allowing the Receiver to pull the SDA line low to acknowledge the previous eight bits of data.

Receiver must release the SDA line at this point so the Transmitter can continue sending data.

6.2Device Addressing

After generating a START condition, the bus master transmits a control byte consisting of a slave address and a Read/Write bit that indicates what type of operation is to be performed. The slave address consists of a 4-bit device code (1010) followed by three don't care bits.

The last bit of the control byte determines the operation to be performed. When set to a one a read operation is selected, and when set to a zero a write operation is selected. (Figure 6-3). The bus is monitored for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true and it is not in a programming mode.

FIGURE 6-3:

 

CONTROL BYTE FORMAT

 

 

 

 

 

Read/Write Bit

 

 

Device Select

 

Don’t Care

 

 

 

Bits

 

 

Bits

 

 

S

1

0

1

0

X

X

X

R/W ACK

 

 

 

Slave Address

 

 

 

Start Bit

 

 

 

 

Acknowledge Bit

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 23

PIC12CE5XX

6.3

WRITE OPERATIONS

6.4

ACKNOWLEDGE POLLING

6.3.1BYTE WRITE

Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/W bit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the address pointer. Only the lower four address bits are used by the device, and the upper four bits are don’t cares. The address byte is acknowledgeable and the master device will then transmit the data word to be written into the addressed memory location. The memory acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time will not generate acknowledge signals (Figure 6-5). After a byte write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a stop bit is transmitted to the device at any point in the write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a stop bit is sent before a full eight data bits have been transmitted, then the write command will abort and no data will be written. The EEPROM memory employs a VCC threshold detector circuit which disables the internal erase/write logic if the VCC is below minimum VDD.

Byte write operations must be preceded and immediately followed by a bus not busy bus cycle where both SDA and SCL are held high.

FIGURE 6-5: BYTE WRITE

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 6-4 for flow diagram.

FIGURE 6-4: ACKNOWLEDGE POLLING FLOW

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

 

Send Control Byte

 

with R/W = 0

 

Did Device

NO

Acknowledge

 

(ACK = 0)?

 

YES

 

Next

 

Operation

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

T

 

 

 

CONTROL

 

 

 

 

WORD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS ACTIVITY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA

 

 

MASTER

 

 

 

 

 

BYTE

 

 

 

ADDRESS

 

 

 

 

 

 

 

O

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA LINE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

1

0

1

0

X

X

X

0

 

X X X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

BUS ACTIVITY

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

X = Don’t Care Bit

DS40172B-page 24

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

6.5READ OPERATIONs

Read operations are initiated in the same way as write operations with the exception that the R/W bit of the slave address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.

6.5.1CURRENT ADDRESS READ

It contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to one, the device issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 6-6).

6.5.2RANDOM READ

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the

device as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master issues the control byte again but with the R/W bit set to a one. It will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the device discontinues transmission (Figure 6-7). After this command, the internal address counter will point to the address location following the one that was just read.

6.5.3SEQUENTIAL READ

Sequential reads are initiated in the same way as a random read except that after the device transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the device to transmit the next sequentially addressed 8-bit word (Figure 6-8).

To provide sequential reads, it contains an internal address pointer which is incremented by one at the completion of each read operation. This address pointer allows the entire memory contents to be serially read during one operation.

FIGURE 6-6: CURRENT ADDRESS READ

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS ACTIVITY

T

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

MASTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

BYTE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA LINE

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

1

0

1

0

X

X

X

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS ACTIVITY

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

DATA

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X = Don’t Care Bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6-7: RANDOM READ

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

BUS ACTIVITY

T

CONTROL

 

 

 

 

 

 

 

WORD

 

T

CONTROL

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

T

MASTER

R

 

BYTE

 

 

 

ADDRESS (n)

 

R

 

BYTE

 

 

 

 

 

 

 

 

O

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S 1 0 1 0 X X X 0 X

 

X

 

X

 

X

 

 

 

 

 

 

 

S 1 0 1 0 X X X 1

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA LINE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

A

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

C

 

 

 

 

 

 

C

 

DATA (n)

O

 

 

 

 

 

K

 

 

 

 

 

 

K

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

BUS ACTIVITY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

X = Don’t Care Bit

C

K

 

FIGURE 6-8:

SEQUENTIAL READ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

BUS ACTIVITY

CONTROL

 

 

 

 

DATA n

 

 

 

 

DATA n + 1

 

 

 

 

DATA n + 2

 

 

 

 

 

 

 

 

 

 

DATA n + X

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

MASTER

BYTE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDA LINE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUS ACTIVITY

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

C

C

C

O

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

K

K

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

C

K

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 25

PIC12CE5XX

NOTES:

DS40172B-page 26

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

7.0TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

8-bit timer/counter register, TMR0

-Readable and writable

8-bit software programmable prescaler

Internal or external clock select

-Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

FIGURE 7-1: TIMER0 BLOCK DIAGRAM

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.1.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 7.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data bus

GP2/T0CKI

FOSC/4

 

0

 

 

 

 

 

 

 

 

PSout

 

 

 

 

8

 

Pin

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

Sync with

 

TMR0 reg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programmable

 

 

0

 

Clocks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSout

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prescaler(2)

 

 

 

 

 

Sync

 

 

T0SE

 

 

 

 

 

 

 

 

 

 

 

 

 

(2 TCY delay)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSA(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS2, PS1, PS0(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

T0CS(1)

 

 

 

 

 

 

 

 

 

Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register. 2: The prescaler is shared with the Watchdog Timer (Figure 7-5).

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 27

PIC12CE5XX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

 

 

 

 

 

 

 

 

 

 

 

PC

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter)

 

PC-1

 

 

PC

 

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer0

T0

 

 

 

T0+1

 

 

T0+2

 

 

 

 

 

 

NT0

 

 

 

 

 

 

NT0+1

 

 

NT0+2

 

 

Instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Executed

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

reads NT0 + 2

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

 

 

 

 

 

 

 

 

 

 

 

PC

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter)

 

PC-1

 

 

PC

 

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer0

T0

 

 

 

 

T0+1

 

 

 

 

 

 

 

 

 

 

 

NT0

 

 

 

 

 

 

 

 

NT0+1

 

T0

Instruction

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Execute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

Value on

Address

Name

 

Bit 7

 

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Power-On

all other

 

 

Reset

Resets

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01h

TMR0

Timer0 - 8-bit real-time clock/counter

 

 

 

xxxx xxxx

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A

OPTION

 

 

 

 

 

 

T0CS

T0SE

PSA

PS2

PS1

PS0

1111 1111

1111 1111

GPWU

GPPU

N/A

TRIS

 

 

TRIS5

TRIS4

TRIS3

TRIS2

TRIS1

TRIS0

--11 1111

--11 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged,

DS40172B-page 28

Preliminary

1998 Microchip Technology Inc.

PIC12CE5XX

7.1Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.1.1EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-4). Therefore, it is necessary for T0CKI to be high for at least 2TOSC (and a small RC delay of 20 ns) and low for at least 2TOSC (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.1.2TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-4 shows the delay from the external clock edge to the timer incrementing.

7.1.3OPTION REGISTER EFFECT ON GP2 TRIS

If the option register is set to read TIMER0 from the pin, the port is forced to an input regardless of the TRIS register setting.

FIGURE 7-4: TIMER0 TIMING WITH EXTERNAL CLOCK

External Clock Input or Prescaler Output (2)

External Clock/Prescaler

Output After Sampling

Increment Timer0 (Q4)

Timer0

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

 

 

 

 

 

 

 

 

 

 

 

 

 

Small pulse

 

 

 

 

 

 

 

 

 

 

 

 

 

misses sampling

(3)

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0

 

 

 

T0 + 1

 

 

 

T0 + 2

 

Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on Timer0 input = ± 4Tosc max.

2:External clock if no prescaler selected, Prescaler output otherwise.

3:The arrows indicate the points in time where sampling occurs.

1998 Microchip Technology Inc.

Preliminary

DS40172B-page 29

Loading...
+ 65 hidden pages