Microchip Technology Inc PIC16C505T-20I-SL, PIC16C505-20E-SL, PIC16C505-20I-JW, PIC16C505-20I-P, PIC16C505-20I-SL Datasheet

...
0 (0)

PIC16C505

14-Pin, 8-Bit CMOS Microcontroller

Device included in this Data Sheet:

PIC16C505

High-Performance RISC CPU:

• Only 33 instructions to learn

• Operating speed:

-

DC - 20 MHz clock input

-

DC - 200 ns instruction cycle

Device

Memory

 

 

 

 

Program

 

Data

 

 

 

 

 

 

PIC16C505

1024 x 12

 

72 x 8

• Direct, indirect and relative addressing modes for data and instructions

• 12 bit wide instructions

• 8 bit wide data path

• 2-level deep hardware stack

• Eight special function hardware registers

• Direct, indirect and relative addressing modes for data and instructions

• All single cycle instructions (200 ns) except for program branches which are two-cycle

Peripheral Features:

11 I/O pins with individual direction control

1 input pin

High current sink/source for direct LED drive

Timer0: 8-bit timer/counter with 8-bit programmable prescaler

FIGURE 1:

PIN DIAGRAM:

 

PDIP, SOIC, Ceramic Side Brazed

VDD

1

 

14

VSS

RB5/OSC1/CLKIN

2

PIC16C505

13

RB0

RB4/OSC2/CLKOUT

3

12

RB1

RB3/MCLR/VPP

4

 

11

RB2

RC5/T0CKI

5

 

10

RC0

RC4

6

 

9

RC1

RC3

7

 

8

RC2

Special Microcontroller Features:

In-Circuit Serial Programming (ICSP™)

Power-on Reset (POR)

Device Reset Timer (DRT)

Watchdog Timer (WDT) with dedicated on-chip RC oscillator for reliable operation

Programmable Code Protection

Internal weak pull-ups on I/O pins

Wake-up from Sleep on pin change

Power-saving Sleep mode

Selectable oscillator options:

-INTRC: Precision internal 4 MHz oscillator

-EXTRC: External low-cost RC oscillator

-

XT:

Standard crystal/resonator

-

HS:

High speed crystal/resonator

-

LP:

Power saving, low frequency

 

 

crystal

CMOS Technology:

Low-power, high-speed CMOS EPROM technology

Fully static design

Wide operating voltage range (2.5V to 5.5V)

Wide temperature ranges

-Commercial: 0˚C to +70˚C

-Industrial: -40˚C to +85˚C

-Extended: -40˚C to +125˚C

-< 1.0 A typical standby current @ 5V

Low power consumption

-< 2.0 mA @ 5V, 4 MHz

-15 A typical @ 3.0V, 32 kHz for TMR0 running in SLEEP mode

-< 1.0 A typical standby current @ 5V

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 1

PIC16C505

 

TABLE OF CONTENTS

 

1.0

General Description.....................................................................................................................................................................

3

2.0

PIC16C505 Device Varieties.......................................................................................................................................................

5

3.0

Architectural Overview ................................................................................................................................................................

7

4.0

Memory Organization ................................................................................................................................................................

11

5.0

I/O Port ......................................................................................................................................................................................

19

6.0

Timer0 Module and TMR0 Register ..........................................................................................................................................

23

7.0

Special Features of the CPU.....................................................................................................................................................

27

8.0

Instruction Set Summary ...........................................................................................................................................................

39

9.0

Development Support................................................................................................................................................................

51

10.0

Electrical Characteristics - PIC16C505 .....................................................................................................................................

55

11.0

DC and AC Characteristics - PIC16C505..................................................................................................................................

65

12.0

Packaging Information...............................................................................................................................................................

69

INDEX ..................................................................................................................................................................................................

73

PIC16C505 Product Identification System ...........................................................................................................................................

77

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

DS40192A-page 2

Preliminary

1998 Microchip Technology Inc.

PIC16C505

1.0GENERAL DESCRIPTION

The PIC16C505 from Microchip Technology is a lowcost, high performance, 8-bit, fully static, EPROM/ ROM-based CMOS microcontroller. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (1 s) except for program branches which take two cycles. The PIC16C505 delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C505 product is equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are five oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16C505 is available in the cost-effective One- Time-Programmable (OTP) version, which is suitable for production in any volume. The customer can take full advantage of Microchip’s price leadership in OTP microcontrollers while benefiting from the OTP’s flexibility.

The PIC16C505 product is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a ‘C’ compiler, a low-cost development programmer, and a full featured programmer. All the tools are supported on IBM PC and compatible machines.

1.1Applications

The PIC16C505 fits perfectly in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC16C505 very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of “glue”logic and PLD’s in larger systems, coprocessor applications).

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 3

PIC16C505

TABLE 1-1:

PIC16C505 DEVICE

 

 

 

 

 

 

 

 

 

 

PIC16C505

 

 

 

 

 

 

 

Clock

Maximum Frequency

20

 

 

of Operation (MHz)

 

 

 

 

 

 

 

 

 

 

 

 

Memory

EPROM Program Memory

1024

 

 

 

 

 

 

Data Memory (bytes)

72

 

 

 

 

 

 

 

 

 

 

 

Timer Module(s)

TMR0

 

 

Peripherals

 

 

 

 

Wake-up from SLEEP on

Yes

 

 

 

pin change

 

 

 

 

I/O Pins

11

 

 

 

 

 

 

 

 

Input Pins

1

 

 

Features

 

 

 

 

Internal Pull-ups

Yes

 

 

 

 

 

 

 

 

In-Circuit Serial Programming

Yes

 

 

 

 

 

 

 

 

Number of Instructions

33

 

 

 

 

 

 

 

 

Packages

14-pin DIP, SOIC, JW

 

 

 

 

 

 

The PIC16C505 device has Power-on Reset, selectable Watchdog Timer, selectable code protect, high I/O current capability and precision internal oscillator.

The PIC16C505 device uses serial programming with data pin RB0 and clock pin RB1.

DS40192A-page 4

Preliminary

1998 Microchip Technology Inc.

PIC16C505

2.0PIC16C505 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C505 Product Identification System at the back of this data sheet to specify the correct part number.

2.1UV Erasable Devices

The UV erasable version, offered in ceramic side brazed package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

Microchip'sPICSTART PLUS and PRO MATE programmers all support programming of the PIC16C505. Third party programmers also are available; refer to the

Microchip Third Party Guide for a list of sources.

2.2One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates or small volume applications.

The OTP devices, packaged in plastic packages permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4Serialized Quick-Turnaround Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 5

PIC16C505

NOTES:

DS40192A-page 6

Preliminary

1998 Microchip Technology Inc.

PIC16C505

3.0ARCHITECTURAL OVERVIEW

The high performance of the PIC16C505 can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C505 uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12-bits wide, making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200ns @ 20MHz) except for program branches.

The PIC16C505 addresses 1K x 12 of program memory. All program memory is internal.

The PIC16C505 can directly or indirectly address its register files and data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16C505 has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of ‘special optimal situations’ make programming with the PIC16C505 simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C505 device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 7

Microchip Technology Inc PIC16C505T-20I-SL, PIC16C505-20E-SL, PIC16C505-20I-JW, PIC16C505-20I-P, PIC16C505-20I-SL Datasheet

PIC16C505

 

 

 

 

 

FIGURE 3-1:

PIC16C505 BLOCK DIAGRAM

 

 

 

 

 

 

12

Data Bus

8

PORTB

 

 

EPROM

Program Counter

 

 

RB0

 

 

 

 

 

 

 

 

1K x 12

 

 

 

 

 

 

 

 

 

 

RB1

 

 

Program

 

RAM

 

 

 

 

 

RB2

 

 

Memory

 

 

 

 

STACK1

72 bytes

 

RB3/MCLR/Vpp

 

 

 

 

 

 

 

STACK2

 

File

 

RB4/OSC2/CLKOUT

Program

 

 

Registers

 

RB5/OSC1/CLKIN

12

 

RAM Addr

9

 

 

Bus

 

 

 

PORTC

 

 

 

 

 

Instruction reg

 

Addr MUX

 

RC0

 

 

 

 

 

 

 

 

Direct Addr 5

 

5-7

Indirect

RC1

 

 

 

 

 

Addr

RC2

 

 

 

 

 

FSR reg

RC3

 

 

 

 

 

RC4

 

 

 

 

 

 

 

 

 

 

 

 

STATUS reg

RC5/T0CKI

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

Device Reset

3

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer

 

 

 

 

 

 

Instruction

Power-on

ALU

 

 

 

 

Decode &

Reset

8

 

 

 

 

 

Control

Watchdog

 

 

 

 

 

 

W reg

 

 

OSC1/CLKIN

 

Timing

Timer

 

 

 

 

 

 

 

 

 

Generation

 

 

 

 

 

OSC2

 

Internal RC

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC

 

 

 

 

 

 

 

 

 

Timer0

 

 

 

 

MCLR

 

 

 

 

 

 

 

Vdd, Vss

 

 

 

 

DS40192A-page 8

Preliminary

1998 Microchip Technology Inc.

 

 

 

 

 

 

 

 

PIC16C505

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3-1:

PIC16C505 PINOUT DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name

 

DIP

SOIC

I/O/P

Buffer

Description

 

 

Pin #

Pin #

Type

Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RB0

 

13

13

I/O

TTL/ST

Bi-directional I/O port/ serial programming data. Can

 

 

 

 

 

 

 

 

be software programmed for internal weak pull-up and

 

 

 

 

 

 

 

 

wake-up from SLEEP on pin change. This buffer is a

 

 

 

 

 

 

 

 

Schmitt Trigger input when used in serial programming

 

 

 

 

 

 

 

 

mode.

RB1

 

12

12

I/O

TTL/ST

Bi-directional I/O port/ serial programming clock. Can

 

 

 

 

 

 

 

 

be software programmed for internal weak pull-up and

 

 

 

 

 

 

 

 

wake-up from SLEEP on pin change. This buffer is a

 

 

 

 

 

 

 

 

Schmitt Trigger input when used in serial programming

 

 

 

 

 

 

 

 

mode.

RB2

 

11

11

I/O

TTL

Bi-directional I/O port.

RC0

 

10

10

I/O

TTL

Bi-directional I/O port.

RC1

 

9

9

I/O

TTL

Bi-directional I/O port.

RC2

 

8

8

I/O

TTL

Bi-directional I/O port.

RC3

 

7

7

I/O

TTL

Bi-directional I/O port.

RC4

 

6

6

I/O

TTL

Bi-directional I/O port.

RC5/T0CKI

 

5

5

I/O

ST

Bi-directional I/O port. Can be configured as T0CKI.

 

 

 

 

4

4

I

TTL

Input port/master clear (reset) input/programming volt-

RB3/MCLR/V

PP

 

 

 

 

 

 

 

 

 

age input. When configured as

MCLR,

this pin is an

 

 

 

 

 

 

 

 

active low reset to the device. Voltage on

 

 

 

 

 

 

 

 

 

 

MCLR/VPP

 

 

 

 

 

 

 

 

must not exceed VDD during normal device operation.

 

 

 

 

 

 

 

 

Can be software programmed for internal weak pull-up

 

 

 

 

 

 

 

 

and wake-up from SLEEP on pin change. Weak pull-

 

 

 

 

 

 

 

 

up only when configured as RB3.

RB4/OSC2/CLKOUT

3

3

I/O

TTL

Bi-directional I/O port/oscillator crystal output. Con-

 

 

 

 

 

 

 

 

nections to crystal or resonator in crystal oscillator

 

 

 

 

 

 

 

 

mode (XT and LP modes only, RB4 in other modes).

 

 

 

 

 

 

 

 

Can be software programmed for internal weak pull-up

 

 

 

 

 

 

 

 

and wake-up from SLEEP on pin change. In EXTRC

 

 

 

 

 

 

 

 

and INTRC modes, the pin output can be configured to

 

 

 

 

 

 

 

 

CLKOUT, which has 1/4 the frequency of OSC1 and

 

 

 

 

 

 

 

 

denotes the instruction cycle rate.

RB5/OSC1/CLKIN

2

2

I/O

TTL/ST

Bidirectional IO port/oscillator crystal input/external

 

 

 

 

 

 

 

 

clock source input (RB5 in Internal RC mode only,

 

 

 

 

 

 

 

 

OSC1 in all other oscillator modes). TTL input when

 

 

 

 

 

 

 

 

RB5, ST input in external RC oscillator mode.

VDD

 

1

1

P

Positive supply for logic and I/O pins

VSS

 

14

14

P

Ground reference for logic and I/O pins

Legend: I = input, O = output, I/O = input/output, P = power, — = not used, TTL = TTL input, ST = Schmitt Trigger input

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 9

PIC16C505

3.1Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

OSC1

 

 

 

 

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

Internal

Q3

 

 

 

 

 

 

 

 

 

 

phase

 

 

 

 

 

 

 

 

 

 

clock

 

 

 

 

 

 

 

 

 

 

 

Q4

 

 

 

 

 

 

 

 

 

 

 

PC

 

PC

 

 

PC+1

 

 

 

 

PC+2

 

 

Fetch INST (PC)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC-1)

 

 

Fetch INST (PC+1)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC)

 

 

Fetch INST (PC+2)

 

 

 

 

 

 

 

 

 

 

Execute INST (PC+1)

 

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

1.

MOVLW

03H

Fetch 1

Execute 1

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

MOVWF

PORTB

 

Fetch 2

Execute 2

 

 

 

 

 

 

 

 

 

 

 

 

3.

CALL

SUB_1

 

 

Fetch 3

Execute 3

 

 

 

 

 

 

 

 

 

 

 

4.

BSF

PORTB, BIT1

 

 

 

Fetch 4

Flush

 

 

 

 

 

 

 

 

 

 

Fetch SUB_1 Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

DS40192A-page 10

Preliminary

1998 Microchip Technology Inc.

4.0MEMORY ORGANIZATION

PIC16C505 memory is organized into program memory and data memory. For the PIC16C505, a paging scheme is used. Program memory pages are accessed using one STATUS register bit. Data memory banks are accessed using the File Select Register (FSR).

4.1Program Memory Organization

The PIC16C505 devices have a 12-bit Program Counter (PC).

The 1K x 12 (0000h-03FFh) for the PIC16C505 are physically implemented. Refer to Figure 4-1. Accessing a location above this boundary will cause a wrap-around within the first 1K x 12 space. The effective reset vector is at 0000h, (see Figure 4-1). Location 03FFh (PIC16C505) contains the internal clock oscillator calibration value. This value should never be overwritten.

PIC16C505

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C505

 

 

 

 

PC<11:0>

 

 

CALL, RETLW

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stack Level 1

 

 

 

 

 

 

Stack Level 2

 

 

 

 

 

 

 

 

 

 

Reset Vector (note 1)

0000h

 

 

 

UserMemory Space

 

 

 

 

 

 

 

 

 

 

01FFh

 

 

 

 

 

 

0200h

 

 

 

 

On-chip Program

 

 

 

 

 

 

Memory

 

 

1024 Word

03FFh

 

 

0400h

 

7FFh

Note 1: Address 0000h becomes the effective reset vector. Location 03FFh (PIC16C505) contains the MOVLW XX INTERNAL RC oscillator calibration value.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 11

PIC16C505

4.2Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: special function registers and general purpose registers.

The special function registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports), and the File Select Register (FSR). In addition, special purpose registers are used to control the I/O port configuration and prescaler options.

The general purpose registers are used for data and control information under command of the instructions.

For the PIC16C505, the register file is composed of 8 special function registers, 24 general purpose registers, and 48 general purpose registers that may be addressed using a banking scheme (Figure 4-2).

4.2.1GENERAL PURPOSE REGISTER FILE

The general purpose register file is accessed either directly or indirectly through the file select register FSR (Section 4.8).

FIGURE 4-2: PIC16C505 REGISTER FILE MAP

FSR<6:5>

 

 

00

 

 

01

10

 

11

 

 

 

 

File Address

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00h

 

 

INDF(1)

20h

 

 

40h

 

60h

 

 

 

 

 

 

 

 

 

 

01h

 

 

TMR0

 

 

 

 

 

 

 

 

 

 

 

 

 

02h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

03h

 

 

STATUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addresses map back to

 

04h

 

 

 

 

 

 

 

 

addresses in Bank 0.

 

 

 

 

 

 

 

 

FSR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05h

 

 

OSCCAL

 

 

 

 

 

 

 

 

 

 

 

 

 

06h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORTB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07h

 

 

PORTC

 

 

 

 

 

 

 

 

 

 

 

 

 

08h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Purpose

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0Fh

 

 

Registers

 

 

2Fh

 

 

4Fh

 

6Fh

 

 

 

10h

 

 

 

30h

 

 

50h

 

70h

 

 

 

 

 

 

 

 

 

General

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General

 

 

 

 

General

 

 

General

 

 

 

 

 

Purpose

 

 

Purpose

 

 

 

Purpose

 

 

 

 

Purpose

 

 

 

 

 

 

Registers

 

 

Registers

 

 

 

Registers

 

 

 

 

Registers

 

 

 

 

1Fh

 

 

 

3Fh

 

 

5Fh

 

7Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0

 

Bank 1

 

 

 

Bank 2

 

 

 

Bank 3

Note 1: Not a physical register.

DS40192A-page 12

Preliminary

1998 Microchip Technology Inc.

PIC16C505

4.2.2SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1).

The special registers can be classified into two sets. The special function registers associated with the “core”functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 4-1:

SPECIAL FUNCTION REGISTER (SFR) SUMMARY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

 

Value on

Value on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-On

 

MCLR

and

Wake-up on

Address

Name

 

 

Bit 7

Bit 6

Bit 5

Bit 4

 

Bit 3

Bit 2

Bit 1

Bit 0

Reset

WDT Reset

Pin Change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00h

INDF

 

Uses contents of FSR to address data memory (not a physical register)

xxxx xxxx

uuuu uuuu

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01h

TMR0

 

8-bit real-time clock/counter

 

 

 

 

 

 

 

 

 

 

xxxx xxxx

uuuu uuuu

uuuu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02h(1)

PCL

 

Low order 8 bits of PC

 

 

 

 

 

 

 

 

 

 

1111

1111

1111 1111

1111 1111

03h

STATUS

 

RBWUF

PAO

 

TO

 

 

 

PD

 

Z

DC

C

0001

1xxx

000q

quuu

100q

quuu

04h

FSR

 

Indirect data memory address pointer

 

 

 

110x

xxxx

11uu uuuu

11uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05h

OSCCAL

 

 

CAL5

CAL4

CAL3

CAL2

 

CAL1

CAL0

1000

00--

uuuu uu--

uuuu uu--

N/A

TRISB

 

 

 

 

 

 

I/O control registers

 

 

--11 1111

--11 1111

--11 1111

N/A

TRISC

 

 

 

 

 

 

I/O control registers

 

 

--11 1111

--11 1111

--11 1111

N/A

OPTION

 

 

 

 

 

 

TOCS

TOSE

 

PSA

PS2

PS1

PS0

1111

1111

1111 1111

1111 1111

 

 

RBWU

RBPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06h

PORTB

 

 

RB5

RB4

 

RB3

RB2

RB1

RB0

--xx xxxx

--uu uuuu

--uu uuuu

07h

PORTC

 

 

RC5

RC4

 

RC3

RC2

RC1

RC0

--xx xxxx

--uu uuuu

--uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded cellls not used by Port Registers, read as ‘0’, = unimplemented, read as ‘0’, x = unknown, u = unchanged.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 13

PIC16C505

4.3STATUS Register

This register contains the arithmetic status of the ALU, the RESET status, and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

FIGURE 4-3: STATUS REGISTER (ADDRESS:03h)

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions, which do affect STATUS bits, see Instruction Set Summary.

 

R/W-0

 

R/W-0

R/W-0

R-1

R-1

R/W-x

R/W-x

R/W-x

 

 

 

 

RBWUF

 

 

 

PA0

 

TO

 

 

 

PD

 

Z

 

DC

C

 

R = Readable bit

 

 

bit7

 

 

6

 

5

 

 

4

 

 

3

 

2

 

1

bit0

 

W = Writable bit

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit 7:

RBWUF: IO reset bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Reset due to wake-up from SLEEP on pin change

 

 

 

 

 

 

 

 

0

= After power up or other reset

 

 

 

 

 

 

 

 

 

 

 

bit

6:

Unimplemented

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit

5:

PA0: Program page preselect bits

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= Page 1 (200h - 3FFh)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

= Page 0 (000h - 1FFh)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each page is 512 bytes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program

 

 

 

 

page preselect is not recommended since this may affect upward compatibility with future products.

 

 

bit

4:

 

: Time-out bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= After power-up, CLRWDT instruction, or SLEEP instruction

 

 

 

 

 

 

 

0

= A WDT time-out occurred

 

 

 

 

 

 

 

 

 

 

 

bit

3:

 

: Power-down bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= After power-up or by the CLRWDT instruction

 

 

 

 

 

 

 

 

0

= By execution of the SLEEP instruction

 

 

 

 

 

 

 

 

bit

2:

Z: Zero bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= The result of an arithmetic or logic operation is zero

 

 

 

 

 

 

 

 

0

= The result of an arithmetic or logic operation is not zero

 

 

 

 

 

 

bit

1:

 

 

 

 

 

 

bit (for ADDWF and SUBWF instructions)

 

 

 

 

 

DC: Digit carry/borrow

 

 

 

 

 

 

 

ADDWF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= A carry from the 4th low order bit of the result occurred

 

 

 

 

 

 

 

 

0

= A carry from the 4th low order bit of the result did not occur

 

 

 

 

 

 

 

SUBWF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

= A borrow from the 4th low order bit of the result did not occur

 

 

 

 

 

 

 

0

= A borrow from the 4th low order bit of the result occurred

 

 

 

 

 

bit

0:

 

 

 

bit (for ADDWF, SUBWF and RRF, RLF instructions)

 

 

 

 

 

C: Carry/borrow

 

 

 

 

 

 

 

ADDWF

 

 

 

 

 

 

 

 

SUBWF

 

 

 

RRF or RLF

 

 

 

 

1

= A carry occurred

 

 

 

1 = A borrow did not occur

Load bit with LSB or MSB, respectively

 

 

 

 

0

= A carry did not occur

 

 

 

0 = A borrow occurred

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS40192A-page 14

Preliminary

1998 Microchip Technology Inc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIC16C505

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4

 

OPTION Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: If TRIS

bit is set to ‘0’, the wake-up on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The OPTION

register

is

a

8-bit

wide,

write-only

 

change and pull-up functions are disabled

 

for that pin; i.e., note that TRIS overrides

register

which

contains

various

control bits

to

 

configure the Timer0/WDT prescaler and Timer0.

 

 

 

OPTION control of

RBPU

and

RBWU.

 

 

By executing the OPTION instruction, the contents of

 

 

 

 

 

 

 

 

 

 

the W register will be transferred to the OPTION

 

 

 

 

 

 

 

 

 

 

register. A RESET sets the OPTION<7:0> bits.

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4-4: OPTION REGISTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W-1

 

 

 

W-1

W-1

 

W-1

W-1

W-1

W-1

W-1

 

 

 

 

 

 

 

 

 

 

RBWU

 

 

RBPU

 

 

T0CS

T0SE

 

PSA

PS2

 

PS1

PS0

 

W

= Writable bit

 

 

bit7

 

 

 

 

6

 

 

 

5

 

4

 

 

3

2

 

1

bit0

 

U

= Unimplemented bit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- n = Value at POR reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Table 4-1 for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other resets.

 

 

bit 7:

 

 

 

 

 

Enable wake-up on pin change (RB0, RB1, RB3, RB4)

 

 

 

 

 

 

 

 

 

 

RBWU:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 = Disabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 = Enabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bit 6: RBPU: Enable weak pull-ups (RB0, RB1, RB3, RB4) 1 = Disabled

0 = Enabled

bit

5:

T0CS: Timer0 clock source select bit

 

 

1

= Transition on T0CKI pin

 

 

 

 

 

0

= Transition on internal instruction cycle clock, Fosc/4

bit

4:

T0SE: Timer0 source edge select bit

 

 

1

= Increment on high to low transition on the T0CKI pin

 

 

0

= Increment on low to high transition on the T0CKI pin

bit

3:

PSA: Prescaler assignment bit

 

 

 

 

1

= Prescaler assigned to the WDT

 

 

0

= Prescaler assigned to Timer0

 

 

bit

2-0:

PS2:PS0: Prescaler rate select bits

 

 

 

Bit Value

Timer0 Rate

WDT Rate

 

 

 

 

 

 

 

 

 

 

 

 

000

1

: 2

1 :

1

 

 

 

 

001

1

: 4

1 :

2

 

 

 

 

010

1

: 8

1 :

4

 

 

 

 

011

1

: 16

1 :

8

 

 

 

 

100

1

: 32

1 :

16

 

 

 

 

101

1

: 64

1 :

32

 

 

 

 

110

1

: 128

1 :

64

 

 

 

 

111

1

: 256

1 :

128

 

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 15

PIC16C505

4.5OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal 4 MHz oscillator. It contains six bits for fine calibration.

FIGURE 4-5: OSCCAL REGISTER (ADDRESS 05h)PIC16C505

R/W-1

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U-0

U-0

 

 

 

CAL5

CAL4

CAL3

CAL2

CAL1

CAL0

 

R

= Readable bit

bit7

 

 

 

 

 

 

bit0

 

W

= Writable bit

 

 

 

 

 

 

 

 

 

U

= Unimplemented bit,

 

 

 

 

 

 

 

 

 

 

read as ‘0’

 

 

 

 

 

 

 

 

 

- n

= Value at POR reset

bit 7-4: CAL<5:0>: Fine calibration

DS40192A-page 16

Preliminary

1998 Microchip Technology Inc.

PIC16C505

4.6Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4- 6).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-6).

Instructions where the PCL is the destination, or Modify PCL instructions, include MOVWF PC, ADDWF PC, and BSF PC,5.

Note: Because PC<8> is cleared in the CALL instruction, or any Modify PCL instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long).

FIGURE 4-6: LOADING OF PC

BRANCH INSTRUCTIONS - PIC16C505

GOTO Instruction

11

10

9

8

7

 

 

 

 

 

0

 

PC

 

 

 

 

 

 

 

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction Word

 

 

 

 

 

 

 

 

 

PA0

 

 

 

 

 

 

 

 

7

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALL or Modify PCL Instruction

 

 

11

10

9

8

7

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC

 

 

 

 

 

 

 

 

 

 

PCL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction Word

 

 

 

 

 

 

 

 

 

Reset to ‘0’

 

 

 

 

 

7

 

 

 

PA0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATUS

4.6.1EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page i.e., the oscillator calibration instruction. After executing MOVLW XX, the PC will roll over to location 00h, and begin executing user code.

The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is preselected.

Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7Stack

PIC16C505 devices have a 12-bit wide hardware push/pop stack.

A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL’s are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW’s are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 17

PIC16C505

4.8Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing.

EXAMPLE 4-1: INDIRECT ADDRESSING

Register file 07 contains the value 10h

Register file 08 contains the value 0Ah

Load the value 07 into the FSR register

A read of the INDF register will return the value of 10h

Increment the value of the FSR register by one (FSR = 08)

A read of the INDR register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

 

movlw

0x10

;initialize pointer

 

movwf

FSR

; to RAM

NEXT

clrf

INDF

;clear INDF register

 

incf

FSR,F

;inc pointer

 

btfsc

FSR,4

;all done?

 

goto

NEXT

;NO, clear next

CONTINUE

 

 

 

 

:

 

;YES, continue

The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

The device uses FSR6:5 to select between banks 0:3.

FIGURE 4-7:

DIRECT/INDIRECT ADDRESSING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct Addressing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indirect Addressing

 

(FSR)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 5

 

 

 

4 (opcode) 0

 

 

 

 

6 5 4

 

 

(FSR) 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bank select

 

location

 

select

 

 

 

 

 

 

 

 

 

 

 

bank

 

 

location select

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

01

 

10

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addresses

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

map back to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

addresses

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Bank 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

0Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Memory(1)

 

10h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Fh

3Fh

 

5Fh

 

7Fh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0

Bank 1

Bank 2

Bank 3

 

 

 

 

 

 

Note 1: For register map detail see Section 4.2.

DS40192A-page 18

Preliminary

1998 Microchip Technology Inc.

PIC16C505

5.0I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (e.g., MOVF PORTB,W) always read the I/O pins independent of the pin’s input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers are all set.

5.1PORTB

PORTB is an 8-bit I/O register. Only the low order 6 bits are used (RB5:RB0). Bits 7 and 6 are unimplemented and read as '0's.Please note that RB3 is an input only pin. The configuration word can set several I/O’s to alternate functions. When acting as alternate functions the pins will read as ‘0’ during port read. Pins RB0, RB1, RB3 and RB4 can be configured with weak pull-ups and also with wake-up on change. The wake-up on change and weak pull-up functions are not pin selectable. If pin 4 is configured as MCLR, weak pull-up is always off and wake-up on change for this pin is not enabled.

5.2PORTC

PORTC is an 8-bit I/O register. Only the low order 6 bits are used (RC5:RC0). Bits 7 and 6 are unimplemented and read as ‘0’s.

5.3TRIS Registers

The output driver control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from TRISa register bit puts the corresponding output driver in a hi-impedance mode.

A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are RB3 which is input only and RC5 which may be controlled by the option register, see Figure 4- 4.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low.

The TRIS registers are “write-only” and are set (output drivers disabled) upon RESET.

5.4I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except RB3 which is input only, may be used for both input and output operations. For input operations these ports are nonlatching. Any input must be present until read by an input instruction (e.g., MOVF PORTB,W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except RB3) can be programmed individually as input or output.

FIGURE 5-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

Data

 

 

 

Bus

D

Q

 

 

 

WR

Data

VDD

 

Latch

 

 

 

Port

CK

Q

 

 

 

 

 

P

 

W

 

N

I/O

Reg

D

Q

pin(1)

 

 

 

TRIS

VSS

 

 

Latch

 

TRIS ‘f’

 

 

CK

Q

 

 

 

 

Reset

 

 

RD Port

Note 1: I/O pins have protection diodes to VDD and VSS.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 19

PIC16C505

TABLE 5-1:

SUMMARY OF PORT REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Value on

 

Value on

Value on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-On

 

MCLR

and

Wake-up on

Address

Name

 

Bit 7

 

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Reset

WDT Reset

Pin Change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A

TRISB

 

 

 

 

 

I/O control registers

 

 

--11 1111

--11 1111

--11 1111

N/A

TRISC

 

 

 

 

 

I/O control registers

 

 

--11 1111

--11 1111

--11 1111

N/A

OPTION

 

 

 

 

 

 

TOCS

TOSE

PSA

PS2

PS1

PS0

1111 1111

1111 1111

1111 1111

 

RBWU

RBPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

03h

STATUS

RBWUF

 

PAO

 

 

 

 

 

 

Z

DC

C

0001

1xxx

000q quuu

100q quuu

 

TO

PD

06h

PORTB

 

 

RB5

RB4

RB3

RB2

RB1

RB0

--xx xxxx

--uu uuuu

--uu uuuu

07h

PORTC

 

 

RC5

RC4

RC3

RC2

RC1

RC0

--xx xxxx

--uu uuuu

--uu uuuu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded cellls not used by Port Registers, read as ‘0’, = unimplemented, read as ‘0’, x = unknown, u = unchanged.

5.5I/O Programming Considerations

5.5.1BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read- modify-write instructions (e.g., BCF, BSF, etc.) on an I/ O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin (“wired-or”,“wired- and”). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORTB Settings

;PORTB<5:3> Inputs

;PORTB<2:0> Outputs

;

 

PORTB

latch

PORTB pins

;

 

----------

----------

BCF

PORTB, 5

;--01

-ppp

--11

pppp

BCF

PORTB, 4

;--10

-ppp

--11

pppp

MOVLW

007h

;

 

 

 

TRIS

PORTB

;--10

-ppp

--11

pppp

;

 

 

 

 

 

;Note that the user

may have expected

the pin

;values

to be --00 pppp. The 2nd BCF caused

;RB5 to

be latched as the

pin value (High).

5.5.2SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

DS40192A-page 20

Preliminary

1998 Microchip Technology Inc.

PIC16C505

FIGURE 5-2: SUCCESSIVE I/O OPERATION

 

Q1

Q2

 

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

 

Q3

Q4

Q1

Q2

Q3

Q4

Instruction

 

PC

 

 

 

 

PC + 1

 

 

 

 

PC + 2

 

 

 

PC + 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fetched

MOVWF PORTB

MOVF PORTB,W

 

 

NOP

 

 

 

NOP

 

 

 

 

 

 

 

 

RB5:RB0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port pin

 

 

 

Port pin

 

 

 

 

 

 

 

 

 

 

 

 

 

written here

 

sampled here

 

 

 

 

Instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

 

 

 

 

MOVWF PORTB

MOVF PORTB,W

 

NOP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Write to

 

 

 

(Read

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORTB)

 

 

 

PORTB)

 

 

 

 

 

 

This example shows a write to PORTB followed by a read from PORTB.

Data setup time = (0.25 TCY – TPD)

where: TCY = instruction cycle.

TPD = propagation delay

Therefore, at higher clock frequencies, a write followed by a read may be problematic.

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 21

PIC16C505

NOTES:

DS40192A-page 22

Preliminary

1998 Microchip Technology Inc.

PIC16C505

6.0TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

8-bit timer/counter register, TMR0

-Readable and writable

8-bit software programmable prescaler

Internal or external clock select

-Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.1.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 6.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 6-1.

FIGURE 6-1:

TIMER0 BLOCK DIAGRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data bus

 

RC5/T0CKI

 

 

FOSC/4

 

0

 

 

 

 

 

 

 

 

PSout

 

 

 

 

8

 

Pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

Sync with

 

TMR0 reg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Programmable

 

 

0

 

Clocks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSout

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prescaler(2)

 

 

 

 

 

 

 

 

 

 

T0SE

 

 

 

 

 

 

 

 

 

 

(2 cycle delay) Sync

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PS2, PS1, PS0(1)

PSA(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

T0CS(1)

 

 

 

 

 

 

 

 

 

 

Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register. 2: The prescaler is shared with the Watchdog Timer (Figure 6-5).

1998 Microchip Technology Inc.

Preliminary

DS40192A-page 23

PIC16C505

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

 

 

 

 

 

 

 

 

 

 

 

PC

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter)

 

PC-1

 

 

PC

 

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer0

T0

 

 

 

T0+1

 

 

T0+2

 

 

NT0

 

 

NT0

 

 

NT0

 

 

 

NT0+1

 

 

NT0+2

 

Instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Executed

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

reads NT0 + 2

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

 

 

 

 

 

 

 

 

 

 

 

PC

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

Q1

Q2

Q3

Q4

(Program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter)

 

PC-1

 

 

PC

 

 

PC+1

 

 

PC+2

 

 

PC+3

 

 

PC+4

 

 

PC+5

 

 

PC+6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction

 

 

 

 

MOVWF TMR0

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

MOVF TMR0,W

 

 

 

 

Fetch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer0

T0

 

 

 

 

 

T0+1

 

 

 

 

 

 

 

 

 

 

 

NT0

 

 

 

 

 

 

 

 

 

NT0+1

T0

Instruction

 

 

 

 

 

 

 

 

Write TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Read TMR0

Execute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

executed

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0

 

reads NT0 + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

 

 

 

 

 

 

 

 

 

 

Value on

 

Value on

Value on

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Power-On

 

MCLR

and

Wake-up on

Reset

WDT Reset

Pin Change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01h

TMR0

Timer0 - 8-bit real-time clock/counter

 

xxxx xxxx

uuuu uuuu

uuuu uuuu

N/A

OPTION

 

 

T0CS

T0SE

PSA

PS2

PS1

PS0

 

 

 

RBWU

RBPU

1111 1111

1111 1111

1111 1111

N/A

TRISB

 

 

I/O control registers

 

--11 1111

--11 1111

--11 1111

N/A

TRISC

 

 

I/O control registers

 

--11 1111

--11 1111

--11 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged,

DS40192A-page 24

Preliminary

1998 Microchip Technology Inc.

Loading...
+ 56 hidden pages