SGS Thomson Microelectronics PSD401A1, PSD401A2, PSD402A1, PSD403A1, PSD403A2 Datasheet

...
0 (0)

PSD4XX

ZPSD4XX

Low Cost Field Programmable Microcontroller Peripherals

NOT FOR NEW DESIGN

FEATURES SUMMARY

 

Single Supply Voltage:

Figure 1. Packages

– 5 V±10% for PSD4XX

 

 

– 2.7 to 5.5 V for PSD4XX-V

 

Up to 1 Mbit of UV EPROM

 

Up to 16 Kbit SRAM

 

Input Latches

 

Programmable I/O ports

 

Page Logic

 

Programmable Security

 

 

PLDCC68 (J)

 

CLDCC68 (L)

 

TQFP68 (U)

 

 

January 2002

1/3

This is information on a product still in production but not recommended for new designs.

PSD4XX Family

PSD4XX/ZPSD4XX

Field-Programmable Microcontroller Peripherals

Table of Contents

1

Introduction ...........................................................................................................................................................

 

1

2

Key Features ........................................................................................................................................................

 

2

3

Notation ................................................................................................................................................................

 

 

3

4

Zero-Power Background.......................................................................................................................................

3

5

Integrated Power ManagementTM Operation ........................................................................................................

5

6

Design Flow ..........................................................................................................................................................

 

6

7

PSD4XX Family ....................................................................................................................................................

 

7

8

Table 2. PSD4XX Pin Descriptions......................................................................................................................

8

9

The PSD4XX Architecture ..................................................................................................................................

10

 

9.1

The ZPLD Block..........................................................................................................................................

10

 

 

9.1.1 The PSD4XXA1 ZPLD Block............................................................................................................

10

 

 

 

9.1.1.1

The DPLD ..........................................................................................................................

12

 

 

 

9.1.1.2

The GPLD ..........................................................................................................................

13

 

 

 

9.1.1.3

TPA Macrocell Structure ...................................................................................................

13

 

 

 

9.1.1.4 Port B Macrocell Structure .................................................................................................

17

 

 

 

9.1.1.5 The ZPLD Power Management..........................................................................................

18

 

 

9.1.2 The PSD4XXA2 ZPLD Block............................................................................................................

22

 

 

 

9.1.2.1

The DPLD ..........................................................................................................................

24

 

 

 

9.1.2.2

The GPLD ..........................................................................................................................

26

 

 

 

9.1.2.3 Port A Macrocell Structure .................................................................................................

26

 

 

 

9.1.2.4 Port B Macrocell Structure .................................................................................................

30

 

 

 

9.1.2.5 Port E Macrocell Structure .................................................................................................

33

 

 

 

9.1.2.6 The ZPLD Power Management..........................................................................................

34

 

9.2

Bus Interface...............................................................................................................................................

 

37

 

 

9.2.1

Bus Interface Configuration ..............................................................................................................

37

 

 

9.2.2 PSD4XX Interface to a Multiplexed Bus ...........................................................................................

38

 

 

9.2.3 PSD4XX Interface to Non-Multiplexed Bus ......................................................................................

38

 

 

9.2.4

Data Byte Enable..............................................................................................................................

42

 

 

9.2.5

Optional Features .............................................................................................................................

43

 

 

9.2.6

Bus Interface Examples....................................................................................................................

43

 

9.3

I/O Ports......................................................................................................................................................

 

48

 

 

9.3.1

Standard MCU I/O ............................................................................................................................

48

 

 

9.3.2

PLD I/O

...........................................................................................................................................

48

 

 

9.3.3

Address Out......................................................................................................................................

49

 

 

9.3.4

Address In ........................................................................................................................................

49

 

 

9.3.5

Data Port ..........................................................................................................................................

49

 

 

9.3.6

Alternate Function In ........................................................................................................................

49

 

 

9.3.7

Peripheral I/O ...................................................................................................................................

50

 

 

9.3.8

Open Drain Outputs..........................................................................................................................

50

 

 

9.3.9

Port Registers...................................................................................................................................

51

 

 

9.3.10 Port A – Functionality and Structure.................................................................................................

54

 

 

9.3.11 Port B – Functionality and Structure.................................................................................................

54

 

 

9.3.12 Port C and Port D – Functionality and Structure ..............................................................................

57

 

 

9.3.13 Port E – Functionality and Structure.................................................................................................

57

 

9.4

Memory Block .............................................................................................................................................

 

61

 

 

9.4.1

EPROM ............................................................................................................................................

 

61

 

 

9.4.2

SRAM ...............................................................................................................................................

 

61

i

PSD4XX Family

PSD4XX/ZPSD4XX

Field-Programmable Microcontroller Peripherals

Table of Contents (cont.)

 

9.4.3 Memory Select Map..........................................................................................................................

61

 

9.4.4 Memory Select Map for 8031 Application.........................................................................................

62

 

9.4.5 Peripheral I/O ...................................................................................................................................

65

 

9.5 Power Management Unit ............................................................................................................................

67

 

9.5.1 Standby Mode ..................................................................................................................................

67

 

9.5.2 Other Power Saving Options ............................................................................................................

70

10.0

Page Register .....................................................................................................................................................

72

11.0

Security Protection..............................................................................................................................................

72

12.0

System Configuration .........................................................................................................................................

73

 

12.1

Reset Input ..............................................................................................................................................

76

 

12.2

ZPLD and Memory During Reset.............................................................................................................

76

 

12.3

Register Values During and After Reset..................................................................................................

76

 

12.4

ZPLD Macrocell Initialization ...................................................................................................................

76

13.0

Specifications......................................................................................................................................................

77

 

13.1

Absolute Maximum Ratings .....................................................................................................................

77

 

13.2

Operating Range .....................................................................................................................................

77

 

13.3

Recommended Operating Conditions......................................................................................................

77

 

13.4

AC/DC Parameters ..................................................................................................................................

78

 

13.5

Example of ZPSD4XX Typical Power Calculation at VCC = 5.0 V...........................................................

80

 

13.6

DC Characteristics (5 V ± 10% versions) ................................................................................................

81

 

13.7

AC/DC Parameters – ZPLD Timing Parameters .....................................................................................

82

 

13.8

Microcontroller Interface – AC/DC Parameters .......................................................................................

84

 

13.9

DC Characteristics (ZPSD4XXV Versions) (3.0 V ± 10% versions) ........................................................

88

 

13.10

AC/DC Parameters – ZPLD Timing Parameters (3.0 V ± 10% versions)................................................

89

 

13.11

Microcontroller Interface – AC/DC Parameters (3.0 V± 10% versions)...................................................

91

14.0

Timing Diagrams.................................................................................................................................................

95

15.0

Pin Capacitance................................................................................................................................................

102

16.0

AC Testing ........................................................................................................................................................

102

17.0

Erasure and Programming................................................................................................................................

102

18.0

PSD4XX Pin Assignments................................................................................................................................

103

19.0

Package Information.........................................................................................................................................

105

20.0

PSD4XX Product Ordering Information ............................................................................................................

110

 

20.1

PSD4XX Family – Selector Guide .........................................................................................................

110

 

20.2

Part Number Construction .....................................................................................................................

111

 

20.3

Ordering Information..............................................................................................................................

111

ii

Programmable Peripheral

PSD4XX Family

Field-Programmable Microcontroller Peripherals

1.0 Introduction

The PSD4XX family is a microcontroller peripheral that integrates high-performance and user-configurable blocks of EPROM, programmable logic, and SRAM into one part.

The PSD4XX products also provide a powerful microcontroller interface that eliminates the need for external “glue logic”. The no “glue logic” concept provides a user-programmable interface to a variety of 8- and 16-bit (multiplexed or non-multiplexed) microcontrollers that is easy to use. The part’s integration, small form factor, low power consumption, and ease of use make it the ideal part for interfacing to virtually any microcontroller.

The PSD4XX provides two Zero-power PLDs (ZPLD): a Decode PLD (DPLD) and a General-purpose PLD (GPLD). A configuration bit (Turbo) can be set by the MCU, and will automatically place the ZPLDs into Standby Mode if no inputs are changing. The ZPLDs are designed to consume minimum power using Zero-power CMOS technology that uses only 10 µA (typical) standby current. Unused product terms are automatically disabled, also reducing power, regardless of the Turbo bit setting.

The main function of the DPLD is to perform address decoding for the internal I/O ports, EPROM, and SRAM. The address decoding can be based on up to 24 bits of address inputs, control signals (RD, WR, PSEN, etc.), and internal page logic. The DPLD supports separate program and data spaces (for 8031 compatible MCUs).

The General-purpose PLD (GPLD) can be used to implement various logic functions defined by the user, such as:

State machines

Loadable counters and shift registers

Inter-processor mailbox

External control logic (chip selects, output enables, etc.).

The GPLD has access to up to 59 inputs, 118 product terms, 24 macrocells, and 24 I/O pins.

1

PSD4XX Family

1.0

The PSD4XX has 40 I/O pins that are divided among 5 ports. Each I/O pin can be

Introduction

individually configured to provide many functions, including the following:

(cont.)

MCU I/O

GPLD I/O

 

 

Latched address output (for MCUs with multiplexed data bus)

 

Data bus (for MCUs with non-multiplexed data bus).

 

The PSD4XX can easily interface with virtually any 8- or 16-bit microcontroller with a

 

multiplexed or non-multiplexed bus. All of the MCU control signals are connected to the

 

ZPLDs, enabling the user to generate signals for external devices.

 

The PSD4XX provides between 256 Kbits and 1 Mbit of EPROM that is divided in to four

 

equal-sized blocks. Each block can occupy a different address location, allowing for

 

versatile address mapping. The access time of the EPROM includes the address latching

 

and DPLD decoding.

 

The PSD4XX has an optional 16 Kbit SRAM that can be battery-backed by connecting a

 

battery to the Vstby pin. The battery will protect the contents of the SRAM in the event of a

 

power failure. Therefore, you can place data in the SRAM that you want to keep after the

 

power is switched off. Power switchover to the battery automatically occurs when VCC drops

 

below Vstby.

 

A four-bit Page Register enables easy access to the I/O section, EPROM, and SRAM for

 

microcontrollers with limited address space. The Page Register outputs are connected to

 

both ZPLDs and thus can also be used for external paging schemes.

 

The Power Management Unit (PMU) of the PSD4XX enables the user to control the

 

power consumption on selected functional blocks, based on system requirements.

 

For microcontrollers that do not generate a chip select input for the PSD, the Automatic

 

Power-Down (APD) unit of the PMU can be setup to enable the PSD to enter Power Down

 

Mode or Sleep Mode, based on the inactivity of ALE (or AS).

Implementing your design has never been easier than with PSDsoft— ST’s software development suite. Using PSDsoft, you can do the following:

Configure your PSD4XX to work with virtually any microcontroller

Specify what you want implemented in the programmable logic using a design file

Simulate your design

Download your design to the part using a programmer.

2.0Single-chip programmable peripheral for microcontroller-based applications

Key Features

256K to 1 Mbit of UV EPROM with the following features:

Configurable as 32, 64, or 128 K x 8; or as 16, 32, or 64 K x 16

Divided into four equally-sized mappable blocks for optimized address mapping

As fast as 70 ns access time, which includes address decoding

Built-in Zero-power technology

16 Kbit SRAM is configurable as 2K x 8 or 1K x 16. The access time can be as quick as 70 ns, including address decoding. The contents of the SRAM can be battery-backed by connecting a battery to the Vstby pin. The SRAM also has built-in Zero-power technology.

40 I/O pins (divided into five 8-bit ports) that can be individually configured for:

Standard MCU I/O

PLD/macrocell I/O

Latched address output

High-order address inputs

Special function I/O

Open-drain output

2

PSD4XX Family

2.0Two Zero-power Programmable Logic Devices (ZPLDs): the Decode PLD (DPLD) and

Key Features

the General-purpose PLD (GPLD) can be used for:

Up to 59 Input and 126 output product terms

24 Macrocells and I/O

Decode up to 16 MB of address

State machines and state logic

Generate external signals (chip selects, bus interface, etc.)

Microcontroller logic that eliminates the need for external “glue logic” has the following features:

Ability to interface to multiplexed and non-multiplexed buses

Built-in address latches for multiplexed address/data bus

ALE and Reset polarity are programmable

Multiple configurations are possible for interface to many different microcontrollers

Page logic is connected to the ZPLDs and expands the MCU address space to up to 16 times

Programmable power management allows:

SRAM, EPROM, and ZPLDs to enter standby mode automatically

Disabling of the clock input to the ZPLDs

ZPLDs to enter a special low power mode (Sleep Mode), based on Turbo bit setting

A security bit prevents reading the PSD4XX configuration and the ZPLD contents. Setting this bit will prevent the device from being copied on a device programmer.

Built-in security enables the user to block read accesses from a device programmer

Package choices include 68-pin PLCC, 68-pin CLDCC, and 80-pin TQFP

Programmable polarity Reset output (includes hysteresis), based on Reset input

Simple, menu-driven software (PSDsoft) allows configuration and design entry on a PC.

3.0 Notation

Throughout this data sheet, references are made to the PSD4XX. In most cases, these references also cover the ZPSD4XX and ZPSD4XXV products. Exceptions will be noted.

The main difference between the ZPSD4XX and the PSD4XX is the standby current (Isb). The ZPSD4XX devices have been rated for a lower standby current. Also, there is no low-voltage version of the PSD4XX. There is only the low-voltage version of the ZPSD4XX, which has a V suffix.

4.0 Zero-Power Background

Portable and battery powered systems have recently become major embedded control application segments. As a result, the demand for electronic components having extremely low power consumption has increased dramatically. Recognizing this need, ST

has developed a new Zero Power technology. PSD4XX products virtually eliminate the DC component of power consumption reducing it to standby levels. Eliminating the DC component is the basis for the words “Zero Power”. PSD4XX products also minimize the AC power component when the chip is changing states. The result is a programmable microcontroller peripheral family that replaces discrete circuit functions while drawing minimal current.

3

4

 

 

 

 

 

 

 

Diagram Block

PSD4XX

.1 Figure

Family PSD4XX

 

 

 

ADDRESS/DATA/CONTROL BUS

 

 

 

 

 

 

 

 

ZPLD

 

 

 

 

 

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

 

 

BUS

 

 

 

POWER

 

 

 

 

 

 

PAGE

 

 

 

VSTDBY

 

 

 

 

 

 

256K – 1M BIT

MANAGER

 

 

 

 

REG.

 

 

 

 

 

 

 

 

 

 

EPROM

UNIT

 

 

 

 

 

 

 

 

EPROM

 

 

 

 

 

 

CONTROL

PROG.

DECODE PLD

 

 

 

 

 

 

 

 

SELECTS

 

 

 

 

 

 

 

 

BUS

(DPLD)

 

 

 

 

 

 

 

 

 

RD, WR

INTRF

 

SRAM

 

 

 

 

 

 

 

 

 

 

 

SELECT

 

16 K BITS

PROG.

 

 

 

 

 

 

 

(NOTE 1)

 

 

 

 

 

 

 

 

 

PERIPHERAL

SRAM

PA0 – PA7

 

 

 

 

 

 

PORT

 

 

 

 

 

 

SELECTS

 

 

 

 

 

 

 

AD0 – AD15

 

 

CSIOP

 

 

PORT

 

 

 

 

 

 

 

 

I/O

A

 

 

 

 

 

 

ADIO

 

 

 

 

 

 

 

 

 

 

 

DECODER

 

 

 

 

 

 

 

PORT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERAL PLD

 

 

 

 

 

 

 

 

 

 

(GPLD)

 

24 MACROCELLS

 

 

 

 

 

 

 

 

 

27PT

PORT A MACROCELLS

PROG.

 

 

 

 

 

PC0 – PC7

PROG.

(NOTE 1)

PORT

PB0 – PB7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT

 

80PT

 

 

 

 

 

 

 

 

 

 

 

PORT B MACROCELLS

PORT

 

 

 

 

 

 

PORT

CLKIN

11PT

 

 

B

 

 

 

 

 

 

C

 

PORT E MACROCELLS

 

 

 

 

 

 

 

 

 

 

(NOTE 2)

PROG.

PE0 – PE7

 

 

 

 

 

 

 

 

 

PORT

 

 

 

PD0 – PD7

PROG.

MACROCELL FEEDBACK OR PORT INPUT

 

PORT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT

CLKIN

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PORT

 

 

 

 

GLOBAL

 

 

 

 

 

D

NOTES: 1. ZPLD INPUT BUS

 

 

 

 

 

 

 

 

 

 

CONFIG.

 

 

 

 

 

 

 

– A1 = 36 + CLOCK = 37 INPUTS

 

 

 

 

 

 

 

 

 

&

 

 

 

 

 

 

CLKIN

– A2 = 58 + CLOCK = 59 INPUTS

 

SECURITY

 

 

 

 

 

 

2. PORT E MACROCELLS AVAILABLE ON A2 VERSIONS ONLY.

 

 

 

 

 

 

PSD4XX Family

5.0 Integrated Power

ManagementTM Operation

Upon each address or logic input change to the ZPSD, the device powers up from low power standby for a short time. Then the ZPSD consumes only the necessary power to deliver new logic or memory data to its outputs as a response to the input change. After the new outputs are stable, the ZPSD latches them and automatically reverts back to standby mode. The ICC current flowing during standby mode and during DC operation is identical and is only a few microamperes.

The ZPSD automatically reduces its DC current drain to these low levels and does not require controlling by the CSI (Chip Select Input). Disabling the CSI pin unconditionally forces the ZPSD to standby mode independent of other input transitions.

The only significant power consumption in the ZPSD occurs during AC operation.

The ZPSD contains the first architecture to apply zero power techniques to memory and logic blocks.

Figure 2 compares ZPSD Zero-power operation to the operation of a discrete solution. A standard microcontroller (MCU) bus cycle usually starts with an ALE (or AS) pulse and

the generation of an address. The ZPSD detects the address transition and powers up for a short time. The ZPSD then latches the outputs of the PAD, EPROM and SRAM to the new values. After finishing these operations, the ZPSD shuts off its internal power, entering standby mode. The time taken for the entire cycle is less than the ZPSD’s “access time.”

The ZPSD will stay in standby mode if inputs do not change between bus cycles. In an alternate system implementation using discrete EPROM, SRAM, and other discrete components, the system will consume operating power during the entire bus cycle. This is because the chip select inputs on the memory devices are usually active throughout the entire cycle. The AC power consumption of the ZPLD may be calculated using the composite frequency of the MCU address and control signals, as well as any other logic inputs to the ZPLD.

NOTE: The ZPSD4XX is rated for lower standby current (ISB) than the PSD4XX.

Figure 2. Zero-Power Operation vs. Discrete Implementation

ALE

 

 

 

ADDRESS

EPROM

SRAM

EPROM

ACCESS

ACCESS

ACCESS

 

DISCRETE EPROM, SRAM & LOGIC

 

 

ICC

ZPSD

ZPSD

ZPSD

 

 

 

 

TIME

 

 

 

 

5

PSD4XX Family

6.0

Design Flow

Shown in Figure 3 (below) is the software design flow for a PSD4XX device.

PSDsoft— ST’s software development suite—is used throughout the design phase. You start with a design file that is written in PSDabel—a high-level hardware description language (HDL). Before you compile your design, you must also configure the PSD4XX so it knows what signals to expect from your microprocessor and what pre-runtime options should be set (such as the security bit).

Once you have a design file and have configured the device, you are ready to run the Fitter and Address Translator. The Fitter accepts input from PSDabel and PSD Configuration, synthesizes this user logic and configuration, and fits the design to the PSD silicon. The Address Translator process allows the user to map the MCU firmware from a crosscompiler (in Intel HEX or S-Record format) into the NVM memory blocks within the PSD. As a result, the MCU firmware is merged with the logic and configuration definition of the PSD.

The output of the Address Translator and the Fitter is the required object file that is used by a programmer to program the PSD device. The object file includes chip configuration, the PLD fusemap, and MCU firmware information.

PSDsilosIII is an optional program that provides functional chip-level simulation of the PSD4XX. PSDsoft automatically creates files for input to the simulator. These files convey relevant design information to the simulator. As a result, the user only has to create a stimulus file since all of the signals and node names are taken from the design file.

Figure 3. PSDsoft Development Tools

PSDsoft

Development Software

PSDabel™

 

PSD Configuration

ZPLD DESCRIPTION

 

CHIP CONFIGURATION

(STATE MACHINE, DECODING)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODE FILE

 

 

 

 

PSD Compiler

 

THIRD PARTY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ZPLD FITTING, ADDRESS TRANSLATION)

 

 

 

 

 

PROGRAMMERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSDsilos III™

 

PSD Programmer

SILOSIII

 

PSDpro/MagicPro®

CHIP SIMULATION

 

CHIP PROGRAMMING

 

 

 

6

 

 

PSD4XX Family

7.0

There are 12 unique devices in the PSD4XX family. The part classifications are based on

PSD4XX

ZPLD configuration and size, EPROM size, and data bus width. The features of each part

Family

are listed in Table 1. See the ordering information section at the end of this document.

 

Table 1. PSD4XX Product Matrix

Part

Bus

 

DPLD + GPLD

 

I/O

 

EPROM

SRAM

Inputs

 

Product

 

Registered

PMU

#

Bit

 

 

Pins

K Bit

K Bit

 

 

 

 

 

 

 

Terms

 

Macrocells

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

401A1

x8/x16

37

 

113

 

8

40

Yes

256

16

411A1

x8

37

 

113

 

8

40

Yes

256

16

 

 

 

 

 

 

 

 

 

 

 

402A1

x8/x16

37

 

113

 

8

40

Yes

512

16

412A0

x8

37

 

113

 

8

40

Yes

512

412A1

x8

37

 

113

 

8

40

Yes

512

16

 

 

 

 

 

 

 

 

 

 

 

403A1

x8/x16

37

 

113

 

8

40

Yes

1024

16

413A1

x8

37

 

113

 

8

40

Yes

1024

16

 

 

 

 

 

 

 

 

 

 

 

401A2

x8/x16

59

 

126

 

24

40

Yes

256

16

411A2

x8

59

 

126

 

24

40

Yes

256

16

 

 

 

 

 

 

 

 

 

 

 

402A2

x8/x16

59

 

126

 

24

40

Yes

512

16

412A2

x8

59

 

126

 

24

40

Yes

512

16

 

 

 

 

 

 

 

 

 

 

 

403A2

x8/x16

59

 

126

 

24

40

Yes

1024

16

413A2

x8

59

 

126

 

24

40

Yes

1024

16

 

 

 

 

 

 

 

 

 

 

 

NOTE: PMU = Power Management Unit.

7

PSD4XX Family

8.0 Table 2.

PSD4XX Pin Descriptions

The following table describes the pin names and pin functions of the PSD4XX. Pins that have multiple names and/or functions are defined by user configuration.

 

Pin Name

Pin Function

Type

 

Function Descriptions

 

 

 

 

 

 

 

 

 

ADIO0 – ADIO15

Address/data bus

I/O

1. Address/data bus, multiplexed

 

 

 

 

 

 

 

 

bus mode

 

 

 

 

 

 

 

2.

Address bus, non-multiplexed

 

 

 

 

 

 

 

 

bus mode

 

 

 

 

 

 

 

 

 

RD

Multiple Names

I

Multiple functions

 

 

1. Read

 

1.

Read signal

 

 

2. E

 

2.

E signal (Clock)

 

 

3.

DS

 

 

 

3.

Data strobe signal

 

 

4.

LDS

 

 

4.

Low byte data strobe

 

 

 

 

 

 

WR

Multiple Names

I

Multiple functions

 

 

1. WR

 

1.

Write signal

 

 

2. R/W

 

2.

Read-write signal

 

 

3. WRL

 

3.

Low byte write signal

 

 

 

 

 

 

CSI

Chip Select Input

I

Active low, select PSD4XX

 

 

 

 

 

 

 

standby mode if high.

 

 

 

 

 

 

RESET

Reset Input

I

Reset I/O ports, ZPLD/macrocells,

 

 

 

 

 

 

 

and Configuration Registers.

 

 

 

 

 

 

 

Active low.

 

 

 

 

 

 

CLKIN

Input clock

I

Clock input to ZPLD macrocells,

 

 

 

 

 

 

 

ZPLD Array and APD counter.

 

 

 

 

 

 

 

Connect to ground if Clock Input

 

 

 

 

 

 

 

not used.

 

 

 

 

 

 

PA0 – PA7

I/O Port A

I/O

Multiple functions

 

 

 

 

 

 

 

1.

I/O port

 

 

 

 

 

 

 

2.

ZPLD/macrocell I/O port

 

 

 

 

 

 

 

3.

Latched address outputs

 

 

 

 

 

 

 

 

(PA0 – PA7) → (A0 – A7)

 

 

 

 

 

 

 

4.

High address inputs (A16 – A23)

 

 

 

 

 

 

PB0 – PB7

I/O Port B

I/O

Multiple functions

 

 

 

 

 

 

 

1.

I/O port

 

 

 

 

 

 

 

2.

ZPLD/macrocell I/O port

 

 

 

 

 

 

 

3.

Latched address outputs

 

 

 

 

 

 

 

 

(PB0–PB7) → (A0–A7) or (A8–A15)

 

 

 

 

 

 

PC0 – PC7

I/O Port C

I/O

Multiple functions

 

 

 

 

 

 

CMOS

1.

I/O port

 

 

 

 

 

 

or

2.

ZPLD input port*

 

 

 

 

 

 

OD

3.

Latched address outputs

 

 

 

 

 

 

 

 

(PC0 – PC7) → (A0–A7)

 

 

 

 

 

 

 

4.

Data Port (D0 – D7,

 

 

 

 

 

 

 

 

non-multiplexed bus)

 

 

 

 

 

 

PD0 – PD7

I/O Port D

I/O

Multiple functions

 

 

 

 

 

 

CMOS

1.

I/O port

 

 

 

 

 

 

or

2.

ZPLD input port*

 

 

 

 

 

 

OD

3.

Latched address outputs

 

 

 

 

 

 

 

 

(PD0–PD7) → (A0–A7) or (A8–A15)

 

 

 

 

 

 

 

4.

Data Port (D8 –D15,

 

 

 

 

 

 

 

 

non-multiplexed bus)

 

 

 

 

 

 

 

 

 

*Available only in PSD4XXA2 and ZPSD4XXA2 Series.

8

PSD4XX Family

8.0 Table 2.

PSD4XX Pin Descriptions

(Cont.)

Pin Name

 

Pin Function

Type

 

Function Descriptions

 

 

 

 

 

PE0

Port PE, pin 0

I/O

Multiple functions

 

1.

BHE

 

1.

High byte enable, 16 bit data

 

2.

PSEN

 

 

2.

Read program memory, 8031 signal

 

3.

WRH

 

3.

Write high data byte

 

4.

UDS

 

4.

Upper Data Strobe

 

5.

SIZ0

 

5.

Byte enable, 68300 signal

 

6.

PE0

 

6.

I/O pin

 

7.

PE0

 

7.

ZPLD I/O pin

 

8.

PE0

 

8.

Latched Address Out – A0

 

 

 

 

 

PE1

Port PE, pin 1

I/O

Multiple functions

 

1.

ALE

 

1.

Address strobe

 

2.

PE1

 

2.

I/O pin

 

3.

PE1

 

3.

ZPLD I/O pin

 

4.

PE1

 

4.

Latched Address Out – A1

 

 

 

 

 

PE2

Port PE, pin 2

 

Multiple functions

 

1.

PE2

I/O

1. I/O pin

 

2.

PE2

 

2.

ZPLD I/O pin*

 

3.

PE2

 

3.

Latched Address Out – A2

 

 

 

 

 

PE3

Port PE, pin 3

 

Multiple functions

 

1.

PE3

I/O

1. I/O pin

 

2.

PE3

 

2.

ZPLD I/O pin*

 

3.

PE3

 

3.

Latched Address Out – A3

 

 

 

 

 

PE4

Port PE, pin 4

 

Multiple functions

 

1.

PE4

I/O

1. I/O pin

 

2.

PE4

 

2.

ZPLD I/O pin*

 

3.

PE4

 

3.

Latched Address Out – A4

 

 

 

 

 

PE5

Port PE, pin 5

 

Multiple functions

 

1.

PE5

I/O

1. I/O pin

 

2.

PE5

 

2.

ZPLD I/O pin*

 

3.

PE5

 

3.

Latched Address Out – A5

 

 

 

 

 

PE6

Port PE, pin 6

 

Multiple functions

 

1.

PE6

I/O

1. I/O pin

 

2.

PE6

 

2.

ZPLD I/O pin*

 

3.

PE6

 

3.

Latched Address Out – A6

 

 

 

 

 

PE7

Port PE, pin 7

 

Multiple functions

 

1.

APD CLK

 

1.

Automatic Power Down Clock Input

 

2.

PE7

I/O

2. I/O pin

 

3.

PE7

 

3.

ZPLD I/O pin*

 

4.

PE7

 

4.

Latched Address Out – A7

 

 

 

 

 

Vstdby

Vstdby

I

SRAM power pin for standby

 

 

 

 

operation (battery backup)

 

 

 

 

 

 

 

 

 

 

VCC

VCC

I

VCC power pin

GND

GND

I

Ground pin

 

 

 

 

 

 

 

*Available only in PSD4XXA2 and ZPSD4XXA2 Series.

9

PSD4XX Family

9.0

PSD4XX consists of five major functional blocks:

The PSD4XX

ZPLD Blocks

Architecture

Bus Interface

 

I/O Ports

 

Memory Block

 

Power Management Unit

 

The functions of each block are described in the following sections. Many of the blocks

 

perform multiple functions, and are user configurable. The chip configurations are specified

 

by the user in the PSDsoft Development Software. Other configurations are specified by

 

setting up the appropriate bits in the configuration registers during run time.

 

9.1 The ZPLD Block

 

The PSD4XX series devices provide two ZPLD configurations. The ZPLD in the

 

PSD4XXA1 devices has 8 registered macrocells, 8 combinatorial macrocells, and up to 113

 

product terms.

 

The PSD4XXA2 has a full function ZPLD with 24 registered macrocells and up to 126

 

product terms.

 

9.1.1 The PSD4XXA1 ZPLD Block

Key Features

2 Embedded ZPLD devices

8 registered and 8 combinatorial macrocells

Combinatorial/registered outputs

Maximum 113 product terms

Programmable output polarity

User configured register clear/preset

User configured register clock input

37 Inputs

Accessible via 16 I/O pins

Power Saving Mode

UV-Erasable

General Description

The ZPLD block has 2 embedded PLD devices:

DPLD

The Address Decoding PLD, generating select signals to internal I/O or memory blocks.

GPLD

The General Purpose PLD provides 8 registered and combinatorial programmable macrocells for general or complex logic implementation; dedicated to user application.

Figure 4 shows the architecture of the ZPLD. The PLD devices all share the same input bus. The true or complement of the 37 input signals are fed to the programmable AND-ARRAY. Names and sources of the input signals are shown in Table 3. The PB signals, depending on user configuration, can either be macrocell feedbacks or inputs from Port B.

10

 

 

 

 

 

 

).(cont

Architecture

PSD4XX The

 

 

 

 

 

 

 

 

Figure

 

 

ZPLD INPUT

 

 

 

 

 

.4

 

 

 

 

 

 

 

ZPLD

 

 

BUS

ES0 – ES3

 

 

DPLD

 

PAGE

PGR0 – 3

DPLD

RS0

 

 

 

REG.

 

CSIOP

 

 

 

 

 

 

 

(DECODING PLD)

 

Block

 

 

 

PSEL0 – PSEL1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADIO

A8 – A15

 

(NOTE 1)

8 I/O

 

PROG.

 

Diagram

PORT

A0, A1

 

PA0 – PA7

PORT

 

AND

 

 

 

 

 

MACROCELLS

 

PORT

 

 

 

ARRAY

 

PA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

GPLD

 

 

PMU

 

 

 

 

 

(GENERAL

 

 

 

 

 

 

 

PURPOSE PLD)

 

 

 

 

 

 

 

 

 

 

 

 

 

80 PT

8 I/O

 

PROG.

 

 

 

 

AND

PB0 – PB7

PORT

 

 

 

 

 

MACROCELLS

 

 

 

 

 

 

PORT

 

 

 

 

ARRAY

 

PB

 

 

 

CSI

 

 

 

 

 

B

 

 

PE0 (ALE/AS)

 

 

 

 

 

 

 

 

PE1 (PSEN/BHE)

 

 

 

 

 

 

 

RD/E/DS

 

 

 

 

 

 

 

 

WR/R_W

 

 

 

 

 

 

 

 

RESET

 

 

 

 

 

 

 

 

CLKIN

 

 

 

NOTE 1: A1 = 25 PT ON PORT A

 

 

Family PSD4XX

 

 

 

 

 

 

 

 

 

 

A2 = 27 PT ON PORT A

 

 

11

 

 

 

 

 

 

 

PSD4XX Family

9.0

The PSD4XX Architecture

(cont.)

Table 3. ZPLD Input Signals

Signal Name

From

 

 

PA0 – PA7

Port A inputs or Macrocell PA feedback

 

 

PB0 – PB7

Port B inputs or Macrocell PB feedback

 

 

PE0 – PE1

Port E inputs (signals ALE, PSEN/BHE)

 

 

PGR0 – PGR3

Page Mode Register

 

 

A8 – A15, A0, A1

MCU Address Lines

 

 

RD/E/DS

MCU bus signal

 

 

WR/R_W

MCU bus signal

 

 

CLKIN

Input Clock

 

 

RESET

Reset input

 

 

CSI

CSI input (ORed with power down from PMU)

 

 

9.1.1.1 The DPLD

The DPLD is used for internal address decoding generating the following eight chip select signals:

ES0 – ES3

EPROM selects, block 0 to block 3

RS0

SRAM block select

CSIOP

I/O Decoder chip select

PSEL0 – PSEL1

Peripheral I/O mode select signals

The I/O Decoder enabled by the CSIOP generates chip selects for on-chip registers or I/O ports based on address inputs A[7:0].

As shown in Figure 4, the DPLD consists of a large programmable AND ARRAY. There are a total of 37 inputs and 8 outputs. Each output consists of a single product term. Although the user can generate select signals from any of the inputs, the select signals are typically a function of the address and Page Register inputs. The select signals are defined by the user in the ABEL file (PSDabel).

The address line inputs to the DPLD include A0, A1 and A8 – A15. If more address lines are needed, the user can bring in the lines through Port A to the DPLD.

12

PSD4XX Family

9.0

The PSD4XX Architecture

(cont.)

9.1.1.2 The GPLD

The structure of the General Purpose PLD consists of a programmable AND ARRAY and 2 sets of I/O Macrocells. The ARRAY has 37 input signals, same as the DPLD. From these inputs, “ANDed” functions are generated as product term inputs to the macrocells. The I/O Macrocell sets are named after the I/O Ports they are linked to, e.g., the macrocells connected to Port B are named PB Macrocells. The PB macrocells are registered macrocells with D-type flip-flops, where PA consists of combinatorial macrocells.

9.1.1.3 TPA Macrocell Structure

Figure 5 shows the PA Macrocell block, which consists of 8 identical combinatorial macrocells. Each macrocell output can be connected to its own I/O pin on Port A. There is one user programmable global product term that is output from the GPLD’s AND ARRAY which is shared by all the macrocells in Port A:

PA.OE

Enable or tri-state Port A output pins

The circuit of a PA Macrocell is shown in Figure 6. There are 4 product terms from the GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the output, and configure the macrocell to operate as:

GPLD Input

Use Port A pin as dedicated input

GPLD Output

Use Port A pin as dedicated output

13

14

(INPUTS)

PA0 – PA7

(8)

PB0 – PB7

(8)

PE0 – PE1

(2)

(ALE, PSEN/BHE)

PGR0 – PGR3

(4)

A8 – A15, A0, A1

(10)

CSI, CLKIN

(3)

RESET

RD/E/DS

(1)

WR/R_W

(1)

DPLD INPUTS = 37

DPLD OUTPUTS = 8

 

).(cont

0.9 PSD4XX The Architecture

FamilyPSD4XX

 

 

.5 Figure

 

 

 

 

ES0

 

DPLD

 

 

 

 

 

 

 

ES1

 

Logic

 

 

 

 

 

4 EPROM

 

 

 

BLOCK

Array

 

ES2

SELECTS

 

 

 

 

 

 

ES3

 

 

 

RS0

RAM SELECT

CSIOP I/O DECODER

SELECT

PSEL0

PERIPHERAL

I/O SELECTS

PSEL1

PSD4XX Family

9.0

Figure 6. PA Macrocell Block Diagram

The PSD4XX

 

 

Architecture

 

(cont.)

 

A I/O CELLS

PA0

 

PA1

 

PA7

 

PORT

 

 

 

 

 

 

MACRO. OUT

PA0 – INPUT

MACRO. OUT

PA1– INPUT

MACRO. OUT

PA7– INPUT

 

MACROCELL

MC0

 

MC1

 

MC7

 

PA

 

 

 

 

 

 

]

 

]

 

]

 

 

2:0

PA0

2:0

PA1

2:0

PA7

PA.OE

[

[

[

PT

PT

PT

 

 

 

 

AND ARRAY

 

 

BUS

ZPLD

15

PSD4XX Family

9.0

The PSD4XX Architecture

(cont.)

Figure 7. PA Macrocell

PAi

I/O PIN

PORT A

INTERNAL ADDRESS/DATA BUS

MACRO . OUT

 

 

PAi – INPUT

 

 

 

 

PLD– IN SELECT

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

POLARITY

SELECT

PA .OE

 

 

 

 

 

 

 

 

 

 

PT0

 

PT1

 

PT2

 

 

PAi

0

 

 

 

 

 

 

 

 

 

NOTE: i = 7 TO

PT

PT

 

PT

PT

AND ARRAY

BUS

ZPLD

16

PSD4XX Family

9.0

The PSD4XX Architecture

(cont.)

9.1.1.4 Port B Macrocell Structure

Figure 7 shows the PB Macrocell block, which consists of 8 identical macrocells. Each macrocell output can be connected to its own I/O pin on Port B. The two inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to all the macrocells. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin except it is user configurable.

The circuit of a PB Macrocell is shown in Figure 8. There are 10 product terms from the GPLDs AND ARRAY as inputs to the macrocell. Users can select the polarity of the output, and configure the macrocell to operate as:

Registered Output

Select output from D flip flop.

Combinatorial Output

Select output from OR gate.

GPLD Input

Use Port B pin as dedicated input.

GPLD Output

Use Port B pin as dedicated output.

GPLD I/O

Use Port B pin as bidirectional pin.

Macrocell Feedback

Register feedback for state machine implementations or expander feedback from the combinatorial output, to possibly expand the number of product terms available to another macrocell.

In case of "Buried Feedback", where the output of the macrocell is not connected to a Port B pin, Port B can be configured to perform other user defined I/O functions.

Each D flip flop in the macrocells has its own dedicated asynchronous clear, preset and clock input. The signals are defined as follow:

PRESET

Active only if defined by a product term (PBi.PR)

CLEAR

Two selectable inputs: Reset input and/or user defined product term (PBi.RE)

CLK

Two selectable inputs – CLKIN input or user defined product term (PBi.CLK).

The macrocell is operated in Synchronous Mode if the clock input is CLKIN, and is in Asynchronous Mode if the clock is a product-term clock defined by the user.

Figure 9 shows the input/output path of a PB macrocell to the Port pin with which it is associated. If the Port pin is specified as a PB output pin in the PSDsoft, the MUX in the I/O Port Cell selects the PB Macrocell as an output of the Port pin. The output enable signal to the buffer in the I/O cell can be controlled by a product term from the AND Array.

If the Port pin is specified as a ZPLD input pin, the MUX in the PB Macrocell selects the Port input signal to be one of the 61 signals in the ZPLD Input Bus.

17

PSD4XX Family

9.0

The PSD4XX Architecture

(cont.)

9.1.1.5 The ZPLD Power Management

The ZPLD implements a Zero Power Mode, which provides considerable power savings for low to medium frequency operations. To enable this feature, the ZPLD Turbo bit in the Power Management Mode Register 0 (PMMR0) has to be turned off.

If none of the inputs to the ZPLD are switching for a time period of 90ns, the ZPLD puts itself into Zero Power Mode and the current consumption is minimal. The ZPLD will resume normal operation as soon as one or more of the inputs change state.

Two other features of the ZPLD provide additional power savings:

1.Clock Disable:

Users can disable the clock input to the ZPLD and/or macrocells,thereby reducing AC power consumption.

2.Product Term Disable:

Unused product terms in the ZPLD are disabled by the PSDsoft Software automatically for further power savings.

The ZPLD power configuration is described in the Power Management Unit section.

18

 

 

 

).(cont

Architecture

PSD4XX The

0.9

ZPLD

 

PB MACROCELL

PORT B I/O CELLS

 

 

Figure

 

 

 

.8

BUS

 

 

 

 

 

 

PTB0 – [0 . . 5]

 

MACRO .OUT

 

 

PB

 

 

 

 

 

 

PB0 .PR

 

PB0 .OE

 

 

 

 

 

 

Macrocell

 

PB0 .RE

 

 

 

 

 

PB0 .OE

MC0

PB0

 

 

 

PB0 .CLK

 

PB0 – INPUT

 

 

 

PB0

 

 

 

 

 

 

 

 

 

PTB1 – [0 . . 5]

 

MACRO .OUT

 

 

Block

 

PB1 .PR

 

PB1 .OE

 

 

 

 

 

 

 

Diagram

 

PB1 .RE

 

 

 

 

 

PB1 .OE

MC1

PB1

 

 

AND ARRAY

PB1 .CLK

 

 

 

PB1– INPUT

 

 

 

PB1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PTB7 – [0 . . 5]

 

MACRO .OUT

 

 

 

 

PB7 .PR

 

PB7 .OE

 

 

 

 

PB7 .RE

MC7

PB7

 

 

 

 

PB7 .OE

 

 

 

 

PB7 .CLK

 

PB7– INPUT

 

 

 

 

PB7

 

 

 

 

 

 

 

 

 

 

 

CLKIN

 

 

 

 

PSD4XX

 

MACRO – RST

 

 

 

 

19

 

 

 

 

 

Family

20

 

 

 

).(cont

Architecture

PSD4XX The

0.9

Family PSD4XX

ZPLD

 

 

 

 

 

 

9Figure

 

BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

PT

PBi .OE

 

 

 

 

 

PB

 

 

 

 

 

 

 

 

 

PBi .PR

 

 

 

 

 

 

PT

 

 

 

 

 

Macrocell

 

 

 

COMB /REG

 

 

 

 

 

PT0

 

 

 

 

 

PT

 

SELECT

 

 

 

 

 

 

 

 

 

 

PT

PT1

 

 

 

 

 

 

PT2

 

 

 

 

 

 

PT

 

 

 

 

 

 

PT3

 

 

I/O PIN

 

 

 

 

 

 

 

 

 

PT

 

 

 

 

 

 

PT4

 

MACRO . OUT

PBi

 

 

 

 

 

 

 

 

 

 

PT

 

 

 

 

 

 

PT5

 

MUX

 

 

 

 

 

PT

 

 

 

 

 

 

 

 

PR

 

 

 

 

 

 

 

D

Q

 

 

 

 

 

AND

 

POLARITY

 

 

 

 

 

 

 

SELECT

 

 

 

 

 

 

ARRAY

 

 

 

 

 

 

 

 

 

 

PORT B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

PT

PBi .RE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

PBi .CLK

 

PBi – INPUT

 

 

 

 

 

PT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

PBi

 

 

PLD – IN

 

 

 

 

 

 

 

 

SELECT

 

 

 

 

 

MACRO – RST

 

 

 

 

 

 

 

 

 

 

CLK

 

 

 

 

 

 

CLKIN

 

SELECT

 

INTERNAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDRESS/DATA

 

 

 

 

 

 

 

 

BUS

 

 

 

 

ZPLD

 

 

INTERNAL

 

 

 

 

INPUT

 

 

ADDRESS/DATA/CONTROL

 

 

BUS

 

 

BUS

 

 

 

 

 

 

 

GPLD MACROCELL

 

 

 

 

I/O PORT CELL

 

 

 

 

 

D

Q

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

COMB./REG.

 

 

 

ADDRESS

 

 

PT RESET

 

 

 

 

A[0-7]

 

AND

 

SELECT

 

 

 

 

 

 

 

 

OR

MUX

ARRAY

 

 

 

 

 

 

 

 

 

 

D

Q

A[8-15]

PT

 

 

 

 

 

PTs

 

GPLD

 

 

 

 

 

ALE

 

 

 

 

 

 

 

MACROCELL

G

 

GPLD

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PR

Q

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

POLARITY

 

 

 

 

 

 

 

 

SELECT

 

 

PDR

 

 

 

 

CK

 

 

 

 

 

 

CL

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

PT CLEAR

 

 

 

 

 

 

 

CLKIN

 

 

 

 

 

 

 

CONTROL

 

 

 

 

 

 

 

 

 

PT CLOCK

 

 

 

 

 

 

 

 

 

MUX

 

 

PCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

Q

 

 

 

MACRO_RST

 

 

WR

 

 

 

 

 

 

 

 

 

 

 

 

 

GLOBAL

CLK

 

DIRECTION

 

 

 

 

REGISTER

 

 

 

CLOCK

SELECT

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

PORT INPUT

 

 

 

 

 

PT OUTPUT ENABLE (OE)

 

 

 

 

 

 

21

 

 

PSD4XX FIG. 5

 

 

 

 

 

).(cont

Architecture

PORT

PIN

Port Input/Output Macrocell PB .10 Figure 0.9 PSD4XX The

Family PSD4XX

PSD4XX Family

The PSD4XX

Architecture

(cont.)

9.1.2 The PSD4XXA2 ZPLD Block

Key Features

2 Embedded ZPLD devices

24 macrocells

Combinatorial/registered outputs

Maximum 126 product terms

Programmable output polarity

User configured register clear/preset

User configured register clock input

59 Inputs

Accessible via 24 I/O pins

Power Saving Mode

UV-Erasable

General Description

The ZPLD block has 2 embedded PLD devices:

DPLD

The Address Decoding PLD, generating select signals to internal I/O or memory blocks.

GPLD

The General Purpose PLD provides 24 programmable macrocells for general or complex logic implementation; dedicated to user application.

Figure 11 shows the architecture of the ZPLD. The PLD devices all share the same input bus. The true or complement of the 59 input signals are fed to the programmable

AND-ARRAY. Names and source of the input signals are shown in Table 4. The PA, PB, PE signals, depending on user configuration, can either be macrocell feedbacks or inputs from Port A, B or E.

22

 

ZPLD INPUT

 

 

 

 

 

 

BUS

 

ES0 – ES3

 

 

 

PAGE

PGR0 – 3

DPLD

RS0

 

 

 

REG.

 

CSIOP

 

 

 

 

 

 

PSEL0 – PSEL1

 

 

ADIO

A8 – A15

 

27 PT

8 I/O

 

PROG.

PORT

A0, A1

AND

PA0 – PA7

PORT

 

 

 

MACROCELLS

 

PORT

 

 

ARRAY

 

PA

 

PROG.

 

 

 

 

 

A

 

 

 

 

 

 

PORT

PC0 – PC7

 

 

 

 

 

PORT

 

 

80 PT

8 I/O

 

PROG.

C

 

AND

PB0 – PB7

PORT

 

 

MACROCELLS

 

 

 

PORT

 

 

ARRAY

 

PB

 

PROG.

 

 

 

 

 

B

PD0 – PD7

 

 

 

 

 

PORT

 

 

 

 

 

PORT

 

 

11 PT

8 I/O

PE0 – PE7

PROG.

 

 

PORT

D

 

AND

 

MACROCELLS

 

 

 

PORT

 

 

ARRAY

 

PE

 

 

 

 

 

 

 

E

PMU

 

 

 

 

 

 

CSI

 

 

 

 

 

 

RD/E/DS

 

 

 

 

 

 

WR/R_W

 

 

 

 

 

 

RESET

 

 

 

 

 

 

CLKIN

 

 

 

 

 

 

23

DPLD

(DECODING PLD)

GPLD

(GENERAL PURPOSE PLD)

).(cont

PSD4XX The Architecture

 

.11 Figure

 

Diagram Block ZPLD PSD4XXA2

Family PSD4XX

PSD4XX Family

The PSD4XX

Table 4. ZPLD Input Signals

 

 

 

 

Architecture

 

 

 

 

 

 

Signal Name

 

From

(cont.)

 

 

 

 

 

 

 

PA0 – PA7

 

Port A inputs or Macrocell PA feedback

 

 

 

 

 

 

 

 

 

 

PB0 – PB7

 

Port B inputs or Macrocell PB feedback

 

 

 

 

 

 

 

 

PE0 – PE7

 

Port E inputs or Macrocell PE feedback

 

 

 

 

 

 

 

PC0 – PC7

 

Port C inputs

 

 

 

 

 

 

 

 

PD0 – PD7

 

Port D inputs

 

 

 

 

 

 

 

PGR0 – PGR3

 

Page Mode Register

 

 

 

 

 

 

 

A8 – A15, A0, A1

 

MCU Address Lines

 

 

 

 

 

 

 

RD/E/DS

 

MCU bus signal

 

 

 

 

 

 

 

WR/R_W

 

MCU bus signal

 

 

 

 

 

 

 

CLKIN

 

Input Clock

 

 

 

 

 

 

 

RESET

 

Reset input

 

 

 

 

 

 

 

CSI

 

 

 

 

 

CSI

input (ORed with power down from PMU)

 

 

 

 

 

 

 

9.1.2.1 The DPLD

The DPLD is used for internal address decoding generating the following eight chip select signals:

ES0 – ES3

EPROM selects, block 0 to block 3

RS0

SRAM block select

CSIOP

I/O Decoder chip select

PSEL0 – PSEL1

Peripheral I/O mode select signals

The I/O Decoder enabled by the CSIOP generates chip selects for on-chip registers or I/O ports based on address inputs A[7:0].

As shown in Figure 12, the DPLD consists of a large programmable AND ARRAY. There are a total of 59 inputs and 8 outputs. Each output consists of a single product term. Although the user can generate select signals from any of the inputs, the select signals are typically a function of the address and Page Register inputs. The select signals are defined by the user in the ABEL file (PSDabel).

The address line inputs to the DPLD include A0, A1 and A8 – A15. If more address lines are needed, the user can bring in the lines through Port A to the DPLD.

24

SGS Thomson Microelectronics PSD401A1, PSD401A2, PSD402A1, PSD403A1, PSD403A2 Datasheet

(INPUTS)

PA0 – PA7

(8)

PB0 – PB7

(8)

PE0 – PE7

(8)

PC0 – PC7

(8)

PD0 – PD7

(8)

PGR0 – PGR3

(4)

A8 – A15, A0, A1

(10)

CSI, CLKIN

(3)

RESET

RD/E/DS

(1)

WR/R_W

(1)

DPLD INPUTS : 59

DPLD OUTPUTS : 8

25

 

).(cont

PSD4XX The Architecture

ES0

 

.12Figure

 

 

ES1

 

DPLD

 

4 EPROM

 

 

 

 

BLOCK

Logic

ES2

SELECTS

 

 

 

ES3

 

Array

 

 

RS0

RAM SELECT

CSIOP I/O DECODER

SELECT

PSEL0

PERIPHERAL

I/O SELECTS

PSEL1

Family PSD4XX

PSD4XX Family

The PSD4XX

Architecture

(cont.)

9.1.2.2 The GPLD

The structure of the General Purpose PLD consists of a programmable AND ARRAY and 3 sets of I/O Macrocells. The ARRAY has 59 input signals, same as the DPLD. From these inputs, “ANDed” functions are generated as product term inputs to the macrocells. The I/O Macrocell sets are named after the I/O Ports they are linked to, e.g., the macrocells connected to Port A are named PA Macrocells. The 3 sets of macrocells, PA, PB and PE, are similar in structure and function.

Figure 13 shows the output/input path of a GPLD macrocell to the Port pin with which it is associated. If the Port pin is specified as a GPLD output pin in PSDsoft, the MUX in the I/O Port Cell selects the GPLD macrocell as an output of the Port pin. The output enable signal to the buffer in the I/O cell can be controlled by a product term from the AND ARRAY.

If the Port pin is specified as a ZPLD input pin, the MUX in the GPLD macrocell selects the Port input signal to be one of the 61 signals in the ZPLD Input Bus.

9.1.2.3 Port A Macrocell Structure

Figure 14 shows the PA Macrocell block, which consists of 8 identical macrocells. Each macrocell output can be connected to its own I/O pin on Port A. There are 3 user programmable global product terms output from the GPLD’s AND ARRAY which are shared by all the macrocells in Port A:

PA.OE

Enable or tri-state Port A output pins

PA.PR

Preset D flip flop in the macrocells

PA.RE

Reset/Clear D flip flop in the macrocells

Two other inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to the D flip flop. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin except it is user configurable.

The circuit of a PA Macrocell is shown in Figure 15. There are 6 product terms from the GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the output, and configure the macrocell to operate as:

Registered Output

Select output from D flip flop

Combinatorial Output

Select output from OR gate

GPLD Input

Use Port A pin as dedicated input

GPLD Output

Use Port A pin as dedicated output

GPLD I/O

Use Port A pin as bidirectional pin

Macrocell Feedback

Register feedback for state machine implementations or expander feedback from the combinatorial output, to expand the number of product terms available to another macrocell.

In case of "Buried Feedback", where the output of the macrocell is not connected to a Port A pin, Port A can be configured to perform other user defined I/O functions.

The two global product terms assigned for asynchronous clear (PA.RE) and preset (PA.PR) are mainly for proper PA Macrocell initialization. The macrocell flip-flop can also be cleared during reset by MACRO-RST, if such an option is chosen. The clock source is always the input clock CLKIN.

26

27

ZPLD

 

 

INTERNAL

 

 

 

 

 

INPUT

 

 

ADDRESS/DATA/CONTROL

 

 

 

BUS

 

 

 

BUS

 

 

 

 

 

 

 

GPLD MACROCELL

 

 

 

 

I/O PORT CELL

 

 

 

 

 

 

D

Q

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

 

COMB./REG.

 

 

 

ADDRESS

 

PORT

 

 

 

 

 

 

A[0-7]

 

AND

PT RESET

 

SELECT

 

 

 

 

PIN

 

 

 

 

OR

MUX

ARRAY

 

 

 

D

Q

A[8-15]

 

PT

PTs

 

 

 

 

 

 

 

 

MACROCELL

ALE

 

 

 

 

 

 

 

 

G

 

GPLD

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

PR

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

POLARITY

 

 

 

 

 

 

 

 

 

SELECT

CK

 

 

 

 

 

 

 

 

 

 

PDR

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PT CLEAR

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

 

 

PT CLOCK

 

 

 

 

 

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

PCR

 

 

 

 

 

 

 

 

D

Q

 

 

 

 

MACRO_RST

 

 

WR

 

 

 

 

 

 

GLOBAL

CLK

 

DIRECTION

 

 

 

 

CLOCK

SELECT

 

REGISTER

 

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

PORT INPUT

 

 

 

 

Q

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LATCH

 

 

PT OUTPUT ENABLE (OE)

 

 

 

 

 

LATCH ONLY ON

 

 

 

 

 

 

 

 

PORT A

 

PSD4XX FIG. 18

Port Input/Output Macrocell GPLD .13 Figure

Family PSD4XX

Loading...
+ 93 hidden pages