SGS Thomson Microelectronics M27W202-100F6, M27W202-100B6, M27W202-150N6TR, M27W202-150K6TR, M27W202-150F6 Datasheet

...
0 (0)

M27W202

2 Mbit (128Kb x16) Low Voltage UV EPROM and OTP EPROM

2.7V to 3.6V SUPPLY VOLTAGE in READ OPERATION

ACCESS TIME:

80ns at VCC = 3.0V to 3.6V

100ns at VCC = 2.7V to 3.6V

LOW POWER CONSUMPTION:

Active Current 20mA at 5MHz

Standby Current 15µA

PIN COMPATIBLE with M27C202

PROGRAMMING TIME: 100µs/word

HIGH RELIABILITY CMOS TECHNOLOGY

2,000V ESD Protection

200mA Latchup Protection Immunity

ELECTRONIC SIGNATURE

Manufacturer Code: 0020h

Device Code: 001Ch

DESCRIPTION

The M27W202 is a low voltage 2 Mbit EPROM offered in the two range UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage and is organised as 131,072 by 16 bits.

The M27W202 operates in the read mode with a supply voltage as low as 2.7V at –40 to 85°C temperature range. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges.

The FDIP40W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.

For application where the content is programmed only one time and erasure is not required, the M27W201 is offered in PDIP40, PLCC44 and TSOP40 (10 x 14 mm) packages.

40

40

1

1

 

FDIP40W (F)

PDIP40 (B)

PLCC44 (K)

TSOP40 (N)

 

10 x 14 mm

Figure 1. Logic Diagram

VCC

VPP

17

16

A0-A16

Q0-Q15

P M27W202

E

G

VSS

AI02730

April 2000

1/15

SGS Thomson Microelectronics M27W202-100F6, M27W202-100B6, M27W202-150N6TR, M27W202-150K6TR, M27W202-150F6 Datasheet

M27W202

Figure 2A. DIP Connections

VPP

1

 

40

VCC

 

E

2

 

39

P

 

Q15

3

 

38

A16

Q14

 

4

 

37

A15

 

 

Q13

 

5

 

36

A14

 

 

Q12

6

 

35

A13

Q11

7

 

34

A12

Q10

8

 

33

A11

Q9

9

 

32

A10

Q8

10

M27W202

31

A9

VSS

11

30

VSS

Q7

12

 

29

A8

Q6

13

 

28

A7

Q5

14

 

27

A6

Q4

15

 

26

A5

Q3

16

 

25

A4

Q2

17

 

24

A3

Q1

18

 

23

A2

Q0

19

 

22

A1

 

 

20

 

21

A0

 

G

 

 

 

 

 

 

 

AI02731

 

 

Figure 2C. TSOP Connections

A9

1

 

 

 

40

 

VSS

A10

 

 

 

 

 

 

A8

A11

 

 

 

 

 

 

A7

A12

 

 

 

 

 

 

A6

 

 

 

 

 

 

A13

 

 

 

 

 

 

A5

A14

 

 

 

 

 

 

A4

A15

 

 

 

 

 

 

A3

A16

 

 

 

 

 

 

A2

 

 

 

 

 

 

 

 

A1

 

P

 

 

 

 

 

 

 

VCC

10

M27W202

31

 

A0

VPP

11

(Normal)

30

 

 

G

 

 

E

 

 

 

 

 

 

DQ0

DQ15

 

 

 

 

 

 

DQ1

DQ14

 

 

 

 

 

 

DQ2

DQ13

 

 

 

 

 

 

DQ3

DQ12

 

 

 

 

 

 

DQ4

DQ11

 

 

 

 

 

 

DQ5

DQ10

 

 

 

 

 

 

DQ6

DQ9

 

 

 

 

 

 

DQ7

DQ8

20

 

 

 

21

 

VSS

 

 

 

 

 

 

 

AI02733

 

 

 

 

Figure 2B. LCC Connections

 

Q13

Q14

Q15

E

PP

NC

CC

P

A16

A15

A14

 

 

V

V

 

Q12

 

 

 

 

 

1

44

 

 

 

 

A13

 

 

 

 

 

 

 

 

 

 

 

Q11

 

 

 

 

 

 

 

 

 

 

 

A12

Q10

 

 

 

 

 

 

 

 

 

 

 

A11

Q9

 

 

 

 

 

 

 

 

 

 

 

A10

Q8

 

 

 

 

 

 

 

 

 

 

 

A9

VSS

12

 

 

 

M27W202

 

 

 

34

VSS

NC

 

 

 

 

 

 

 

 

 

 

 

NC

Q7

 

 

 

 

 

 

 

 

 

 

 

A8

Q6

 

 

 

 

 

 

 

 

 

 

 

A7

Q5

 

 

 

 

 

 

 

 

 

 

 

A6

Q4

 

 

 

 

 

23

 

 

 

 

 

A5

 

 

 

 

 

 

 

 

 

 

 

 

 

Q3

Q2

Q1

Q0

G

NC

A0

A1

A2 A3

A4

 

 

 

 

 

 

 

 

 

 

 

 

 

AI02732

Table 1. Signal Names

 

A0-A16

Address Inputs

 

 

 

 

Q0-Q15

Data Outputs

 

 

 

 

 

 

 

 

 

Chip Enable

 

E

 

 

 

 

 

 

 

 

Output Enable

 

G

 

 

 

 

 

 

 

Program

 

P

 

 

 

 

VPP

Program Supply

 

 

 

 

VCC

Supply Voltage

 

 

 

 

VSS

Ground

 

NC

Not Connected Internally

 

 

 

 

 

2/15

 

 

 

M27W202

Table 2. Absolute Maximum Ratings (1)

 

 

 

Symbol

Parameter

Value

 

Unit

 

 

 

 

 

TA

Ambient Operating Temperature (3)

–40 to 125

 

°C

TBIAS

Temperature Under Bias

–50 to 125

 

°C

TSTG

Storage Temperature

–65 to 150

 

°C

 

 

 

 

 

VIO (2)

Input or Output Voltage (except A9)

–2 to 7

 

V

VCC

Supply Voltage

–2 to 7

 

V

VA9 (2)

A9 Voltage

–2 to 13.5

 

V

VPP

Program Supply Voltage

–2 to 14

 

V

 

 

 

 

 

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2.Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns.

3.Depends on range.

Table 3. Operating Modes

 

 

 

 

 

 

 

 

 

 

 

VPP

 

Mode

 

E

 

G

P

A9

Q15-Q0

Read

VIL

VIL

VIH

X

VCC or VSS

Data Output

 

 

 

 

 

 

 

Output Disable

VIL

VIH

X

X

VCC or VSS

Hi-Z

 

 

 

 

 

 

 

 

Program

VIL

 

X

VIL Pulse

X

VPP

Data Input

Verify

VIL

VIL

VIH

X

VPP

Data Output

 

 

 

 

 

 

 

 

Program Inhibit

VIH

 

X

X

X

VPP

Hi-Z

 

 

 

 

 

 

 

 

Standby

VIH

 

X

X

X

VCC or VSS

Hi-Z

Electronic Signature

VIL

VIL

VIH

VID

VCC

Codes

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: X = VIH or VIL, VID = 12V ± 0.5V.

Table 4. Electronic Signature

Identifier

A0

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

Hex Data

 

 

 

 

 

 

 

 

 

 

 

Manufacturer’s Code

VIL

0

0

1

0

0

0

0

0

20h

Device Code

VIH

0

0

0

1

1

1

0

0

1Ch

 

 

 

 

 

 

 

 

 

 

 

Note: Outputs Q15-Q8 are set to '0'.

3/15

M27W202

Table 5. AC Measurement Conditions

 

High Speed

Standard

 

 

 

Input Rise and Fall Times

10ns

20ns

 

 

 

Input Pulse Voltages

0 to 3V

0.4V to 2.4V

 

 

 

Input and Output Timing Ref. Voltages

1.5V

0.8V and 2V

 

 

 

Figure 3. AC Testing Input Output Waveform

 

Figure 4. AC Testing Load Circuit

 

 

 

 

 

 

 

 

 

1.3V

 

High Speed

 

 

 

 

 

 

 

 

 

 

 

 

3V

 

 

 

 

 

 

 

 

 

 

1N914

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5V

 

 

 

 

 

 

 

 

 

 

3.3kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEVICE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard

 

 

UNDER

 

 

 

 

 

 

 

 

OUT

 

 

 

 

 

TEST

 

 

 

 

 

 

 

 

 

2.4V

 

2.0V

 

 

 

 

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4V

 

0.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

AI01822

 

 

CL = 30pF for High Speed

 

 

 

 

 

 

 

 

 

 

CL = 100pF for Standard

 

 

 

 

 

 

 

 

 

 

 

 

CL includes JIG capacitance

AI01823B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Capacitance (1) (TA = 25 °C, f = 1 MHz)

Symbol

Parameter

Test Condition

Min

Max

Unit

 

 

 

 

 

 

CIN

Input Capacitance

VIN = 0V

 

6

pF

 

 

 

 

 

 

COUT

Output Capacitance

VOUT = 0V

 

12

pF

 

 

 

 

 

 

Note: 1. Sampled only, not 100% tested.

DEVICE OPERATION

The operating modes of the M27W202 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for VPP and 12V on A9 for Electronic Signature.

Read Mode

The M27W202 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time

(tAVQV) is equal to the delay from E to output (tELQV). Data is available at the output after a delay of tOE from the falling edge of G, assuming that E

has been low and the addresses have been stable for at least tAVQV-tGLQV.

Standby Mode

The M27W202 has a standby mode which reduces the supply current from 15mA to 15µA with low voltage operation VCC â 3.6V, see Read Mode DC Characteristics table for details.

The M27W202 is placed in the standby mode by applying a TTL high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input.

4/15

M27W202

Table 7. Read Mode DC Characteristics (1)

(TA = –40 to 85 °C; V CC = 2.7V to 3.6V; VPP = VCC)

Symbol

Parameter

 

Test Condition

Min

Max

Unit

 

 

 

 

 

 

 

 

 

 

ILI

Input Leakage Current

 

 

0V VIN VCC

 

±10

µA

 

ILO

Output Leakage Current

0V VOUT VCC

 

±10

µA

 

 

 

 

 

 

 

= VIL,

 

= VIL,

 

 

 

 

 

 

 

E

G

 

 

 

ICC

Supply Current

IOUT = 0mA, f = 5MHz

 

20

mA

 

 

 

 

 

 

 

VCC ≤ 3.6V

 

 

 

ICC1

Supply Current (Standby) TTL

 

 

 

 

 

 

= VIH

 

1

mA

 

 

 

 

 

E

 

 

 

 

 

 

 

 

> VCC – 0.2V

 

 

 

ICC2

Supply Current (Standby) CMOS

 

E

 

15

µA

 

 

 

 

VCC ≤ 3.6V

 

 

 

 

 

 

 

 

 

 

 

 

IPP

Program Current

 

 

 

 

VPP = VCC

 

10

µA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

Input Low Voltage

 

 

 

 

 

 

 

 

 

–0.6

0.2 VCC

V

V

(2)

Input High Voltage

 

 

 

 

 

 

 

 

 

0.7 VCC

VCC + 0.5

V

 

IH

 

 

 

 

 

 

 

 

 

 

 

 

 

VOL

Output Low Voltage

 

 

 

 

IOL = 2.1mA

 

0.4

V

 

 

 

 

 

 

 

 

VOH

Output High Voltage TTL

 

 

IOH = –400µA

2.4

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Maximum DC voltage on Output is VCC +0.5V.

Two Line Output Control

Because OTP EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

a.the lowest possible memory power dissipation,

b.complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, E should be decoded and used as the primary device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

System Considerations

The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between VCC and VSS. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between VCC and VSS for every eight devices. The bulk capacitor should be located near the power supply connection point.The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

5/15

Loading...
+ 10 hidden pages