SGS Thomson Microelectronics PSD511B1, PSD512B1, PSD513B1, PSD501B1, PSD502B1 Datasheet

...
0 (0)

PSD5XX

ZPSD5XX

Low Cost Field Programmable Microcontroller Peripherals

NOT FOR NEW DESIGN

FEATURES SUMMARY

 

Single Supply Voltage:

Figure 1. Packages

– 5 V±10% for PSD5XX

 

 

– 2.7 to 5.5 V for PSD5XX-V

 

Up to 1 Mbit of UV EPROM

 

Up to 16 Kbit SRAM

 

Input Latches

 

Programmable I/O ports

 

Page Logic

 

Programmable Security

 

 

PLDCC68 (J)

 

CLDCC68 (L)

 

TQFP68 (U)

 

 

January 2002

1/3

This is information on a product still in production but not recommended for new designs.

PSD5XX Family

PSD5XX/ZPSD5XX

Field-Programmable Microcontroller Peripherals

Table of Contents

1

Introduction ...........................................................................................................................................................

1

2

Key Features ........................................................................................................................................................

3

3

Notation ................................................................................................................................................................

 

4

4

ZPSD Background ................................................................................................................................................

4

5

Integrated Power ManagementTM Operation ........................................................................................................

6

6

Design Flow ..........................................................................................................................................................

7

7

PSD5XX Family ....................................................................................................................................................

8

8

Table 2. PSD5XX Pin Descriptions......................................................................................................................

9

9

The PSD5XX Architecture ..................................................................................................................................

11

 

9.1

The ZPLD Block..........................................................................................................................................

11

 

 

9.1.1

The DPLD.........................................................................................................................................

14

 

 

9.1.2

The GPLD.........................................................................................................................................

14

 

 

 

9.1.2.1 Por A Macrocell Structure ..................................................................................................

16

 

 

 

9.1.2.2 Port B Macrocell Structure .................................................................................................

20

 

 

 

9.1.2.3 Port E Macrocell Structure .................................................................................................

23

 

 

9.1.3

The PPLD .........................................................................................................................................

26

 

 

9.1.4 The ZPLD Power Management ........................................................................................................

26

 

9.2

Bus Interface...............................................................................................................................................

29

 

 

9.2.1

Bus Interface Configuration ..............................................................................................................

29

 

 

9.2.2 PSD5XX Interface to a Multiplexed Bus ...........................................................................................

29

 

 

9.2.3 PSD5XX Interface to Non-Multiplexed Bus ......................................................................................

30

 

 

9.2.4

Data Byte Enable..............................................................................................................................

30

 

 

9.2.5

Optional Features .............................................................................................................................

34

 

 

9.2.6

Bus Interface Examples....................................................................................................................

34

 

9.3

I/O Ports......................................................................................................................................................

39

 

 

9.3.1

Standard MCU I/O ............................................................................................................................

39

 

 

9.3.2

PLD I/O ...........................................................................................................................................

39

 

 

9.3.3

Address Out......................................................................................................................................

40

 

 

9.3.4

Address In ........................................................................................................................................

40

 

 

9.3.5

Data Port ..........................................................................................................................................

40

 

 

9.3.6

Special Function Out ........................................................................................................................

40

 

 

9.3.7

Alternate Function In ........................................................................................................................

41

 

 

9.3.8

Peripheral I/O ...................................................................................................................................

41

 

 

9.3.9

Open Drain Outputs..........................................................................................................................

41

 

 

9.3.10 Port Registers...................................................................................................................................

42

 

 

9.3.11 Port A – Functionality and Structure.................................................................................................

45

 

 

9.3.12 Port B – Functionality and Structure.................................................................................................

45

 

 

9.3.13 Port C and Port D – Functionality and Structure ..............................................................................

48

 

 

9.3.14 Port E – Functionality and Structure.................................................................................................

48

 

9.4

Memory Block .............................................................................................................................................

52

 

 

9.4.1

EPROM ............................................................................................................................................

52

 

 

9.4.2

SRAM ...............................................................................................................................................

52

 

 

9.4.3

Memory Select Map..........................................................................................................................

52

 

 

9.4.4 Memory Select Map for 8031 Application.........................................................................................

54

 

 

9.4.5

Peripheral I/O ...................................................................................................................................

56

i

PSD5XX Family

PSD5XX/ZPSD5XX

Field-Programmable Microcontroller Peripherals

Table of Contents (cont.)

 

9.5

Power Management Unit ............................................................................................................................

58

 

 

9.5.1

Standby Mode ..................................................................................................................................

58

 

 

9.5.2

Power Down .....................................................................................................................................

58

 

 

9.5.3

Sleep Mode ......................................................................................................................................

58

 

 

9.5.4 Other Power Saving Options ............................................................................................................

61

 

9.6

PSD5XX Counter/Timer ..............................................................................................................................

63

 

 

9.6.1

Counter/Timer Operation..................................................................................................................

66

 

 

9.6.2

Counter/Timer Registers ..................................................................................................................

81

 

9.7

Interrupt Controller ......................................................................................................................................

95

 

 

9.7.1

Interrupt Operation ...........................................................................................................................

95

 

 

9.7.2

Input/Output....................................................................................................................................

100

 

 

9.7.3

PPLD Macrocell..............................................................................................................................

100

 

 

9.7.4

Interrupt Flowchart..........................................................................................................................

100

10.0

Page Register ...................................................................................................................................................

103

11.0

Security Protection............................................................................................................................................

103

12.0

System Configuration .......................................................................................................................................

104

 

12.1

 

Reset Input ............................................................................................................................................

108

 

12.2

 

ZPLD and Memory During Reset...........................................................................................................

108

 

12.3

 

Register Values During and After Reset................................................................................................

108

 

12.4

 

ZPLD Macrocell Initialization .................................................................................................................

108

13.0

Specifications....................................................................................................................................................

109

 

13.1

 

Absolute Maximum Ratings ...................................................................................................................

109

 

13.2

 

Operating Range ...................................................................................................................................

109

 

13.3

 

Recommended Operating Conditions....................................................................................................

109

 

13.4

 

AC/DC Parameters ................................................................................................................................

110

 

13.5

 

Example of PSD5XX Typical Power Calculation at VCC = 5.0 V ...........................................................

111

 

13.6

 

DC Characteristics (5 V ± 10% versions) ..............................................................................................

112

 

13.7

 

AC/DC Parameters – ZPLD Timing Parameters ...................................................................................

113

 

13.8

 

Microcontroller Interface – AC/DC Parameters .....................................................................................

115

 

13.9

 

DC Characteristics (ZPSD5XXV Versions) (3.0 V ± 10% versions) ......................................................

120

 

13.10

AC/DC Parameters – ZPLD Timing Parameters (3.0 V ± 10% versions)..............................................

121

 

13.11

Microcontroller Interface – AC/DC Parameters (3.0 V± 10% versions).................................................

121

14.0

Timing Diagrams...............................................................................................................................................

128

15.0

Pin Capacitance................................................................................................................................................

134

16.0

AC Testing

........................................................................................................................................................

134

17.0

Erasure and Programming................................................................................................................................

134

18.0

PSD5XX Pin Assignments................................................................................................................................

135

19.0

Package Information.........................................................................................................................................

137

20.0

PSD5XX Product Ordering Information ............................................................................................................

142

 

20.1

 

PSD5XX Family – Selector Guide .........................................................................................................

142

 

20.2

 

Part Number Construction .....................................................................................................................

143

 

20.3

 

Ordering Information..............................................................................................................................

143

21.0

Process Change Notice, October 1, 1998 ........................................................................................................

148

ii

 

 

 

 

 

 

 

Programmable Peripheral

 

 

PSD5XX Family

 

 

Field-Programmable Microcontroller Peripherals

 

 

 

 

 

1.0

 

The PSD5XX family is a microcontroller peripheral that integrates high-performance and

Introduction

 

user-configurable blocks of EPROM, programmable logic, and SRAM into one part. The

 

 

PSD5XX is also loaded with a variety of features, such as Counter/Timers, Interrupt

 

 

controller, power management, and page logic. The PSD5XX products also provide a

 

 

powerful microcontroller interface that eliminates the need for external “glue logic”. The no

 

 

“glue logic” concept provides a user-programmable interface to a variety of 8- and 16-bit

 

 

(multiplexed or non-multiplexed) microcontrollers that is easy to use. The part’s integration,

 

 

small form factor, low power consumption, and ease of use make it the ideal part for

 

 

interfacing to virtually any microcontroller.

 

 

The PSD5XX provides three Zero-power PLDs (ZPLDs): a Decode PLD (DPLD), a

 

 

General-purpose PLD (PLD), and a Peripheral PLD (PPLD). The ZPLDs have a total of 61

 

 

inputs, 140 product terms, 30 macrocells, and 24 I/O connections. A configuration bit

 

 

(Turbo) can be set by the MCU, and will automatically place the ZPLDs into standby if

 

 

no inputs are changing. The ZPLDs are designed to consume minimum power using Zero

 

 

Power CMOS technology that uses low standby current. Unused product terms are

 

 

automatically disabled, also reducing power, regardless of the Turbo bit setting.

 

 

 

 

 

 

 

 

 

 

The main function of the DPLD is to perform address decoding for the internal I/O ports, EPROM, and SRAM. The address decoding can be based on up to 24 bits of address inputs, control signals (RD, WR, PSEN, etc.), and internal page logic. The DPLD supports separate program and data spaces (for 8031 compatible MCUs).

The General-purpose PLD (GPLD) can be used to implement various logic defined by the user, such as:

State machines

Loadable counters and shift registers

Inter-processor mailbox

External control logic (chip selects, output enables, etc.).

The GPLD has access to up to 61 inputs, 118 product terms, 24 macrocells, and 24 I/O pins.

1

PSD5XX Family

Introduction

The Peripheral PLD (PPLD) generates outputs to the Counter/Timer unit and the Interrupt

(cont.)

Controller. The PPLD outputs to the Counter/Timer enable, disable, or trigger counting or

 

time capture. The PPLD outputs to the Interrupt Controller enables the user to define

 

conditions for interrupt generation.

 

The Counter/Timer unit provides four 16-bit highly flexible Counter/Timers. Each has five

 

modes of operation: pulse, waveform, event counting, time capture, and watchdog

 

(real-time clock). Each Counter/Timer can be programmed to count up or down. The inputs

 

to the Counter/Timer, which enable/disable counting or trigger an operation, can originate

 

from the PPLD directly or directly from the pins. The maximum operating frequency of each

 

counter is 7.5 MHz. The input clock can be divided (by up to 280) before driving the

 

Counter/Timer unit using the 4 to 280 prescaler.

 

The Interrupt Controller has eight levels of priority encoding. It accepts four user-defined

 

interrupts and four terminal counts from the Counter/Timer. Each interrupt can be

 

individually masked and configured to be level or edge sensitive. A 3-bit interrupt vector is

 

generated that can be read by the microcontroller. The serviced interrupt will be cleared

 

automatically after the microcontroller has read the interrupt vector.

The PSD5XX has 40 I/O pins that are divided among 5 ports. Each I/O pin can be individually configured to provide many functions, including the following:

MCU I/O

ZPLD I/O

Latched address output (for MCUs with multiplexed data bus)

Special function I/O (Counter/Timer and Interrupts)

Data bus (for MCUs with non-multiplexed data bus).

The PSD5XX can easily interface with virtually any 8- or 16-bit microcontroller with a multiplexed or non-multiplexed bus. All of the MCU control signals are connected to the ZPLDs, enabling the user to generate signals for external devices. The PSD5XX can generate a reset output based on the RESET input (includes hysteresis).

The PSD5XX provides between 256 Kbits and 1 Mbit of EPROM that is divided in to four equal-sized blocks. Each block can occupy a different address location, allowing for versatile address mapping. The access time of the EPROM includes the address latching and DPLD decoding.

The PSD5XX has an optional 16 Kbit SRAM that can be battery-backed by connecting a battery to the Vstby pin. The battery will protect the contents of the SRAM in the event of a power failure. Therefore, you can place data in the optional SRAM that you want to keep after the power is switched off. Power switch-over to the battery automatically occurs when Vcc drops below Vstby.

A four-bit Page Register enables easy access to the I/O section, EPROM, and SRAM for microcontrollers with limited address space. The Page Register outputs are connected to the ZPLDs and thus can also be used for external paging schemes.

Please refer to the revision block at the end of this document for updated information.

2

 

PSD5XX Family

Introduction

The Power Management Unit (PMU) of the PSD5XX enables the user to control the

(cont.)

power consumption on selected functional blocks, based on system requirements. For

 

microcontrollers that do not generate a chip select input for the PSD, the Automatic

 

Power-Down (APD) unit of the PMU can be setup to enable the PSD to enter Power Down

 

or Sleep Mode, based on the inactivity of ALE (or AS).

 

Implementing your design has never been easier than with PSDsoft—WSI’s software

 

development suite. Using PSDsoft, you can do the following:

 

Configure your PSD5XX to work with virtually any microcontroller

 

Specify what you want implemented in the programmable logic using a design file

 

Simulate your design

 

Download your design to the part using a programmer.

2.0Single-chip programmable peripheral for microcontroller-based applications

Key Features

256K to 1 Mbit of UV EPROM with the following features:

Configurable as 32, 64, or 128 K x 8; or as 16, 32, or 64 K x 16

Divided into four equally-sized mappable blocks for optimized address mapping

As fast as 70 ns access time, which includes address decoding

Built-in Zero-power technology

16 Kbits SRAM is configurable as 2K x 8 or 1K x 16. The access time can be

as quick as 70 ns, including address decoding. The contents of the SRAM can be battery-backed by connecting a battery to the Vstby pin. The SRAM was also designed using Zero-power technology

40 I/O pins (divided into five 8-bit ports) that can be individually configured for:

Standard MCU I/O

PLD/macrocell I/O

Latched address output

High-order address inputs

Special function I/O

Open-drain output

Three Zero-power Programmable Logic Devices (ZPLDs): the Decode PLD (DPLD), the General-purpose PLD (GPLD), and the Peripheral PLD (PPLD) can be used for:

Up to 61 input and 140 output product terms

24 Macrocells and I/O

Decode up to 16 MB of address

State machines and state logic

Generate external signals (chip selects, bus interface, etc.)

Microcontroller logic that eliminates the need for external “glue logic” has the following features:

Ability to interface to multiplexed and non-multiplexed buses

Built-in address latches for multiplexed address/data bus

ALE and Reset polarity are programmable

Multiple configurations are possible for interface to many different microcontrollers

Four 16-bit Counter/Timers that have five modes of operation and can be controlled by the PPLD macrocells. Modes of operation are: pulse and waveform generation, time capture, event counting, and a watchdog timer (real time clock).

Eight input priority encoded Interrupt Controller. Four interrupts are generated by the PPLD and are user defined. The other four interrupts are generated by the Counter/Timer’s terminal count flags. Each interrupt can be individually masked and configured as edge or level sensitive.

Page logic is connected to the ZPLDs and expands the MCU address space to up to 16 times

3

PSD5XX Family

Key Features

Programmable power management allows:

(cont.)

SRAM, EPROM, and ZPLDs to enter standby mode automatically

 

Disabling of the clock input to the ZPLDs

 

ZPLDs to enter a special low power mode (Sleep Mode), based on Turbo bit setting

A security bit prevents reading the PSD5XX configuration and the ZPLD contents. Setting this bit will prevent the device from being copied on a device programmer.

Built-in security enables the user to block read accesses from a device programmer

Package choices include a 68-pin PLCC and CLDCC, and an 80-pin TQFP.

Programmable polarity Reset output (includes hysteresis), based on Reset input

Simple, menu-driven software (PSDsoft) allows configuration and design entry on a PC.

3.0 Notation

Throughout this data sheet, references are made to the PSD5XX. In most cases, these references also cover the ZPSD5XX and ZPSD5XXV products. Exceptions will be noted.

The main difference between the ZPSD5XX and the PSD5XX is the standby current (Isb). The ZPSD5XX devices have been rated for a lower standby current. Also, there is no low-voltage version of the PSD5XX. There is only the low-voltage version of the ZPSD5XX, which has a V suffix.

4.0 ZPSD

Background

Portable and battery powered systems have recently become major embedded control application segments. As a result, the demand for electronic components having extremely low power consumption has increased dramatically. Recognizing this need, WSI, Inc.

has developed a new Zero-Power technology. ZPSD products virtually eliminate the DC component of power consumption reducing it to standby levels. Eliminating the DC component is the basis for the words “Zero Power”. ZPSD products also minimize the AC power component when the chip is changing states. The result is a programmable microcontroller peripheral family that replaces discrete circuit functions while drawing minimal power.

4

SGS Thomson Microelectronics PSD511B1, PSD512B1, PSD513B1, PSD501B1, PSD502B1 Datasheet

CONTROL

RD, WR

AD0 – AD15

PC0 – PC7

PD0 – PD7

5

 

 

ADDRESS/DATA/CONTROL BUS

 

 

 

ZPLD

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

BUS

 

 

 

POWER

 

 

 

PAGE

 

 

 

VSTDBY

 

 

256K – 1M BIT

MANAGER

 

REG.

 

 

 

 

EPROM

UNIT

 

 

 

 

EPROM

 

 

PROG.

DECODE PLD

 

 

 

 

SELECT

 

 

 

 

BUS

(DPLD)

 

 

 

 

 

INTRF

 

SRAM

 

 

 

 

 

 

SELECT

16 K BITS

PROG.

 

 

 

 

 

 

 

61

 

PERIPHERAL

SRAM

PA0 – PA7

 

PORT

 

 

SELECTS

 

 

 

 

 

 

CSIOP

 

PORT

 

 

ADIO

 

I/O

A

 

 

PORT

 

 

DECODER

 

 

 

 

GENERAL PLD

24 MACROCELLS

 

 

 

(GPLD)

 

 

PROG.

27PT

PORT A MACROCELLS

PROG.

 

PORT

PB0 – PB7

60

PORT

 

 

 

PORT

80PT

PORT B MACROCELLS

PORT

 

CLKIN

 

B

 

C

 

 

 

 

 

 

11PT

PORT E MACROCELLS

 

 

 

 

 

 

 

 

 

PROG.

 

 

MACROCELL FEEDBACK OR PORT INPUT

PORT

PE0 – PE7

 

 

 

PROG.

 

CLKIN

PORT

 

PORT

 

COUNTER/TIMERS

E

 

 

 

 

 

PORT

 

PERIPHERAL

 

 

 

 

D

60

 

 

 

 

PLD (PPLD)

8PT

4

FOUR 16 - BIT

 

 

 

 

 

MACROCELLS

 

 

 

 

 

 

 

 

 

 

 

 

TERMINAL

GLOBAL

 

 

 

 

 

COUNTS

 

 

 

4PT

 

CONFIG.

 

 

 

2

 

 

CLKIN

 

 

 

&

 

 

 

MACROCELLS

 

 

 

 

INTERRUPT

SECURITY

 

 

 

 

 

 

 

 

2PT

 

 

CLKIN

 

 

 

CONTROLLER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERRUPT OUTPUT

 

 

 

 

 

WATCH DOG OUTPUT

 

 

Diagram Block PSD5XX .1 Figure

Family PSD5XX

PSD5XX Family

5.0 Integrated Power Management TM Operation

Upon each address or logic input change to the PSD, the device powers up from low power standby for a short time. Then the PSD consumes only the necessary power to deliver new logic or memory data to its outputs as a response to the input change. After the new outputs are stable, the PSD latches them and automatically reverts back to standby mode. The ICC current flowing during standby mode and during DC operation is identical.

The PSD automatically reduces its DC current drain to these low levels and does not require controlling by the CSI (Chip Select) input. Disabling the CSI pin unconditionally forces the PSD to standby mode independent of other input transitions.

The only significant power consumption in the PSD occurs during AC operation.

The PSD contains the first architecture to apply Zero-power techniques to memory circuit blocks as well as logic.

Figure 2 compares PSD Zero-power operation to the operation of a discrete solution.

A standard microcontroller (MCU) bus cycle usually starts with an ALE (or AS) pulse and the generation of an address. The PSD detects the address transition and powers up for a short time. The PSD then latches the outputs of the PAD, EPROM and SRAM to the new values. After finishing these operations, the PSD shuts off its internal power, entering standby mode. The time taken for the entire cycle is less than the PSD’s “access time.”

The PSD will stay in standby mode if the inputs do not change between bus cycles. In an alternate system implementation using discrete EPROM, SRAM and other discrete components, the system will consume operating power during the entire bus cycle. This is because the chip select inputs on the memory devices are usually active throughout the entire cycle. The AC power consumption of the PSD may be calculated using the composite frequency of the MCU address and control inputs, as well as any other logic inputs to the ZPLD.

NOTE: The ZPSD5XX parts have been rated for a lower standby current (ISB) than the PSD5XX parts.

Figure 2. ZPSD Power Operation vs. Discrete Implementation

ALE

 

 

 

ADDRESS

EPROM

SRAM

EPROM

ACCESS

ACCESS

ACCESS

 

DISCRETE EPROM, SRAM & LOGIC

 

 

ICC

ZPSD

ZPSD

ZPSD

 

 

 

 

TIME

 

6

PSD5XX Family

6.0

Design Flow

Shown in Figure 3 (below) is the software design flow for a PSD5XX device.

PSDsoft—WSI’s software development suite—is used throughout the design phase. You start with a design file that is written in PSDabel-a high-level hardware description language (HDL). Before you compile your design, you must also configure the PSD5XX so it knows what signals to expect from your microprocessor and what pre-runtime options should be set (such as the security bit).

Once you have a design file and have configured the device, you are ready to run the Fitter and Address Translator. The Fitter accepts input from PSDabel and PSD Configuration, synthesizes this user logic and configuration, and fits the design to the PSD silicon.

The Address Translator process allows the user to map the MCU firmware from a cross-compiler (in Intel HEX or S-Record format) into the NVM memory blocks within the PSD. As a result, the MCU firmware is merged with the logic and configuration definition of the PSD.

The output of the Address Translator and the Fitter is the required object file that is used by a programmer to program the PSD device. The object file includes chip configuration, the PLD fusemap, and MCU firmware information.

PSDsilosIII is an optional program that provides functional chip-level simulation of the PSD5XX. PSDsoft automatically creates files for input to the simulator. These files convey relevant design information to the simulator. As a result, the user only has to create a stimulus file since all of the signals and node names are taken from the design file.

Figure 3. PSDsoft Development Tools

PSDsoft

Development Software

PSDabel™

 

PSD Configuration

ZPLD DESCRIPTION

 

CHIP CONFIGURATION

(STATE MACHINE, DECODING)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CODE FILE

 

 

 

 

PSD Compiler

 

THIRD PARTY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ZPLD FITTING, ADDRESS TRANSLATION)

 

 

 

 

 

PROGRAMMERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSDsilos III™

 

PSD Programmer

SILOSIII

 

PSDpro/MagicPro®

CHIP SIMULATION

 

CHIP PROGRAMMING

 

 

 

7

PSD5XX Family

7.0

There are 7 unique devices in the PSD5XX family. The part classifications are based on

PSD5XX

EPROM size and data bus width. The features of each part are listed in Table 1.

 

Family

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. PSD5XX Product Matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part

Bus

DPLD + GPLD + PPLD

 

I/O

Timers

Inter.

WD*

PMU

EPROM

SRAM

 

Inputs

Product

Registered

 

 

#

Bit

 

Pins

 

Contr.

 

 

K bit

K bit

 

 

 

 

Terms

Macrocells

 

 

 

 

 

 

 

 

 

501B1

x8/x16

61

140

30

40

4 * 16

8

1 * 16

Yes

256

16

 

511B1

x8

61

140

30

40

4 * 16

8

1 * 16

Yes

256

16

 

502B1

x8/x16

61

140

30

40

4 * 16

8

1 * 16

Yes

512

16

 

512B0

x8

61

140

30

40

4 * 16

8

1 * 16

Yes

512

 

512B1

x8

61

140

30

40

4 * 16

8

1 * 16

Yes

512

16

 

503B1

x8/x16

61

140

30

40

4 * 16

8

1 * 16

Yes

1024

16

 

513B1

x8

61

140

30

40

4 * 16

8

1 * 16

Yes

1024

16

WD = WatchDog Timer.

PMU = Power Management Unit.

*One of the four 16-Bit Timers.

8

PSD5XX Family

8.0 Table 2.

PSD5XX Pin Descriptions

The following table describes the pin names and pin functions of the PSD5XX. Pins that have multiple names and/or functions are defined by user configuration.

Pin Name

Pin Function

Type

 

Function Descriptions

 

 

 

 

 

 

 

 

 

ADIO0 – ADIO15

Address/ data bus

I/O

1. Address/data bus, multiplexed

 

 

 

 

 

 

 

 

 

bus mode

 

 

 

 

 

 

 

 

2.

Address bus, non-multiplexed

 

 

 

 

 

 

 

 

 

bus mode

 

 

 

 

 

 

 

 

 

RD

Multiple Names

I

Multiple functions

 

1. Read

 

1.

Read signal

 

2. E

 

2.

E signal (Clock)

 

3.

 

DS

 

 

 

 

3.

Data strobe signal

 

4.

 

LDS

 

 

 

4.

Low byte data strobe

 

 

 

 

 

 

WR

Multiple Names

I

Multiple functions

 

1. WR

 

1.

Write signal

 

2. R/W

 

2.

Read-write signal

 

3.

WRL

 

 

3.

Low byte write signal

 

 

 

 

CSI

Chip Select Input

I

Active low, select PSD5XX.

 

 

 

 

 

 

 

 

standby mode if high.

 

 

 

 

RESET

Reset Input

I

Reset I/O ports, ZPLD/macrocells,

 

 

 

 

 

 

 

 

Timers and Configuration

 

 

 

 

 

 

 

 

Registers. Active low.

 

 

 

 

CLKIN

Input clock

I

Clock input to Timers, ZPLD

 

 

 

 

 

 

 

 

macrocells, ZPLD array, and APD

 

 

 

 

 

 

 

 

counter; connect to ground if clock

 

 

 

 

 

 

 

 

input not used.

 

 

 

 

PA0 – PA7

I/O Port A

I/O

Multiple functions

 

 

 

 

 

 

 

 

1.

I/O port

 

 

 

 

 

 

 

 

2.

ZPLD/macrocell I/O port

 

 

 

 

 

 

 

 

3.

Latched address outputs

 

 

 

 

 

 

 

 

 

(PA0–PA7) → (A0–A7)

 

 

 

 

 

 

 

 

4.

High address inputs (A16 – A23)

 

 

 

 

 

 

 

 

5.

Timer outputs (PA0 – PA3)

 

 

 

 

PB0 – PB7

I/O Port B

I/O

Multiple functions

 

 

 

 

 

 

 

 

1.

I/O port

 

 

 

 

 

 

 

 

2.

ZPLD/macrocell I/O port

 

 

 

 

 

 

 

 

3.

Latched address outputs

 

 

 

 

 

 

 

 

 

(PB0–PB7) → (A0–A7) or (A8–A15)

 

 

 

 

 

 

 

 

4.

Timer outputs (PB0-PB3)

 

 

 

 

PC0 – PC7

I/O Port C

I/O

Multiple functions

 

 

 

 

 

 

 

CMOS

1.

I/O port

 

 

 

 

 

 

 

or

2.

ZPLD input port

 

 

 

 

 

 

 

OD

3.

Latched address outputs

 

 

 

 

 

 

 

 

 

(PC0 – PC7) → (A0–A7)

 

 

 

 

 

 

 

 

4.

Data Port (D0 – D7,

 

 

 

 

 

 

 

 

 

non-multiplexed bus)

 

 

 

 

PD0 – PD7

I/O Port D

I/O

Multiple functions

 

 

 

 

 

 

 

CMOS

1.

I/O port

 

 

 

 

 

 

 

or

2.

ZPLD input port

 

 

 

 

 

 

 

OD

3.

Latched address outputs

 

 

 

 

 

 

 

 

 

(PD0–PD7) → (A0–A7) or (A8–A15)

 

 

 

 

 

 

 

 

4.

Data Port (D8-D15,

 

 

 

 

 

 

 

 

 

non-multiplexed bus)

 

 

 

 

 

 

 

 

 

 

9

PSD5XX Family

Table 2.

PSD5XX Pin

Descriptions

(Cont.)

Pin Name

 

Pin Function

Type

 

Function Descriptions

 

 

 

 

 

PE0

Port PE, pin 0

I/O

Multiple functions

 

1.

BHE

 

1.

High byte enable, 16 bit data

 

2.

PSEN

 

 

2.

Read program memory, 8031 signal

 

3.

WRH

 

 

write high data byte

 

4.

UDS

 

4.

Upper Data Strobe

 

5.

SIZ0

 

5.

Byte enable, 68300 signal

 

6.

PE0

 

6.

I/O pin

 

7.

PE0

 

7.

ZPLD I/O pin

 

8.

PE0

 

8.

Latched Address Out – A0

 

 

 

 

 

PE1

Port PE, pin 1

I/O

Multiple functions

 

1.

ALE

 

1.

Address strobe

 

2.

PE1

 

2.

I/O pin

 

3.

PE1

 

3.

ZPLD I/O pin

 

4.

PE1

 

4.

Latched Address Out – A1

 

 

 

 

 

PE2

Port PE, pin 2

 

Multiple functions

 

1.

Intr Out

 

1.

Interrupt Controller Output

 

2.

PE2

I/O

2. I/O pin

 

3.

PE2

 

3.

ZPLD I/O pin

 

4.

PE2

 

4.

Latched Address Out – A2

 

 

 

 

 

PE3

Port PE, pin 3

 

Multiple functions

 

1.

Timer0-In

 

1.

Timer0 control input

 

2.

PE3

I/O

2. I/O pin

 

3.

PE3

 

3.

ZPLD I/O pin

 

4.

PE3

 

4.

Latched Address Out – A3

 

 

 

 

 

PE4

Port PE, pin 4

 

Multiple functions

 

1.

Timer1-In

 

1.

Timer1 control input

 

2.

PE4

I/O

2. I/O pin

 

3.

PE4

 

3.

ZPLD I/O pin

 

4.

PE4

 

4.

Latched Address Out – A4

 

5.

TC0

 

5.

Timer0 Terminal Count

 

 

 

 

 

PE5

Port PE, pin 5

 

Multiple functions

 

1.

Timer2-In

 

1.

Timer2 control input

 

2.

PE5

I/O

2. I/O pin

 

3.

PE5

 

3.

ZPLD I/O pin

 

4.

PE5

 

4.

Latched Address Out – A5

 

5.

TC1

 

5.

Timer1 Terminal Count

 

 

 

 

 

PE6

Port PE, pin 6

 

Multiple functions

 

1.

Timer3-In

 

1.

Timer3 control input

 

2.

PE6

I/O

2. I/O pin

 

3.

PE6

 

3.

ZPLD I/O pin

 

4.

PE6

 

4.

Latched Address Out – A6

 

5.

TC2

 

5.

Timer2 Terminal Count

 

 

 

 

 

PE7

Port PE, pin 7

 

Multiple functions

 

1.

APD CLK

 

1.

Automatic Power Down Clock Input

 

2.

PE7

I/O

2. I/O pin

 

3.

PE7

 

3.

ZPLD I/O pin

 

4.

PE7

 

4.

Latched Address Out – A7

 

5.

TC3

 

5.

Timer3 Terminal Count

 

 

 

 

 

VSTBY

VSTBY

I

SRAM power pin for standby

 

 

 

 

operation (battery backup)

 

 

 

 

 

 

 

 

 

 

VCC

VCC

I

Chip VCC power pin

GND

GND

I

Chip ground pin

 

 

 

 

 

 

 

10

PSD5XX Family

9.0

The PSD5XX Architecture

PSD5XX consists of seven major functional blocks:

ZPLD Blocks

Bus Interface

I/O Ports

Memory Block

Power Management Unit

Counter/Timer

Interrupt Controller

The functions of each block are described in the following sections. Many of the blocks perform multiple functions, and are user configurable. The chip configurations are specified by the user in the PSDsoft Development Software; some are specified by setting up the appropriate bits in the configuration registers during run time.

9.1 ZPLD Block

Key Features

3 Embedded ZPLD devices

Maximum 30 macrocells

Combinatorial/registered outputs

Maximum 140 product terms

Programmable output polarity

User configured register clear/preset

User configured register clock input

61 Inputs

Accessible via 24 I/O pins

Power Saving Mode

UV-Erasable

Generate user defined interrupts to Interrupt Controller and controls to Counter/Timer

General Description

The ZPLD block has 3 embedded PLD devices:

DPLD

The Address Decoding PLD, generating select signals to internal I/O or memory blocks.

GPLD

The General Purpose PLD provides 24 programmable macrocells for general or complex logic implementation; dedicated to user application.

PPLD

The Peripheral PLD, includes 6 programmable macrocells. The PPLD provides control to the operation of the Counter/Timer and Interrupt Controller.

Figure 4 shows the architecture of the ZPLD. The PLD devices all share the same input bus. The true or complement of the 61 input signals are fed to the programmable

AND-ARRAY. Names and source of the input signals are shown in Table 3. The PA, PB, PE signals, depending on user configuration, can either be macrocell feedbacks or inputs from Port A, B or E.

11

12

ZPLD INPUT

 

 

BUS

ES0 – ES3

 

 

 

DPLD

PAGE

PGR0 – 3

DPLD

RS0

 

 

 

REG.

 

CSIOP

 

 

 

(DECODING PLD)

 

 

 

PSEL0 – PSEL1

 

 

 

 

 

 

 

 

ADIO

A8 – A15

 

27 PT

8 I/O

 

PROG.

 

PORT

A0, A1

AND

PA0 – PA7

PORT

 

 

 

 

MACROCELLS

 

PORT

 

 

 

ARRAY

 

PA

 

 

PROG.

 

 

 

 

 

A

 

PC0 – PC7

 

 

 

 

 

 

PORT

 

 

 

 

 

GPLD

PORT

 

 

80 PT

8 I/O

 

PROG.

 

 

 

(GENERAL

C

 

AND

PB0 – PB7

PORT

 

 

MACROCELLS

 

 

 

PORT

PURPOSE PLD)

 

 

ARRAY

 

PB

 

 

 

 

 

 

PROG.

 

 

 

 

 

B

 

PD0 – PD7

 

 

 

 

 

 

PORT

 

 

 

 

 

 

PORT

 

 

11 PT

8 I/O

PE0 – PE7

PROG.

 

 

 

PORT

 

D

 

AND

 

MACROCELLS

 

 

 

 

 

 

 

 

ARRAY

 

PE

 

PORT

 

 

 

 

 

 

 

E

 

PMU

 

 

 

 

 

 

 

 

 

AND

8 PT

4 OUTPUT

MC2TMR0 – 3

TIMERS

 

CSI

 

 

MACROCELLS

 

 

 

ARRAY

 

 

 

PPLD

 

 

 

 

WDOG2PLD

 

 

 

 

 

 

 

 

(PERIPHERAL PLD)

RD/E/DS

 

 

 

 

 

 

 

 

 

 

 

 

 

WR/R_W

 

AND

4 PT

2 OUTPUT

MC2INT6 – 7

INTR.

 

RESET

 

 

PT2INT4 – 5

 

 

2 PT

MACROCELLS

CTRL

 

 

ARRAY

 

 

 

 

 

 

 

 

CLKIN

 

INTR2PLD

 

 

 

 

 

 

 

 

 

 

 

 

PSD5XX The Architecture

 

Family PSD5XX

 

.4 Figure

 

 

 

 

 

 

 

 

 

Diagram Block ZPLD

 

 

 

 

 

 

 

 

 

 

PSD5XX Family

The PSD5XX

Table 3. ZPLD Input Signals

 

 

 

 

Architecture

 

 

 

 

 

 

 

 

Signal Name

 

From

(cont.)

 

 

 

 

 

 

 

 

 

 

 

PA0 – PA7

 

Port A inputs or Macrocell PA feedback

 

 

 

 

 

 

 

 

 

 

PB0 – PB7

 

Port B inputs or Macrocell PB feedback

 

 

 

 

 

 

 

 

 

 

PE0 – PE7

 

Port E inputs or Macrocell PE feedback

 

 

 

 

 

 

 

 

 

 

PC0 – PC7

 

Port C inputs

 

 

 

 

 

 

 

 

 

 

PD0 - PD7

 

Port D inputs

 

 

 

 

 

 

 

 

 

PGR0 – PGR3

 

Page Mode Register

 

 

 

 

 

 

 

 

 

 

WDOG2PLD

 

Counter/Timer

 

 

 

 

 

 

 

 

 

INTR2PLD

 

Interrupt Controller

 

 

 

 

 

 

 

 

 

A8 – A15, A0, A1

 

MCU Address Lines

 

 

 

 

 

 

 

 

 

RD/E/DS

 

MCU bus signal

 

 

 

 

 

 

 

 

 

WR/R_W

 

MCU bus signal

 

 

 

 

 

 

 

 

 

CLKIN

 

Input Clock

 

 

 

 

 

 

 

 

 

RESET

 

Reset input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CSI

 

CSI input (ORed with power down from PMU)

 

 

 

 

 

 

 

 

13

PSD5XX Family

The PSD5XX

9.1.1 The DPLD

Architecture

The DPLD is used for internal address decoding generating the following eight

 

chip select signals:

 

ES0 – ES3

 

EPROM selects, block 0 to block 3

 

RS0

 

SRAM block select

 

CSIOP

 

I/O Decoder chip select

 

PSEL0 – PSEL1

 

Peripheral I/O mode select signals

 

The I/O Decoder enabled by the CSIOP generates chip selects for on-chip registers or I/O

 

ports based on address inputs A[7:0].

 

As shown in Figure 5, the DPLD consists of a large programmable AND ARRAY. There are

 

a total of 61 inputs and 8 outputs. Each output consists of a single product term. Although

 

the user can generate select signals from any of the inputs, the select signals are typically a

 

function of the address and Page Register inputs. The select signals, which are active High,

 

are defined by the user in the ABEL file (PSDabel).

 

The address line inputs to the DPLD include A0, A1 and A8 – A15. If more address lines

 

are needed, the user can bring in the lines through Port A to the DPLD.

9.1.2 The GPLD

The structure of the General Purpose PLD consists of a programmable AND ARRAY and 3 sets of I/O Macrocells. The ARRAY has 61 input signals, same as the DPLD. From these inputs, “ANDed” functions are generated as product term inputs to the macrocells. The I/O Macrocell sets are named after the I/O Ports they are linked to, e.g., the macrocells connected to Port A are named PA Macrocells. The 3 sets of macrocells, PA, PB and PE, are similar in structure and function.

Figure 6 shows the output/input path of a GPLD macrocell to the Port pin with which it is associated. If the Port pin is specified as a GPLD output pin in PSDsoft, the MUX in the I/O Port Cell selects the GPLD macrocell as an output of the Port pin. The output enable signal to the buffer in the I/O cell can be controlled by a product term from the AND ARRAY.

If the Port pin is specified as a ZPLD input pin, the MUX in the GPLD macrocell selects the Port input signal to be one of the 61 signals in the ZPLD Input Bus.

14

15

(INPUTS)

PA0 – PA7

(8)

PB0 – PB7

(8)

PE0 – PE7

(8)

PC0 – PC7

(8)

PD0 – PD7

(8)

PGR0 – PGR3

(4)

A8 – A15, A0, A1

(10)

WDOG2PLD

(2)

INTR2PLD

CSI, CLKIN

(3)

RESET

RD/E/DS

(1)

WR/R_W

(1)

DPLD INPUTS : 61

DPLD OUTPUTS : 8

ES0

ES1

ES2

ES3

RS0

CSIOP

PSEL0

PSEL1

4 EPROM BLOCK SELECTS

RAM SELECT

I/O DECODER SELECT

PERIPHERAL I/O SELECTS

Array Logic DPLD .5 Figure PSD5XX The Architecture ).(cont

Family PSD5XX

PSD5XX Family

The PSD5XX

Architecture

(cont.)

9.1.2.1 Port A Macrocell Structure

Figure 6a shows the PA Macrocell block, which consists of 8 identical macrocells. Each macrocell output can be connected to its own I/O pin on Port A. There are 3 user programmable global product terms output from the GPLD’s AND ARRAY which are shared by all the macrocells in Port A:

PA.OE

Enable or tri-state Port A output pins

PA.PR

Preset D flip flop in the macrocells

PA.RE

Reset/Clear D flip flop in the macrocells

Two other inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to the D flip flop. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin except it is user configurable.

The circuit of a Port A Macrocell is shown in Figure 7. There are 6 product terms from the GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the output, and configure the macrocell to operate as:

Registered Output

Select output from D flip flop

Combinatorial Output

Select output from OR gate

GPLD Input

Use Port A pin as dedicated input

GPLD Output

Use Port A pin as dedicated output

GPLD I/O

Use Port A pin as bidirectional pin

Macrocell Feedback

Register feedback for state machine implementations or expander feedback

from the combinatorial output, to expand the number of product terms available to another macrocell.

In case of "Buried Feedback", where the output of the macrocell is not connected to a Port A pin, Port A can be configured to perform other user defined I/O functions.

The two global product terms assigned for asynchronous clear (PA.RE) and preset (PA.PR) are mainly for proper Port A Macrocell initialization. The macrocell flip-flop can also be cleared during reset by MACRO-RST, if such an option is chosen. The clock source is always the input clock CLKIN.

16

17

INPUT

 

 

 

ADDRESS/DATA/CONTROL

 

 

).(cont

Architecture

PSD5XXThe

ZPLD

 

 

 

INTERNAL

 

 

 

 

 

 

 

BUS

 

 

 

BUS

 

 

 

 

 

 

 

 

 

GPLD MACROCELL

 

 

 

 

 

I/O PORT CELL

 

 

6Figure

 

 

 

 

 

WR

D Q

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMB./REG.

 

 

 

ADDRESS

 

PORT

 

.

 

 

 

 

 

 

 

 

GPLD

ARRAY

 

 

 

 

 

A[8-15]

MUX

 

AND

PT RESET

 

SELECT

 

 

 

 

A[0-7]

 

PIN

 

 

 

 

 

 

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PTs

 

 

GPLD

 

D

Q

 

 

 

 

Macrocell

 

 

 

ALE

 

 

 

 

 

 

 

 

 

MACROCELL

G

 

GPLD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

MUX

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

PR

 

 

 

 

SPECIAL

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

POLARITY

 

 

 

 

 

FUNCTION

 

 

 

Input/Output

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SELECT

 

 

 

 

 

 

 

 

 

 

 

 

CK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CL

 

 

 

 

 

 

 

 

 

 

PT CLEAR

 

 

 

 

PDR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT

 

 

CLKIN

PT CLOCK

 

 

 

 

 

 

 

 

 

 

Port

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTROL

 

 

 

 

 

MUX

 

 

 

 

 

 

 

ALE

 

 

 

 

 

 

 

 

PCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MACRO_RST

 

 

 

 

D Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

 

GLOBAL

CLK

 

 

 

 

 

 

 

 

 

 

 

CLOCK

SELECT

 

 

DIRECTION

 

 

 

 

 

 

 

 

 

 

REGISTER

 

*

 

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

 

 

PORT INPUT

 

 

 

 

Q LATCH D

 

 

 

 

 

 

 

 

 

 

 

 

 

PT OUTPUT ENABLE (OE)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

= LATCH ONLY

 

 

 

 

 

 

 

 

 

 

 

ON PORT A

 

 

 

 

 

FIGURE 5

 

 

 

 

 

 

 

 

 

Family PSD5XX

18

 

 

).(cont

Architecture

PSD5XX The

Family PSD5XX

 

 

 

 

 

.6a Figure

 

 

 

 

PORT A I/O CELLS

 

PA

 

 

PA MACROCELL

 

 

Macrocell

 

 

 

 

 

 

PT [2:0]

 

MACRO. OUT

 

 

 

PA0

MC0

PA0 – INPUT

PA0

 

 

PT [2:0]

 

MACRO. OUT

 

 

 

 

MC1

PA1– INPUT

PA1

 

 

PA1

 

Block

 

 

 

 

 

 

 

AND ARRAY

 

 

 

 

Diagram

 

 

 

 

 

 

 

PT [2:0]

 

MACRO. OUT

 

 

 

 

 

 

 

 

 

 

PA7

MC7

PA7– INPUT

PA7

 

 

 

PA.PR

 

 

 

 

 

 

PA.RE

 

 

 

 

 

 

PA.OE

 

 

 

 

 

 

CLKIN

 

 

 

 

 

 

MACRO – RST

 

 

 

 

 

 

 

 

).(cont

Architecture

PSD5XX The

ZPLD

 

 

 

Figure

 

 

 

.7

BUS

PA .OE

 

 

 

PT

 

 

PA

 

 

 

 

 

PA . PR

 

 

Macrocell

 

PT

COMB/REG

 

 

 

 

 

PT0

SELECT

 

 

 

 

 

PT

 

 

 

PT1

I/O PIN

 

 

 

 

 

PT

 

 

 

PAi

 

 

 

 

 

 

 

PT2

MACRO . OUT

 

 

 

PT

MUX

 

 

 

 

PR

 

 

 

D

Q

 

 

 

AND

 

 

 

 

ARRAY

 

 

 

 

POLARITY

PORT A

 

 

 

 

 

 

 

SELECT

C

 

 

 

PA .RE

 

 

 

 

PT

 

 

 

 

 

MUX

 

 

 

 

PAi – INPUT

 

 

 

PAi

 

 

 

 

MACRO – RST

PLD– IN

 

 

 

 

SELECT

 

PSD5XX

 

CLKIN

 

 

 

 

INTERNAL

 

 

 

ADDRESS/DATA

 

 

 

 

Family

19

NOTE: i = 7 TO 0

BUS

 

 

 

 

PSD5XX Family

The PSD5XX

Architecture

(cont.)

9.1.2.2 Port B Macrocell Structure

Figure 8 shows the PB Macrocell block, which consists of 8 identical macrocells. Each macrocell output can be connected to its own I/O pin on Port B. The two inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to all the macrocells. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin except it is user configurable.

The circuit of a PB Macrocell is shown in Figure 9. There are 10 product terms from the GPLD’s AND ARRAY as inputs to the macrocell. Users can select the polarity of the output, and configure the macrocell to operate as:

Registered Output

Select output from D flip flop.

Combinatorial Output

Select output from OR gate.

GPLD Input

Use Port B pin as dedicated input.

GPLD Output

Use Port B pin as dedicated output.

GPLD I/O

Use Port B pin as bidirectional pin.

Macrocell Feedback

Register feedback for state machine implementations or expander feedback from the combinatorial output, to possibly expand the number of product terms available to another macrocell.

In case of "Buried Feedback", where the output of the macrocell is not connected to a Port B pin, Port B can be configured to perform other user defined I/O functions.

Each D flip flop in the macrocells has its own dedicated asynchronous clear, preset and clock input. The signals are defined as follow:

PRESET

Active only if defined by a product term (PBx.PR)

CLEAR

Two selectable inputs: Reset input or user defined product term (PBx.RE)

CLK

Two selectable inputs – CLKIN input or user defined product term (PBx.CLK).

The macrocell is operated in Synchronous Mode if the clock input is CLKIN, and is in Asynchronous Mode if the clock is a product-term clock defined by the user.

20

 

 

 

).(cont

Architecture

PSD5XX The

 

 

PB MACROCELL

PORT B I/O CELLS

 

.8 Figure

 

PTB0 – [0 . . 5]

 

MACRO .OUT

 

PB

 

PB0 .PR

 

PB0 .OE

 

Macrocell

 

PB0 .RE

 

 

 

 

PB0 .OE

MC0

PB0

 

 

PB0 .CLK

 

PB0 – INPUT

 

 

PB0

 

 

 

 

 

 

 

 

 

 

Block

 

PTB1 – [0 . . 5]

 

MACRO .OUT

 

 

PB1 .PR

 

PB1 .OE

 

 

 

 

Diagram

 

 

 

 

 

PB1 .RE

 

 

 

 

PB1 .OE

MC1

PB1

 

AND ARRAY

PB1 .CLK

 

 

PB1– INPUT

 

 

PB1

 

 

 

 

 

 

 

 

 

 

 

 

PTB7 – [0 . . 5]

 

MACRO .OUT

 

 

 

PB7 .PR

 

PB7 .OE

 

 

 

PB7 .RE

MC7

PB7

 

 

 

PB7 .OE

 

 

 

PB7 .CLK

 

PB7– INPUT

 

 

 

PB7

 

 

 

 

 

 

 

 

 

CLKIN

 

 

 

PSD5XX

 

MACRO – RST

 

 

 

 

 

 

 

Family

21

 

 

 

 

22

 

 

 

).(cont

Architecture

PSD5XX The

Family PSD5XX

ZPLD

 

 

 

 

 

Figure

 

BUS

 

 

 

 

 

 

 

 

 

 

 

.9

 

 

PBi .OE

 

 

 

 

 

PT

 

 

 

 

PB

 

 

 

 

 

 

 

 

PBi .PR

 

 

 

 

 

PT

 

 

 

 

Macrocell

 

 

 

COMB /REG

 

 

 

 

PT0

 

 

 

 

PT

 

SELECT

 

 

 

 

 

 

 

 

PT

PT1

 

 

 

 

 

PT2

 

 

 

 

 

PT

 

 

 

 

 

PT3

 

 

I/O PIN

 

 

PT

 

 

 

 

 

PT4

 

MACRO . OUT

PBi

 

 

 

 

 

 

 

 

PT

 

 

 

 

 

PT5

 

MUX

 

 

 

 

PT

 

 

 

 

 

 

 

PR

 

 

 

 

 

 

D

Q

 

 

 

 

AND

 

POLARITY

 

 

 

 

 

 

SELECT

 

 

 

 

 

ARRAY

 

 

 

 

 

 

 

 

 

PORT B

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

PT

PBi .RE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

PBi .CLK

 

PBi – INPUT

 

 

 

 

PT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

PBi

 

 

 

 

 

 

 

 

 

 

PLD – IN

 

 

 

 

MACRO – RST

 

SELECT

 

 

 

 

 

 

 

 

 

 

CLKIN

 

 

 

 

 

 

 

 

 

CLK

 

 

 

 

 

 

 

SELECT

 

INTERNAL

 

 

 

 

 

 

 

 

 

 

NOTE: i = 7 TO 0

 

 

ADDRESS/DATA

 

 

 

 

 

BUS

 

 

 

PSD5XX Family

The PSD5XX

Architecture

(cont.)

9.1.2.3 Port E Macrocell Structure

Figure 10 shows the PE Macrocell block, which consists of 8 identical macrocells. Each macrocell output can be connected to its own I/O pin on Port E. There are 3 user programmable global product terms output from the GPLD’s AND ARRAY which are shared by all the macrocells in Port E:

PE.OE

Enable or tri-state Port PE output pins

PE.PR

Preset D flip flop in the macrocells

PE.RE

Reset/Clear D flip flop in the macrocells

Two other inputs, CLKIN and MACRO-RST, are used as clock and clear inputs to the D flip flop. The CLKIN comes directly from the CLKIN input pin. The MACRO-RST is the same as the Reset input pin except it is user configurable.

The circuit of a PE Macrocell is shown in Figure 11. There are 4 product terms from the GPLD’s AND ARRAY as input to the macrocell. Users can select the polarity of the output and configure the macrocell to operate as:

Registered Output

Select output from D flip flop

Combinatorial Output

Select output from OR gate

GPLD Input

Use Port E pin as dedicated input

GPLD Output

Use Port E pin as dedicated output

GPLD I/O

Use Port E pin as bidirectional pin

Macrocell Feedback

Register feedback for state machine implementations or expander feedback from the combinatorial output, to possibly expand the number of product terms available to another macrocell.

In case of "Buried Feedback", where the output of the macrocell is not connected to Port E pin, Port E can be configured to perform other user defined I/O functions. If pins PE0 and PE1 are used as bus control signal inputs (ALE, PSEN/BHE), the corresponding macrocells' feedbacks are disabled. The bus control signals are connected to the ZPLD Input Bus.

The two global product terms assigned for asynchronous clear (PE.RE) and preset (PE.PR) are mainly for proper PE Macrocell initialization.

The macrocell flip-flop can also be cleared during reset by MACRO-RST, if such an option is chosen. The clock source is always the input clock CLKIN.

23

24

 

 

).(cont

Architecture

PSD5XX The

Family PSD5XX

 

 

 

 

 

.10 Figure

 

 

 

 

 

 

PE

 

 

PE MACROCELL

 

PORT E I/O CELLS

 

Macrocell

 

 

 

 

 

 

PT

 

MACRO .OUT

 

 

 

PE0

MC0

PE0 – INPUT

PE0

 

 

PT

 

MACRO .OUT

 

 

Block

 

PE1

MC1

PE1 – INPUT

PE1

 

 

AND ARRAY

 

 

 

 

Diagram

 

 

 

 

 

 

 

PT

 

MACRO .OUT

 

 

 

 

 

 

 

 

 

 

PE7

MC7

PE7– INPUT

PE 7

 

 

 

PE .PR

 

 

 

 

 

 

PE .RE

 

 

 

 

 

 

PE .OE

 

 

 

 

 

 

CLKIN

 

 

 

 

 

 

MACRO – RST

 

 

 

 

 

 

 

 

 

 

).(cont

Architecture

PSD5XX The

 

 

 

 

 

 

Figure

ZPLD

 

 

 

 

 

.11

BUS

 

 

 

 

 

PE .OE

 

 

 

 

 

PE

PT

 

 

 

 

 

 

 

 

COMB/REG

 

 

Macrocell

PE .PR

 

 

SELECT

 

 

PT

 

 

 

 

 

PT

 

 

 

I/O PIN

 

PT

 

 

 

 

 

 

 

MACRO .OUT

PEi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

PR

 

 

 

AND

POLARITY

D

Q

 

 

 

ARRAY

SELECT

 

 

 

 

 

 

 

 

 

PORT E

 

 

 

 

 

C

 

 

 

PE .RE

 

 

 

 

 

 

PT

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

PEi – INPUT

 

 

 

PEi

 

 

 

 

 

 

MACRO – RST

 

 

PLD– IN

 

 

 

 

 

SELECT

 

 

 

 

 

 

 

 

 

CLKIN

 

 

 

 

 

PSD5XX

 

 

 

 

INTERNAL

 

NOTE: i = 7 to 0

 

 

 

ADDRESS/DATA

 

 

 

 

 

Family

 

 

 

BUS

 

 

 

 

 

 

25

 

 

 

 

 

PSD5XX Family

The PSD5XX

Architecture

(cont.)

9.1.3 The PPLD

The Peripheral Programmable Logic Device (PPLD) provides a powerful mechanism for the user to control the operations of the Counter/Timer and Interrupt Controller. Figure 12 is the PPLD block diagram. There are six Peripheral Macrocells, four are dedicated to the Counter/Timer, and two to the Interrupt Controller.

The outputs from the four Peripheral Macrocells, MC2TMR[3:0], are used as load/store/enable inputs to the Counter/Timer (multiplexed with pin inputs TIMER[3:0] _IN). The remaining two macrocell outputs (MC2INT[6:7] ), together with two other product terms (PT2INT4, PT2INT5), can generate up to 4 user defined interrupts to the Interrupt Controller. The watch-dog output of the Timer (WDOG2PLD) and Interrupt Controller (INTR2PLD) are available as inputs to the ZPLD’s AND ARRAY.

The structure of a Peripheral Macrocell is shown in Figure 13. The cell has two product term inputs from the AND ARRAY. The user can select the registered or combinatorial output of the macrocell, as well as the output polarity. The registers are clocked by the CLKIN clock, and are cleared by the RESET input during power up.

9.1.4 The ZPLD Power Management

The ZPLD implements a Zero Power Mode, which provides considerable power savings for low to medium frequency operations. To enable this feature, the ZPLD Turbo bit in the Power Management Mode Register 0 (PMMR0) has to be turned off.

If none of the 61 inputs to the ZPLD are switching for a time period of 70ns, the ZPLD puts itself into Zero Power Mode and the current consumption is minimal. The ZPLD will resume normal operation as soon as one or more of the inputs change state.

Two other features of the ZPLD provide additional power savings:

1.Clock Disable:

Users can disable the clock input to the ZPLD and/or macrocells, thereby reducing AC power consumption.

2.Product Term Disable:

Unused product terms in the ZPLD are disabled by the PSDsoft Software automatically for further power savings.

The ZPLD power configuration is described in the Power Management Unit section.

26

 

 

 

 

 

).(cont

Architecture

PSD5XX The

 

 

TIMER [3 : 0]

– IN

 

 

 

Figure

 

 

 

 

 

.12

 

 

 

 

 

 

 

PORT

 

TC[3 : 0]

 

 

 

 

BlockPPLD

E

 

 

 

 

 

 

 

 

 

 

 

 

PT (8)

MACROCELLS

MC2TMR

MUX

COUNTER/

 

Diagram

 

 

(4)

[3 : 0]

TIMER

 

 

 

 

WDOG2PLD

 

 

 

 

 

 

 

 

 

 

TC[3 : 0]

 

 

AND ARRAY

PT

 

 

 

 

 

 

PT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PT2INT4

 

 

 

 

PT (4 )

MACROCELLS

 

PT2INT5

INTERRUPT

 

 

 

 

MC2INT6

 

 

 

 

 

 

 

 

 

(2)

 

CONTROLLER

 

 

 

 

 

MC2INT7

 

 

 

 

 

 

 

 

 

 

 

INTR2PLD

 

 

 

 

 

27

 

 

 

 

 

 

Family PSD5XX

Loading...
+ 123 hidden pages