NSC DP8440VX-40, DP8440VLJ-40, DP8440VLJ-25, DP8440V-40 Datasheet

0 (0)

February 1995

DP8440-40/DP8440-25/DP8441-40/DP8441-25 microCMOS Programmable 16/64 Mbit Dynamic RAM Controller/Driver

General Description

The DP8440/41 Dynamic RAM Controllers provide an easy interface between dynamic RAM arrays and 8-, 16-, 32and 64-bit microprocessors. The DP8440/41 DRAM Controllers generate all necessary control and timing signals to successfully interface and design dynamic memory systems. With significant enhancements over the DP8420/21/22 predecessors, the DP8440/41 are suitable for high performance memory systems. These controllers support page and burst accesses for fast page, static column and nibble DRAMs. Refreshes and accesses are arbitrated on chip. RAS low time during refresh and RAS precharge time are guaranteed by these controllers. Separate precharge coun-

ters for each RAS output avoid delayed back to back accesses due to precharge when using memory interleaving. Programmable features make the DP8440/41 DRAM Controllers flexible enough to fit many memory systems.

Features

Y40 MHz and 25 MHz operation

YPage detection

YAutomatic CPU burst accesses

YSupport 1/4/16/64 Mbits DRAMs

YHigh capacitance drivers for RAS, CAS, WE and Q outputs

YSupport for fast page, static column and nibble mode DRAMs

YHigh precision PLL based delay line

YByte enable for word size up to 32 bits on the DP8440 or 64 bits on the DP8441

YAutomatic Internal Refresh

YStaggered RAS-Only refresh

YBurst and CAS-before-RAS refresh

YError scrubbing during refresh

YTRI-STATEÉ outputs

YEasy interface to all major microprocessors

Block Diagram

TL/F/11718 ± 1

FIGURE 1

TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation

TL/F/11718

RRD-B30M75/Printed in U. S. A.

Mbit 16/64 Programmable microCMOS 25-40/DP8441-25/DP8441-40/DP8440-DP8440

Controller/Driver RAM Dynamic

DRAM

Maximum Clock

Package

Bus Width

Largest DRAM

Controller

Frequency

Type

Supporting

Possible

 

 

 

 

 

DP8440V-40

40 MHz

84-Pin PLCC

8, 16, 32

16 Mbits

 

 

 

 

 

DP8440VLJ-40

40 MHz

100-Pin PQFP

8, 16, 32

16 Mbits

 

 

 

 

 

DP8440VLJ-25

25 MHz

100-Pin PQFP

8, 16, 32

16 Mbits

 

 

 

 

 

DP8441VLJ-40

40 MHz

100-Pin PQFP

8, 16, 32, 64

64 Mbits

 

 

 

 

 

DP8441VLJ-25

25 MHz

100-Pin PQFP

8, 16, 32, 64

64 Mbits

 

 

 

 

 

Table of Contents

1.0 CONNECTION DIAGRAMS

2.0 FUNCTIONAL INTRODUCTION

3.0SIGNAL DESCRIPTION

3.1Address and Control Signals

3.2DRAM Control Signals

3.3Refresh Signals

3.4Reset and Programming Signals

3.5Clock Inputs

3.6Power Signals and Capacitor Input

4.0PROGRAMMING AND RESETTING

4.1Reset

4.2Programming Sequence

4.3Programming Selection Bits

5.0ACCESS MODES

5.1Opening Access

5.2Normal Mode

5.3Page Mode

5.4Burst Access

5.5Inner Page Burst Access

6.0REFRESH MODES

6.1Auto-Internal Refresh

6.2Externally Controlled Refresh

6.3Error Scrubbing during Refresh

6.4Extending Refresh

6.5Refresh Types

7.0WAIT SUPPORT

7.1DTACK During Opening Access

7.2DTACK During Page Access

7.3DTACK During Burst Access

7.4Next Address or Early DTACK Support

8.0ABSOLUTE MAXIMUM RATINGS

9.0DC ELECTRICAL CHARACTERISTICS

10.0LOAD CAPACITANCE

11.0AC TIMING PARAMETERS

12.0 AC TIMING WAVEFORMS

CLK and DECLK Timing

Refresh Timing

Refresh and Access Timing

Programming and Initialization Period Timing

Normal Mode Access Timing

Page Mode Access Timing

Burst Mode Access Timing

13.0 ERRATA

14.0 PHYSICAL DIMENSIONS

2

1.0 Connection Diagrams

TL/F/11718 ± 2

Top View

FIGURE 2

Order Number DP8441VLJ-40 (40 MHz Operation), DP8441VLJ-25 (25 MHz Operation)

See NS Package Number VLJ100A

3

1.0 Connection Diagrams (Continued)

TL/F/11718 ± 38

Top View

FIGURE 3

Order Number DP8440VLJ-40 (40 MHz Operation), DP8440VLJ-25 (25 MHz Operation)

See NS Package Number VLJ100A

4

1.0 Connection Diagrams (Continued)

TL/F/11718 ± 3

Top View

FIGURE 4

Order Number DP8440V-40 (40 MHz Operation)

See NS Package Number V84A

5

2.0 Functional Introduction

Reset and Programming: After the power up, the DP8440/41 must be reset and programmed before it can be used to access the DRAM. The chip is programmed through the address bus.

Initialization Period: After programming, the DP8440/41 enter a 60 ms initialization period. During this time the DP8440/41 perform refreshes to the DRAM. Further warm up cycles are unnecessary. The user must wait until the initialization is over to access the memory.

Modes of Operation: The DP8440/41 are synchronous DRAM controllers. Every access is synchronized to the system clock. The controllers can be programmed in Page Mode or Normal Mode. Burst accesses are dynamically requested through the input BSTARQ.

Opening Access: They involve a new row address. Regardless of the access mode programmed, opening accesses behave in the same way. ADS and CS initiate and qualify every access. After asserting the ADS, the DP8440/41 will assert RAS from the next rising edge of the CLK. The DP8440/41 will hold the row address on the DRAM address bus and guarantee that the row address is held for the Row Address Hold Time (tRAH) programmed. The DRAM controller will then switch the internal multiplexor to place the column address on the DRAM address bus and assert CAS. DTACK will wait the programmed number of wait states before asserting to indicate the end of the access.

Normal Access: If the controller is programmed in Normal

Mode (B1 e 1), RAS will assert and negate after the programmed RAS low time. The user can perform burst access if desired.

Page Access: The DP8440/41 have an internal page comparator. This feature enables the user to do a series of accesses without negating RAS for as long as the row address remains unchanged. The user needs to provide a new address for every access. The page comparator can also be programmed as an input. This is beneficial for CPUs that have an internal page comparator. The user can do burst accesses while in page if desired.

Burst Access: These controllers can also generate new addresses to burst a specific number of locations. The user can choose to burst in a wrap around fashion for 2, 4, 8, 16 locations. Or, if the input NoWRAP is asserted, the controller will burst consecutive locations and the column address will not wrap around. The controller must be programmed in Latch Mode to generate the burst addresses.

Refresh Modes: The DP8440/41 can perform Automatic Internal Refreshes, or Externally Controlled Refreshes. During a long page access the controller can queue up to six refresh requests and burst refresh the addresses missed when the access finishes.

Refresh Types: The DP8440/41 can be programmed to do all RAS Refresh, Staggered Refresh, Error Scrubbing during Refresh or CAS-before-RAS refresh.

Wait Support: These controllers provide wait logic for all three types of accesses. The user needs to program the desired number of wait states for opening, page and burst accesses.

RAS and CAS Configurations: The RAS outputs can be programmed to drive one, two or four banks of memory and the CAS drivers can be programmed for byte writing in buses up to 64 bits wide.

TRI-STATE Outputs and Multiporting: The GRANT input can be used for multi-porting. When high this input will TRI-STATE the outputs, allowing another controller to drive the DRAM.

Other Features: Independent RAS precharge counters allow memory interleaving, thus back to back access to different memory banks is not delayed due to precharge.

The output NADTACK can be used to pipeline one address, getting the next access to start one clock early.

The input NoWRAP will increment the address during a burst access in a linear fashion. This is convenient for graphics or long page access.

Terminology: This paragraph explains the terminology used in this data sheet. The terms negated and asserted are used. For example, ECAS0 asserted means the ECAS0 input is at logic 0. The term NoWRAP asserted means that NoWRAP is at logic 1.

6

3.0Signal Descriptions

3.1ADDRESS AND CONTROL SIGNALS

 

 

Pin

Device (if not

Input/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description

 

Name

Applicable to All)

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R0 ± 11

DP8440

I

 

ROW ADDRESS: These inputs are used to specify the row address during an access to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R0 ± 12

DP8441

 

 

the DRAM. They are also used to program the chip when ML is asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C0 ± 11

DP8440

I

 

COLUMN ADDRESS: These inputs are used to specify the column address during an

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C0 ± 12

DP8441

 

 

access to the DRAM. They are also used to program the chip when ML is asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B0 ± B1

 

I

 

BANK SELECT: Depending on programming, these inputs are used to select group RAS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and CAS outputs to assert during an access. They are also used to program the chip when

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the ML is asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECAS0 ± 3

DP8440

I

 

ENABLE CAS: These inputs asserted enable a single or group of CAS outputs. In

 

 

 

 

 

 

 

 

 

 

 

 

combination with the B0, B1 and the programming selection, these inputs select which

 

ECAS0 ± 7

DP8441

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAS outputs will assert during an access. The ECAS signals can also be used to toggle a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group of CAS outputs during page or burst mode accesses. They are also used to program

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the chip when ML is asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NoWRAP

 

I

 

NO WRAP: Asserting this signal causes the column address to be incremented

 

(EXTNDRF)

 

 

 

sequentially by one. The column address will not wrap around if NoWRAP is asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When RFIP is asserted, this signal is an EXTNDRF, used to extend refresh by any number

 

 

 

 

 

 

 

 

 

 

 

 

 

of CLK periods until EXTNDRF is negated.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NoLATCH

DP8441

I

 

COLUMN ADDRESS LATCH DISABLE: This input will disable ADS from latching the

 

 

 

 

 

 

 

 

 

 

 

 

 

column address when Latch Mode is selected.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADS

 

I

 

ADDRESS STROBE: This input starts every access. Depending on programming this input

 

 

 

 

 

 

 

 

 

 

 

 

 

could latch the column address from the rising edge.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

 

I

 

CHIP SELECT: This input signal must be asserted to enable ADS to start an access.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DTACK

 

O

 

DATA TRANSFER ACKNOWLEDGE: This output can be programmed to insert wait

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

states into a CPU access cycle. DTACK negated signifies a wait condition, when asserted

 

 

 

 

 

 

 

 

 

 

 

 

 

signifies that the access has taken place. This signal can be delayed a number of positive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or negative edges of clock. During burst accesses, DTACK transitions increment the

 

 

 

 

 

 

 

 

 

 

 

 

 

column address.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NADTACK

 

O

 

NEXT ADDRESS or EARLY DTACK: This output asserts one clock cycle before DTACK.

 

 

 

 

 

 

 

 

 

 

 

 

This output can be used to request the next address in a sort of pipelining fashion or it

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

provides more time when DTACK needs to be generated externally.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WAITIN

DP8441

I

 

WAIT INPUT: This input asserted delays DTACK for one extra clock period.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRANT

 

I

 

MEMORY ACCESS GRANT: The GRANT input functions as an output enable. If negated,

 

 

 

 

 

 

 

 

 

 

 

 

 

it forces the outputs to a TRI-STATE condition.

 

 

 

 

 

 

 

 

 

 

 

 

PAGMISS

 

I/O

 

PAGE MISS: When programmed as an output, this signal asserts when either the row or

 

 

 

 

 

 

 

 

 

 

 

 

 

the bank address changes from the previous access cycle or the column address has

 

 

 

 

 

 

 

 

 

 

 

 

 

been incremented beyond the page boundary. If this pin is programmed as an input, it is

 

 

 

 

 

 

 

 

 

 

 

 

 

the responsibility of the system to tell the controller if the next access is within the page.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Useful for CPUs with internal page comparators, PAGMISS is valid only if ADS and CS are

 

 

 

 

 

 

 

 

 

 

 

 

asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BSTARQ/

 

I

 

BURST ACCESS REQUEST: This input enables the Burst Access Mode. This input can be

 

BSTARQ

 

 

 

programmed to be active high or active low.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

3.0Signal Descriptions (Continued)

3.2DRAM CONTROL SIGNALS

 

 

Pin

Device (if not

Input/

 

 

 

 

 

 

 

 

 

 

 

 

Description

 

 

Name

Applicable to All)

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q0 ± 11

DP8440

O

DRAM ADDRESS: These output signals are the multiplexed outputs of the R0 ± 11/12 and

 

 

Q0 ± 12

DP8441

 

C0 ± 11/12 and form the DRAM address bus. These outputs contain the refresh address

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whenever RFIP is asserted. They have high capacitive drivers with 20Xs series damping

 

 

 

 

 

 

 

 

 

 

 

resistors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAS0 ± 3

 

O

ROW ADDRESS STROBES: These outputs are asserted to latch the row address

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contained on the outputs Q0 ± 11/12 into the DRAM. When RFIP is asserted, the RAS

 

 

 

 

 

 

 

 

 

 

 

outputs are used to latch the refresh row address contained on the Q0 ± 11/12 outputs into

 

 

 

 

 

 

 

 

 

 

 

the DRAM. These outputs have high capacitive drivers with 20X series damping resistors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAS0 ± 3

DP8440

O

COLUMN ADDRESS STROBES: These outputs are asserted to latch the column address

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAS0 ± 7

DP8441

 

contained on the outputs Q0 ± 11/12 into the DRAM. When RFIP is asserted and CAS-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

before-RAS refresh is selected, the CAS outputs will assert 1T (one clock period) before

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the RAS outputs are asserted. These outputs have high capacitive drivers with 20X series

 

 

 

 

 

 

 

 

 

 

 

damping resistors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE

 

O

WRITE ENABLE: This output asserted specifies a write operation to the DRAM. When

 

 

 

 

 

 

 

 

 

 

 

negated, this output specifies a read operation to the DRAM. This output has a high

 

 

 

 

 

 

 

 

 

 

 

capacitive driver and a 20X series damping resistor.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WIN

 

I

WRITE ENABLE IN: This input is used to signify a write operation to the DRAM. The WE

 

 

 

 

 

 

 

 

 

 

 

output will follow this input. Also, this input controls the precharge time for Read and Write

 

 

 

 

 

 

 

 

 

 

 

during Burst Mode Access.

 

 

3.3 REFRESH SIGNALS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin

Device (if not

Input/

 

 

 

 

 

 

 

 

 

 

 

 

Description

 

 

Name

Applicable to All)

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RFRQ

 

O

REFRESH REQUEST: When RFRQ is asserted, it specifies that 15 ms or 120 ms have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

passed. If DISRFSH is negated and the controller is not into an access cycle, the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DP8440/41 will perform an internal refresh. If DISRFSH is asserted, RFRQ can be used to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

externally request a refresh by asserting the input RFSH.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RFIP

 

O

REFRESH IN PROGRESS: This output is asserted prior to a refresh cycle and is negated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when all the RAS outputs are negated for that refresh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RFSH

 

I

REFRESH: This input asserted with DISRFSH already asserted will request a refresh. If

 

 

 

 

 

 

 

 

 

 

 

this input is continually asserted, the DP8440/41 will perform refresh cycles in a burst

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

refresh fashion until the input is negated. If RFSH is asserted with DISRFSH negated, the

 

 

 

 

 

 

 

 

 

 

 

internal refresh address counter is cleared. This technique is useful for burst refreshes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISRFSH

 

I

DISABLE REFRESH: This input is used to disable internal refreshes and must be asserted

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when using RFSH for externally requested refreshes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 RESET AND PROGRAMMING SIGNALS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin

Device (if not

Input/

 

 

 

 

 

 

 

 

 

 

 

 

Description

 

 

Name

Applicable to All)

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ML

 

I

MODE LOAD: This input signal, when low, enables the internal programming register that

 

 

 

 

 

 

 

 

 

 

 

stores the programming information.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET

 

I

SYSTEM RESET: Reset forces the DP8440/41 to be set at a known state. VCC, CLK and

 

 

 

 

 

 

 

 

 

 

 

DELCLK have to reach their proper DC and AC specifications for at least 1 ms before

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

negating the RESET signal. All outputs are negated when RESET is asserted.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

3.0 Signal Descriptions (Continued)

3.5 CLOCK INPUTS

Pin

Device (if not

Input/

 

 

 

 

 

 

Description

Name

Applicable to All)

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

 

I

 

SYSTEM CLOCK: This input may be in the range of 500 kHz to 40 MHz. This input is

 

 

 

 

generally a constant frequency but it may be controlled externally to change frequencies

 

 

 

 

for some arbitrary reason. This input provides the clock to the internal state machine that

 

 

 

 

arbitrates between accesses and refreshes. This clock's positive edges and negative

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

edges are used to extend the DTACK signal. This clock is also used as a reference for the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAS precharge time, the RAS low during refresh time and CAS precharge time.

DELCLK

 

I

 

DELAY LINE CLOCK: The clock input DELCLK, may be in the range of 10 MHz to 40 MHz

 

 

 

 

and should be a multiple of 2 to have the DP8440/41 switching characteristics hold. If

 

 

 

 

DELCLK is not one of the above frequencies, the accuracy of the internal delay line will

 

 

 

 

suffer. This happens because the phase lock loop that generates the delay line assumes

 

 

 

 

an input clock frequency multiple of 2 MHz.

 

 

 

 

For example, if DELCLK input is 17 MHz and we choose to divide by 8 (program bits

 

 

 

 

C0 ± 3), this will produce 2.125 MHz which is 6.25% off of 2 MHz. Therefore, the

 

 

 

 

DP8440/41 delay line will produce delays that are shorter (faster delays) than intended. If

 

 

 

 

divide by 9 was chosen, the delay line would produce longer delays (slower delays) than

 

 

 

 

intended (1.89 MHz instead of 2 MHz). This clock is also divided to create the internal

 

 

 

 

refresh clock.

 

 

 

 

 

 

 

 

 

 

3.6 POWER SIGNALS AND CAPACITOR INPUT

 

 

 

 

 

 

 

 

 

 

 

 

Pin

Device (if not

Input/

 

 

 

 

 

 

Description

Name

Applicable to All)

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

I

POWER: Supply Voltage.

GND

 

I

GROUND: Supply Voltage Reference.

 

 

 

 

CAP

 

I

CAPACITOR: This input is used by the internal PLL for stabilization. The value of the

 

 

 

ceramic capacitor should be 0.1 mF and it should be connected between this input and

 

 

 

ground.

 

 

 

 

 

 

 

 

 

 

 

 

9

4.0Programming and Resetting

4.1RESET

After power up, the DP8440/41 must be reset and programmed before it can be used to access the DRAM. Reset is accomplished by asserting the input RESET for at least 16 positive edges of CLK after VCC stabilizes. After reset, the part can be programmed.

4.2 PROGRAMMING

Programming is accomplished by presenting a valid programming selection on the row, column, bank selects and ECAS inputs and toggling the ML input from low to high.

When ML goes high the part is programmed. After the first programming after a reset the part will enter a 60 ms initialization period. During this period the controller will refresh the memory, so further DRAM warm up cycles are not necessary. The user can program the part on the fly by pulsing ML low and high (provided that no refresh is in progress) while a valid programming selection is on the address bus. The part will not enter the initialization period when it is only re-programmed.

TL/F/11718 ± 4

FIGURE 5. Reset

TL/F/11718 ± 5

FIGURE 6. Programming

10

Programming the DP8440/41

4.3 PROGRAMMING SELECTION

RAS LOW AND PRECHARGE TIME

R1

R0

 

 

 

 

0

0

2T

 

0

1

3T

 

1

0

4T

 

1

1

5T

 

 

 

 

 

 

 

 

 

 

 

 

 

DTACK DURING OPENING ACCESS WILL ASSERT AFTER RAS

R3

R2

 

 

 

 

0

0

1T

 

0

1

2T

 

1

0

3T

 

1

1

4T

 

 

 

 

 

 

 

 

 

 

 

 

 

DTACK DURING BURST ACCESS WILL ASSERT AFTER CAS

R5

R4

 

 

 

 

0

0

0T

 

0

1

1T

 

1

0

2T

 

1

1

3T

 

 

 

 

 

 

 

 

 

 

 

 

 

DTACK DURING PAGE ACCESS WILL ASSERT AFTER CAS

R7

R6

 

 

0

0

0T

 

0

1

1T

 

1

0

2T

 

1

1

3T

 

 

 

 

 

PAGE SIZE SELECT

R9

R8

 

 

0

0

512

 

0

1

1024

 

1

0

2048

 

1

1

4096

 

WRAP AROUND SIZE

R11

R10

 

 

0

0

2

 

0

1

4

 

1

0

8

 

1

1

16

 

 

 

 

 

11

Programming the DP8440/41 (Continued)

4.3 PROGRAMMING SELECTION (Continued)

DIVISOR SELECT

C3

C2

C1

C0

 

 

0

0

0

 

0

20

 

0

0

0

 

1

19

 

0

0

1

 

0

18

 

0

0

1

 

1

17

 

0

1

0

 

0

16

 

0

1

0

 

1

15

 

0

1

1

 

0

14

 

0

1

1

 

1

13

 

1

0

0

 

0

12

 

1

0

0

 

1

11

 

1

0

1

 

0

10

 

1

0

1

 

1

9

 

1

1

0

 

0

8

 

1

1

0

 

1

7

 

1

1

1

 

0

6

 

1

1

1

 

1

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RAS AND CAS CONFIGURATIONS AND REFRESH BEHAVIOR

C5 C4

00 All RAS and all CAS are selected. B0 and B1 are not used. All RAS refresh.

0

1

If C6 e 0 Non Error

B1

B0 is not Used

 

If C6 e 1 Error

B1

 

B0 is Not Used

 

 

 

Scrubbing Selected. All

0

RAS0 ± 1

 

 

Scrubbing Selected.

0

RAS0 ± 1 and CAS0 ± 1, CAS4 ± 5

 

 

 

CAS Selected. 2-Step

 

 

All RAS Refresh.

 

 

 

1

RAS2 ± 3

 

 

1

RAS2 ± 3 and CAS2 ± 3, CAS6 ± 7

 

 

 

Staggered Refresh.

 

 

CAS Pairs Selected.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

If C6 e 0 Non Error

B1

B0

 

 

If C6 e 1 Error

B1

B0

 

 

 

 

 

Scrubbing Selected.

0

0

RAS0

 

Scrubbing Selected.

0

0

 

RAS0, CAS0 ± 4

 

 

 

All CASs Selected.

 

All RAS Refresh.

 

 

 

 

0

1

RAS1

 

0

1

 

RAS1, CAS1 ± 5

 

 

 

4-Step Staggered

 

CAS Pairs

 

 

 

 

1

0

RAS2

 

1

0

 

RAS2, CAS2 ± 6

 

 

 

Refresh.

 

Selected.

 

 

 

 

1

1

RAS3

 

1

1

 

RAS3, CAS3 ± 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

If C6 e 0 Non Error

B1

B0 is not used.

 

If C6 e 1 Error

B1

 

B0 is not used.

 

 

 

Scrubbing. 2-Step

0

RAS0 ± 1 and CAS0,1,4,5

 

Scrubbing Selected.

0

RAS0 ± 1 and CAS0,1,4,5

 

 

 

Staggered Refresh.

 

All RAS Refresh.

 

 

 

1

RAS2 ± 3 and CAS2,3,6,7

 

1

RAS2 ± 3 and CAS2,3,6,7

 

 

 

CAS Pairs Selected.

 

CAS Pairs Selected.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERROR SCRUBBING MODE SELECT

C6

0Staggered Refresh (Non Error Scrubbing)

1Error Scrubbing (No CAS-before-RAS and No Staggered Refresh)

12

NSC DP8440VX-40, DP8440VLJ-40, DP8440VLJ-25, DP8440V-40 Datasheet

Programming the DP8440/41 (Continued)

4.3 PROGRAMMING SELECTION (Continued)

ROW ADDRESS HOLD TIME SELECT tRAH

C7

010 ns

115 ns

PAGMISS INPUT OR OUTPUT SELECT

C8

0Input

1Output

CAS PRECHARGE DURING BURST

C9

Read Cycle

Write Cycle

 

0

(/2T

1T

 

1

1T

2T

 

 

 

 

 

REFRESH MODE SELECT

C10

0RAS Only Refresh

1CAS-before-RAS Refresh

FINE TUNE REFRESH CYCLE

C11

015 ms

1120 ms

COLUMN ADDRESS COUNTER CONTROL SELECT

B0

0 DTACK Falling Edge

1DTACK Rising Edge

PAGE OR NORMAL MODE SELECT

B1

0 Page Mode

1Normal Mode

ADDRESS LATCH MODE

ECAS 0

0Latch Mode

1Fall Through Mode

BURST REQUEST SELECT (BSTARQ INPUT)

ECAS1

0 Active Low

1Active High

CAS AND DTACK CLOCK EDGE SELECT

ECAS2

0 Rising Edge

1Falling Edge

RESERVED

ECAS3

0

1

13

5.0 Accessing Modes

The DP8440/41 are synchronous machines. They allow the user to access the DRAM in three different ways, Page, Burst and Normal mode. Every one of these accesses starts in the same way, this datasheet calls it an Opening Access.

5.1 OPENING ACCESS

Every access starts with ADS and CS asserting. ADS, CS and the address inputs must meet setup timings with respect to the next rising edge of CLK. The DP8440/41 places the row address on the Q outputs and RAS asserts from the rising edge of CLK that ADS is set up to. The DP8440/41 guarantees the programmed Row Address Hold Time, tRAH, before switching the internal multiplexer to place the column address on the Q outputs. After the column address is valid on the Q outputs, the controller asserts CAS. The DRAM controller always guarantees tASC of 0 ns.

DTACK asserts after RAS according to the programming selection (R2 ± 3). If the user programs Latch Mode, through programming bit ECAS0, the DRAM controller latches the column address on the rising edge of ADS (Normal or Page Mode). If not, the controller keeps the latches in a fall through mode.

5.2 NORMAL MODE

When the controller is programmed in Normal Mode (B1 e 1), RAS asserts only for the programmed number of clocks selected by R0 ± 1, RAS Low Time, and automatically negates from a rising clock edge. To finish the access, CAS negates from the same clock edge at which DTACK negates. After RAS negates, the DP8440/41 will guarantee the programmed number of positive edges of clock for RAS precharge. RAS will not assert for another access until precharge is met. Figure 7 shows an opening access (Normal Mode) followed by a delayed access due to precharge (accessing the same bank). The second access is delayed by one clock period to meet precharge time requirements.

TL/F/11718 ± 6

FIGURE 7. A Normal Opening Access and Delayed Access (RAS Low Time is Programmed for 2 Clocks)

14

Loading...
+ 32 hidden pages