SGS Thomson Microelectronics LF357N, LF356N, LF356D, LF355N, LF157N Datasheet

...
4 (1)

LF155-LF255-LF355

LF156-LF256-LF356LF157-LF257-LF357

WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIERS

.HIGH INPUT IMPEDANCE J-FET INPUT

.STAGE

HIGH SPEED J-FET OP-AMPs : up to 20MHz,

.50V/μs

OFFSET VOLTAGE ADJUSTMENT DOES NOT DEGRADE DRIFT OR COMMON-MODE REJECTION AS IN MOST OF MONOLITHIC

.AMPLIFIERS

INTERNAL COMPENSATION AND LARGE DIFFERENTIAL INPUT VOLTAGECAPABILITY (UP TO VCC+)

.TYPICAL APPLICATIONS

.PRECISION HIGH SPEED INTEGRATORS

.FAST D/A AND CONVERTERS

.HIGH IMPEDANCE BUFFERS WIDEBAND, LOW NOISE, LOW DRIFT

.AMPLIFIERS

.LOGARITHIMIC AMPLIFIERS

.PHOTOCELL AMPLIFIERS SAMPLE AND HOLD CIRCUITS

N

D

DIP8

SO8

(Plastic Package)

(Plastic Micropackage)

ORDER CODES

Part Number

Temperature

Package

Range

N

D

 

 

 

LF355, LF356, LF357

0oC, +70oC

LF255, LF256, LF257

±40oC, +105oC

LF155, LF156, LF157

±55oC, +125oC

Example : LF355N

PIN CONNECTIONS (top view)

DESCRIPTION

These circuits are monolithic J-FET input operational amplifiers incorporating well matched, high voltage J-FET on the same chip with standard bipolar transistors.

This amplifiers feature low input bias and offset currents, low input offset voltage and input offset voltage drift,coupledwith offsetadjust which doesnot degrade drift or common-mode rejection.

The devicesare also designed for high slew rate, wide bandwidth,extremelyfastsettlingtime, lowvoltageand current noise and a low 1/f noise level.

1

 

 

8

2

 

 

7

3

 

 

6

4

 

 

5

1

- Offset Null 1

5

- Offset Null 2

2

- Inverting input

6

- Output

3

- Non-inverting input

7

+

- VCC

4

-

8

- N.C.

- VCC

July 1998

1/14

SGS Thomson Microelectronics LF357N, LF356N, LF356D, LF355N, LF157N Datasheet

LF155 - LF156 - LF157

SCHEMATIC DIAGRAM

Vi o ADJUSTMENT

ABSOLUTE MAXIMUM RATINGS

Symbol

Parameter

 

Value

Unit

VCC

Supply Voltage

 

±22

V

Vi

Input Voltage - (note 1)

 

±20

V

Vid

Differential Input Voltage

 

±40

V

Ptot

Power Dissipation

 

570

mW

 

Output Short-circuit Duration

 

Infinite

 

Toper

Operating Free Air Temperature Range

LF155-LF156-LF157

-55 to +125

oC

 

 

LF255-LF256-LF257

±40 to +105

 

 

 

LF355-LF356-LF357

0 to 70

 

Tstg

Storage Temperature Range

 

±65 to 150

oC

2/14

 

 

 

 

 

LF155 - LF156 - LF157

ELECTRICAL CHARACTERISTICS

 

 

 

 

 

LF155, LF156, LF157

-55oC Tamb +125oC

±5V VCC ≤ ±20V

 

 

LF255, LF256, LF257

-40oC Tamb +105oC

±5V VCC ≤ ±20V

 

 

(unless otherwise specified)

 

 

 

 

 

 

 

 

 

 

 

LF155 - LF156 - LF157

 

Symbol

 

 

Parameter

 

LF255 - LF256 - LF257

Unit

 

 

 

 

 

Min.

Typ.

Max.

 

Vio

Input Offset Voltage (RS = 50Ω)

 

 

 

 

mV

 

Tamb

= 25oC

 

 

 

3

5

 

 

Tmin.

Tamb Tmax.

LF155, LF156, LF157

 

 

7

 

 

 

 

LF255, LF256, LF257

 

 

6.2

 

Iio

Input Offset Current - (note 3)

 

 

 

 

 

 

Tamb

= 25oC

 

 

 

3

20

pA

 

Tmin.

Tamb Tmax.

LF155, LF156, LF157

 

 

20

nA

 

 

 

LF255, LF256, LF257

 

 

1

nA

Iib

Input Bias Current - (note 3)

 

 

 

 

 

 

Tamb

= 25oC

 

 

 

20

100

pA

 

Tmin.

Tamb Tmax.

LF155, LF156, LF157

 

 

50

nA

 

 

 

LF255, LF256, LF257

 

 

5

nA

Avd

Large Signal Voltage Gain (RL = 2kΩ, VO = ±10V, VCC = ±15V)

 

 

 

V/mV

 

Tamb

= 25oC

 

 

50

200

 

 

 

Tmin.

Tamb Tmax.

 

 

25

 

 

 

SVR

Supply Voltage Rejection Ratio - (note 4)

 

85

100

 

dB

ICC

Supply Current (VCC = ±15V, no load)

 

 

 

 

mA

 

Tamb = 25oC

LF155, LF255

 

 

2

4

 

 

 

 

LF156, LF256

 

 

5

7

 

 

 

 

LF157, LF257

 

 

5

7

 

DVio

Input Offset Voltage Drift (RS = 50Ω)

 

 

5

 

μV/oC

DVio/Vio Change in Average Temperature Coefficient with Vio adjust

 

 

0.5

 

μV/oC

 

(RS = 50Ω) - (note 2)

 

 

 

 

 

 

Vicm

Input Common Mode Voltage Range (VCC = ±15V, Tamb = 25oC)

±11

+15.1

 

V

 

 

 

 

 

 

-12

 

 

CMR

Common Mode Rejection Ratio

 

85

100

 

dB

±VOPP Output Voltage Swing (VCC = ±15V)

 

±12

±13

 

V

 

RL = 10kΩ

 

 

 

 

 

RL = 2kΩ

 

 

±10

±12

 

 

GBP

Gain Bandwidth Product (VCC = ±15V, Tamb = 25oC)

 

 

2.5

 

MHz

 

 

 

LF155, LF255

 

 

 

 

 

 

 

LF156, LF256

 

 

5

 

 

 

 

 

LF157, LF257

 

 

20

 

 

SR

Slew Rate (VCC = ±15V, Tamb = 25oC)

 

 

 

 

V/μs

 

AV = 1

LF155, LF255

 

7.5

5

 

 

 

 

 

LF156, LF256

 

12

 

 

 

AV = 5

LF157, LF257

 

30

50

 

 

Ri

Input Resistance (Tamb = 25oC)

 

 

1012

 

Ω

Ci

Input Capacitance (VCC = ±15V, Tamb = 25oC)

 

 

3

 

pF

en

Equivalent Input Noise Voltage

 

 

 

 

nV

 

(VCC = ±15V, Tamb = 25oC, RS = 100Ω)

 

 

20

 

```√ Hz

 

f = 1000Hz

LF155, LF255

 

 

 

 

 

 

 

LF156, LF256

 

 

12

 

 

 

 

 

LF157, LF257

 

 

12

 

 

 

f = 100Hz

LF155, LF255

 

 

25

 

 

 

 

 

LF156, LF256

 

 

15

 

 

 

 

 

LF157, LF257

 

 

15

 

 

in

Equivalent Input Noise Current

 

 

0.01

 

pA

 

 

 

o

 

 

 

```√ Hz

 

(VCC = ±15V, Tamb = 25 C, f = 100Hz or f = 1000Hz)

 

 

 

 

ts

Settling Time (VCC = ±15V, Tamb = 25oC) - (note 5)

 

 

4

 

μs

 

 

 

LF155, LF255

 

 

 

 

 

 

 

LF156, LF256

 

 

1.5

 

 

 

 

 

LF157, LF257

 

 

1.5

 

 

3/14

LF155 - LF156 - LF157

ELECTRICAL CHARACTERISTICS

LF355, LF356, LF357

0oC Tamb +70oC

VCC = ±15V, (unless otherwise specified)

Symbol

 

 

Parameter

 

LF355 - LF356 - LF357

Unit

 

 

 

Min.

Typ.

Max.

 

 

 

 

 

 

Vio

Input Offset Voltage (RS = 50Ω)

 

 

 

 

mV

 

Tamb

= 25oC

Tmax.

 

 

3

10

 

 

Tmin.

Tamb

 

 

 

13

 

Iio

Input Offset Current - (note 3)

 

 

 

 

 

 

Tamb

= 25oC

 

 

 

3

50

pA

 

Tmin.

Tamb

Tmax.

 

 

 

2

nA

Iib

Input Bias Current - (note 3)

 

 

 

 

 

 

Tamb

= 25oC

 

 

 

20

200

pA

 

Tmin.

Tamb

Tmax.

 

 

 

8

nA

Avd

Large Signal Voltage Gain (RL = 2kΩ, VO = ±10V)

 

 

 

V/mV

 

Tamb

= 25oC

 

 

25

200

 

 

 

Tmin.

Tamb

Tmax.

 

15

 

 

 

SVR

Supply Voltage Rejection Ratio - (note 4)

 

80

100

 

dB

ICC

Supply Current (no load)

 

 

 

 

mA

 

Tamb = 25oC

 

LF355

 

2

4

 

 

 

 

 

LF356, LF357

 

5

10

 

DVio

Input Offset Voltage Drift (RS = 50Ω) - (note 2)

 

5

 

μV/oC

DVio/Vio Change in Average Temperature Coefficient with Vio adjust

 

0.5

 

μV/oC

 

(RS = 50Ω)

 

 

 

 

 

per mV

Vicm

Input Common Mode Voltage Range (Tamb = 25oC)

±10

+15.1

 

V

 

 

 

 

 

 

-12

 

 

CMR

Common Mode Rejection Ratio

 

80

100

 

dB

±VOPP

Output Voltage Swing

RL = 10kΩ

±12

±13

 

V

 

 

 

 

RL = 2kΩ

±10

±12

 

 

GBP

Gain Bandwidth Product Tamb = 25oC)

LF355

 

2.5

 

MHz

 

 

 

 

LF356

 

5

 

 

 

 

 

 

LF357

 

20

 

 

SR

Slew Rate (Tamb = 25oC)

 

 

 

 

V/μs

 

AV = 1

 

LF355

 

5

 

 

 

 

 

 

LF356

 

12

 

 

 

AV = 5

 

LF357

 

50

 

 

Ri

Input Resistance (Tamb = 25oC)

 

 

1012

 

Ω

Ci

Input Capacitance (Tamb = 25oC)

 

 

3

 

pF

en

Equivalent Input Noise Voltage (Tamb = 25oC, RS = 100Ω)

 

 

 

nV

 

f = 1000Hz

 

LF355

 

20

 

```√ Hz

 

 

 

 

LF356, LF357

 

12

 

 

 

f = 100Hz

 

LF355

 

25

 

 

 

 

 

 

LF356, LF357

 

15

 

 

in

EquivalentoInput Noise Current

 

 

0.01

 

pA

 

(Tamb = 25 C, f = 100Hz or f = 1000Hz)

 

 

 

 

```√ Hz

ts

Settling Time (Tamb = 25oC) - (note 5)

LF355

 

4

 

μs

 

 

 

 

LF356, LF357

 

1.5

 

 

Notes : 1. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

2.The temperature coefficient of the adjusted input offset voltage changes only a small amount (0.5μV/oC typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are alsounaffected by offset adjustment.

3.The input bias currents are junction leakage currents which approximately double for every 10oC increase in the junction temperature Tamb. Due to limited production test time, the input bias current measured is correlated to junction temperature. In a normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation,

Ptot-Tamb =Tamb +Rth(j-a)xPtot where Rth(j-a) is the thermal resistance from junction to ambient. Use of a heatsink is recommended

f input currents are to be kept to a minimum.

4.Supply voltage rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practise.

5.Settling time is defined here, for a unity gain inverter connection using 2kΩ resistors for the LF155, LF156 series. It is the time

required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF157 series AV = -5, the feedback resistor from output to input is 2kΩ and the output step is 10V.

4/14

APPLICATION HINTS

The LF155, LF156, LF157 series are op amps with J- FETinput transistors. TheseJFETs havelarge reverse breakdown voltagesfromgatetosource or drain eliminatingtheneed of clamps acrossthe inputs.Therefore large differential input voltages can easily be accommodatedwithoutalarge increaseof inputcurrents. The maximum differential input voltage is independent of the supplyvoltage. However, neitherof thenegativeinput voltagesshouldbe allowed to exceedthe negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-modelimit on either inputwill causeareversal of thephasetotheoutputandforce the amplifier output to the correspondinghigh or lowstate. Exceedingthe negativecommon-mode limit on bothinputs will force the amplifier outputto a highstate.In neithercasedoes a latch occur since raising the input back within the common-mode range again puts the input stage and thustheamplifierin a normal operatingmode. Exceedingthepositive common-modelimit on asingle input will not changethephase of the output however, if bothinputsexceedthe limit, theoutput of theamplifier will be forcedto ahighstate.Theseamplifierswill operatewith the common-mode input voltage equal to the positive supply. In fact, the common-modevoltagecanex- ceedthepositivesupplyby approximately100mV independentof supply volt-age and over thefull operatingtemperaturerange.The positive suplly can thereforebe used asa referenceonaninput as, forexample, in a supply current monitor and/orlimiter. Precautionsshouldbe taken to ensurethat thepowersupplyforthe integrated circuit never becomes re-versed in polarity or that the unit is not inadvertentlyin-stalledbackwards

LF155 - LF156 - LF157

in a socket as an unilimited current surge throughthe resulting forward diode within the IC couldcausefusingoftheinternalconductorsandresultin a destroyedunit. Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

Allof thebiascurrentsintheseamplifiersareset byFET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltages.

As with most amplifiers, care should betakenwith lead dress, components placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to theinput to minimiz ºpickupºand maximize the frequencyof the feedbackpole by minimizing the capacitancefromthe input to ground.

A feedback pole is createdwhen the feedbackaround any amplifier is resistive. The parallel resistance and capacitancefromthe input of thedevice(usuallythe invertinginput)toacgroundsetthefrequencyofthepole.In many instances the frequency of this pole is much greaterthanthe expected3 dBfrequencyof the closed loopgain and consequentlythereisnegligible effect on stability margin. However, if the feedback pole is less than approximately six time the expected 3 dB frequencyaleadcapacitor should be placed from the output to the input of the op amp. The value of that added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

5/14

Loading...
+ 9 hidden pages