MOTOROLA MC14106BD, MC14106BDR2, MC14106BDT, MC14106BDTR2, MC14106BCP Datasheet

4 (1)
MOTOROLA MC14106BD, MC14106BDR2, MC14106BDT, MC14106BDTR2, MC14106BCP Datasheet

MC14106B

Hex Schmitt Trigger

The MC14106B hex Schmitt Trigger is constructed with MOS P±channel and N±channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14106B may be used in place of the MC14069UB hex inverter for enhanced noise immunity or to ªsquare upº slowly changing waveforms.

Increased Hysteresis Voltage Over the MC14584B

Supply Voltage Range = 3.0 Vdc to 18 Vdc

Capable of Driving Two Low±power TTL Loads or One Low±power Schottky TTL Load Over the Rated Temperature Range

Pin±for±Pin Replacement for CD40106B and MM74C14

Can Be Used to Replace the MC14584B or MC14069UB

MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 1.)

Symbol

Parameter

Value

Unit

 

 

 

 

VDD

DC Supply Voltage Range

± 0.5 to +18.0

V

Vin, Vout

Input or Output Voltage Range

± 0.5 to VDD + 0.5

V

 

(DC or Transient)

 

 

 

 

 

 

Iin, Iout

Input or Output Current

± 10

mA

 

(DC or Transient) per Pin

 

 

 

 

 

 

PD

Power Dissipation,

500

mW

 

per Package (Note 2.)

 

 

 

 

 

 

TA

Ambient Temperature Range

± 55 to +125

°C

Tstg

Storage Temperature Range

± 65 to +150

°C

TL

Lead Temperature

260

°C

 

(8±Second Soldering)

 

 

 

 

 

 

1.Maximum Ratings are those values beyond which damage to the device may occur.

2.Temperature Derating:

Plastic ªP and D/DWº Packages: ± 7.0 mW/C From 65_C To 125_C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high±impedance circuit. For proper operation, Vin and Vout should be constrained

to the range VSS v (Vin or Vout) v VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

http://onsemi.com

 

 

MARKING

 

 

DIAGRAMS

 

 

14

 

PDIP±14

MC14106BCP

 

P SUFFIX

 

AWLYYWW

 

CASE 646

 

 

 

 

1

 

 

14

 

SOIC±14

14106B

 

D SUFFIX

 

AWLYWW

 

CASE 751A

 

 

 

 

1

 

 

14

 

TSSOP±14

14

 

DT SUFFIX

106B

 

CASE 948G

ALYW

 

 

1

A

= Assembly Location

WL or L = Wafer Lot

 

YY or Y

= Year

 

WW or W = Work Week

 

ORDERING INFORMATION

Device

Package

Shipping

MC14106BCP

PDIP±14

2000/Box

MC14106BD

SOIC±14

55/Rail

MC14106BDR2

SOIC±14

2500/Tape & Reel

MC14106BDT

TSSOP±14

96/Rail

MC14106BDTR2

TSSOP±14

2500/Tape & Reel

Semiconductor Components Industries, LLC, 2000

1

Publication Order Number:

March, 2000 ± Rev. 3

 

MC14106B/D

MC14106B

LOGIC DIAGRAM

1

2

3

4

5

6

9

8

11

10

13

12

 

VDD = PIN 14

 

VSS = PIN 7

EQUIVALENT CIRCUIT SCHEMATIC

(1/6 OF CIRCUIT SHOWN)

http://onsemi.com

2

MC14106B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

 

 

 

VDD

± 55_C

 

25_C

 

 

125_C

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic

 

Symbol

Vdc

Min

Max

Min

Typ (3.)

Max

Min

Max

Unit

Output Voltage

ª0º Level

VOL

5.0

Ð

0.05

Ð

0

0.05

Ð

0.05

Vdc

Vin = VDD

 

 

10

Ð

0.05

Ð

0

0.05

Ð

0.05

 

 

 

 

15

Ð

0.05

Ð

0

0.05

Ð

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ª1º Level

VOH

5.0

4.95

Ð

4.95

5.0

 

Ð

4.95

Ð

Vdc

Vin = 0

 

 

10

9.95

Ð

9.95

10

 

Ð

9.95

Ð

 

 

 

 

15

14.95

Ð

14.95

15

 

Ð

14.95

Ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hysteresis Voltage

 

V (6.)

5.0

0.3

2.0

0.3

1.1

 

2.0

0.3

2.0

Vdc

 

 

H

10

1.2

3.4

1.2

1.7

 

3.4

1.2

3.4

 

 

 

 

 

 

 

 

 

15

1.6

5.0

1.6

2.1

 

5.0

1.6

5.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Threshold Voltage

 

 

 

 

 

 

 

 

 

 

 

 

Positive±Going

 

VT+

5.0

2.2

3.6

2.2

2.9

 

3.6

2.2

3.6

Vdc

 

 

 

10

4.6

7.1

4.6

5.9

 

7.1

4.6

7.1

 

 

 

 

15

6.8

10.8

6.8

8.8

10.8

6.8

10.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Negative±Going

 

V

5.0

0.9

2.8

0.9

1.9

 

2.8

0.9

2.8

Vdc

 

 

 

10

2.5

5.2

2.5

3.9

 

5.2

2.5

5.2

 

 

 

 

15

4.0

7.4

4.0

5.8

 

7.4

4.0

7.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Drive Current

 

IOH

 

 

 

 

 

 

 

 

 

mAdc

(VOH = 2.5 Vdc)

Source

 

5.0

± 3.0

Ð

± 2.4

± 4.2

 

Ð

± 1.7

Ð

 

(VOH = 4.6 Vdc)

 

 

5.0

± 0.64

Ð

± 0.51

± 0.88

 

Ð

± 0.36

Ð

 

(VOH = 9.5 Vdc)

 

 

10

± 1.6

Ð

± 1.3

± 2.25

 

Ð

± 0.9

Ð

 

(VOH = 13.5 Vdc)

 

 

15

± 4.2

Ð

± 3.4

± 8.8

 

Ð

± 2.4

Ð

 

(VOL = 0.4 Vdc)

Sink

IOL

5.0

0.64

Ð

0.51

0.88

 

Ð

0.36

Ð

mAdc

(VOL = 0.5 Vdc)

 

 

10

1.6

Ð

1.3

2.25

 

Ð

0.9

Ð

 

(VOL = 1.5 Vdc)

 

 

15

4.2

Ð

3.4

8.8

 

Ð

2.4

Ð

 

Input Current

 

Iin

15

Ð

± 0.1

Ð

± 0.00001

± 0.1

Ð

± 1.0

μAdc

Input Capacitance

 

Cin

Ð

Ð

Ð

Ð

5.0

 

7.5

Ð

Ð

pF

(Vin = 0)

 

 

 

 

 

 

 

 

 

 

 

 

Quiescent Current

 

IDD

5.0

Ð

0.25

Ð

0.0005

0.25

Ð

7.5

μAdc

(Per Package)

 

 

10

Ð

0.5

Ð

0.0010

 

0.5

Ð

15

 

 

 

 

15

Ð

1.0

Ð

0.0015

 

1.0

Ð

30

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Supply Current (4.) (5.)

I

5.0

 

 

I = (1.8 μA/kHz) f + I

DD

 

 

μAdc

 

 

T

 

 

 

T

 

 

 

 

 

(Dynamic plus Quiescent,

 

10

 

 

IT = (3.6 μA/kHz) f + IDD

 

 

 

Per Package)

 

 

15

 

 

IT = (5.4 μA/kHz) f + IDD

 

 

 

(CL = 50 pF on all outputs, all

 

 

 

 

 

 

 

 

 

 

 

buffers switching)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.Data labelled ªTypº is not to be used for design purposes but is intended as an indication of the IC's potential performance.

4.The formulas given are for the typical characteristics only at 25_C.

5.To calculate total supply current at loads other than 50 pF:

IT(CL) = IT(50 pF) + (CL ± 50) Vfk

where IT is in μA (per package), CL in pF, V = (VDD ± VSS) in volts, f in kHz is input frequency, and k = 0.001. 6. VH = VT+ ± V(But maximum variation of VH is specified as less that VT+ max ± VT± min).

http://onsemi.com

3

Loading...
+ 5 hidden pages